初中数学《勾股定理的逆定理》说课稿

发布者:天天小戒 时间:2023-4-18 00:22

初中数学《勾股定理的逆定理》说课稿

作为一位杰出的教职工,就有可能用到说课稿,借助说课稿我们可以快速提升自己的教学能力。那么问题来了,说课稿应该怎么写?下面是小编为大家整理的初中数学《勾股定理的逆定理》说课稿,欢迎阅读与收藏。

初中数学《勾股定理的逆定理》说课稿

初中数学《勾股定理的逆定理》说课稿1

尊敬的各位考官:

大家好,我是X号考生,今天我说课的题目是《勾股定理的逆定理》。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材

首先来谈一谈我对教材的理解。

本节课选自人教版初中数学八年级下册第十七章第二节《勾股定理的逆定理》,它是在学生掌握勾股定理及一般三角形性质的基础上进行教学的。应用前面学习的勾股定理及三角形全等证明逆定理是本节课的关键步骤,同时本节课又丰富了三角形的性质,是后面几何问题的基础理论性知识。

二、说学情

接下来谈谈学生的实际情况。本阶段的学生已经掌握了一定的基础知识,处于由几何内容的初级向高级行进的过程。他们的几何思维正在逐步形成和发展,对几何题目具有一定的分析、想象、概括能力,具有对未知事物的新鲜感和探求欲。同时也要注意到学生能力的不成熟,教学中鼓励与引导并重。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下教学目标:

(一)知识与技能

理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

(二)过程与方法

经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。

(三)情感、态度与价值观

体会事物之间的联系,感受几何的魅力。

四、说教学重难点

在教学目标的`实现过程中,教学重点是勾股定理的逆定理及其证明,教学难点是勾股定理的逆定理的证明。

五、说教法学法

为了突破重点,解决难点,顺利达成教学目标,教学中我将主要采用小组讨论、自主探究的教学方法,辅以适量的教师讲解和引导,把课堂还给学生。

六、说教学过程

下面我将重点谈谈我对教学过程的设计。

(一)导入新课

课堂伊始,我采用复习旧知与创设情境相结合的导入方式。首先我会带领学生复习勾股定理并明确其题设和结论,为后面提出逆命题、逆定理做铺垫。接着提问学生如何画直角三角形,学生很容易想到用三角尺或量角器。此时我会要求学生不能用绳子以外的工具,借助学生的困惑,给出古埃及人利用等长的3、4、5个绳结间距画直角三角形的情境。以古埃及人所用方法中蕴含何道理为切入点引出课题。

通过这样的导入方式,能够带领学生回顾上节课的内容,为本节课奠定好基础,同时用情境激发学生的好奇心和求知欲,更好地展开教学。

(二)讲解新知

接下来是最重要的新授环节。

请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

在得到肯定结论后,引导学生基于以上例子大胆猜想得出命题。

初中数学《勾股定理的逆定理》说课稿2

一、教材分析:

(一)、本节课在教材中的地位作用

“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

(二)、教学目标:

根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。

知识技能:

1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形

过程与方法:

1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用

3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

情感态度:

1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系

2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神

(三)、学情分析:

尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

重点:勾股定理逆定理的应用

难点:勾股定理逆定理的证明

关键:辅助线的添法探索

二、教学过程:

本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

(一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

(二)、创设问题情境

一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如***那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)

因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。

(四)、组织变式训练

本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

(五)、归纳小结,纳入知识体系

本节课小结先让学生归纳本节知识和技能,然后教师作必要的`补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。

(六)、作业布置

由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。

三、说教法、学法与教学手段

为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。

此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生***探讨、主动获取知识。

总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。