【荐】初中数学说课稿

发布者:华山欧阳锋 时间:2022-12-8 00:20

【荐】初中数学说课稿

作为一位兢兢业业的人民教师,编写说课稿是必不可少的,写说课稿能有效帮助我们总结和提升讲课技巧。那么说课稿应该怎么写才合适呢?下面是小编整理的初中数学说课稿,仅供参考,希望能够帮助到大家。

【荐】初中数学说课稿

初中数学说课稿1

一、教材分析

▲教材的地位和作用

《整式乘除》这一章与七年级《有理数的运算》中幂的乘方,有理数乘法的运算律和《代数式》的内容联系紧密,是这两章内容的拓展和延续。而幂的乘方是该章第二节的内容,它是继同底数幂乘法的又一种幂的运算。从数的相应运算入手,类比过渡到式的运算,从中探索、归纳式的运算法则,使新的运算规律自然而然地同化到原有的知识之中,使原有的知识得到扩充、发展。在这里,用同底数幂乘法的知识探索发现幂乘方运算的规律,幂乘方运算的规律又是下一个新规律探索的基础,学习层次得到不断提高。

▲学情分析

①说已有知识经验

学生是在同数幂乘法的基础上学习幂的乘方,为此进行本节课教学时,要充分利用这些知识经验创设教学情境。

②说学习方法和技巧

自主探索和合作交流是学好本节课的重要方法。教学中充分利用具体数字的相应运算,再到一般字母,通过观察、类比、自主探索规律,通过合作交流、小组讨论探索规律的过程,培养学生的合作能力和逻辑思维能力。

③说个性发展和群体提高

新课标强调:一切为了学生的发展。就是要求教师通过科学的教育教学方式,使每一个学生都能在原有的基础上得到长足的发展。因此,在学习过程中,我尤其关注那些胆子小、能力弱的学生,鼓励他们大胆动手,勤于思考,敢于质疑,使他们积极参与到整个探索活动中;而对那些平时动手能力强的学生,要求他们学会合作,学会交流,在合作探索中养成争鸣、勇于创新的科学态度,使各类学生都有所收获、提高和发展。

▲教材重难点

重点:幂的乘方的推导及应用。

难点:区别幂的乘方运算中指数运算与同底数幂的乘法运算中的不同。

二、教学目标

新课标要求以培养学生能力,培养学生兴趣为根本目标,结合学生的年龄特征和对教材的分析,确立如下教学目标:

㈠知识与技能目标

⑴通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程。

⑵掌握幂乘方法则。

⑶会运用法则进行有关计算。

㈡过程与方法目标

⑴培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力。

⑵体会具体到抽象再到具体、转化的数学思想。

㈢情感、态度与价值观

体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。

三、教法与学法

教法:鉴于初二学生已具有一定的数学活动能力和经验型的抽象逻辑能力,以学生为本的思想为指导,主要采用引导探究法。让学生先独立思考,再与同伴交流各自的发现,然后归纳其中的规律,获得新的认识,同时体验规律的探索过程。

学法:自主探索、合作交流的研讨式学习,目的使学生在探究的过程中体验过程,主动建构知识,同时培养学生动口、动手、动脑的能力。

教学手段:采用多媒体辅助教学。

四、教材处理

⑴通过正方形桌面边长为81cm,即34cm,求其面积从而引出问题,让学生感受幂的乘方运算也是来源于生活的需要,从而激发学生的求知欲。

⑵为了让学生更好地领会两种运算的区别和应用,特补充例2和改错题。

⑶获取新知后,设计一个以学生熟悉和喜爱的智力玩具魔方为背景的探究活动,让学生再次体会幂乘方的自然应用。

⑷课外作业中补充一道极限挑战,是用幂乘方运算的逆运算来解决的,有一定的难度。既让学生有足够的思考空间,又能让一些学有余力的学生得到更高的发展,也培养了学生的创新思维。

五、教学过程

学生的学习是以其原有的认知结构为基础,主动建构知识的过程,依据学生的认知规律,将教学过程分以下几个环节:

①创设情境,引入课题。

②自主探索,展示新知。

③应用新知,解决问题。

④反馈练习,拓展思维。

⑤学有所思,感悟收获。

⑥布置作业,学以致用。

1、创设情境,引入课题

《课程标准》指出:学生的数学学习应当是现实的、有意义的。根据本节课的教学内容和特点,经反复推敲,我准备以复习和实际事例导入。设计两个问题:

问题1:同底数幂的乘法法则是怎么样的?

问题2:如果一个正方形桌面的边长81cm即34cm,则其面积可表示为(34)2cm2,如何计算其结果呢?

设计意图:以实例引入课题,强化了数学应用意识,使学生真真切切地感受到幂的乘方运算因实际需要而生,最后以解决问题而终的学以致用的思想,从而激发了学生的求知欲望。

2、自主探索,展示新知

(1)自主探索

出示幻灯片试一试

请计算下列各题:①(23)2 ②(104)2 ③(104)100 ④(a3)n

(多媒体演示时,先出现①②,再出现③,最后出现④)

设计意图:①②两小题既是旧知识的巩固复习,也让学生体验转化的数学思想。第③小题的指数很大,让学生感受寻找幂乘方运算规律的必要性,激发了学习动机。第④小题将底数改成字母a,这里从具体数字到一般字母,循序渐进,符合学生的认知规律,同时也为导出(am)n做好铺垫。

(2)合作交流,展示成果

计算:(am)n

设计意图:数学教学过程是学生对有关的学习内容进行探索与思考的过程,学生是学习活动的主体,教师是学习活动的组织者、引导者和合作者。因此,我首先鼓励学生观察第①、②、③、④题,等式两边的底数和指数发生了什么变化?从而归纳猜想(am)n的结果。通过小组讨论,展示成果,体验规律的探索过程,培养学生逻辑推理能力、语言概括能力。

3、应用新知,解决问题

(1)出示例1:计算下列各式,结果用幂的形式表示(多媒体演示)

①(107)2 ②(b4)3 ③(am)4 ④[(x-y)3]5

⑤[(-2)2]10 ⑥-(y3)4 ⑦ (-y3)4

设计意图:(1)华罗庚说过:学数学而不练,犹如入宝山而空返。设计例1让学生新鲜体验,巩固新知,使充分展示自我,体验成功。 (2)第①、②、③、④题让学生体验(am)n中a可以是一个数、一个字母,也可以是一个多项式。

(3)第⑤、⑥、⑦题当底数带有负号时,该如何处理,为后面例2中第③小题作了铺垫。

(2)出示例2:计算下列各式

①(y2)3(y3)4 ②xx2x3-(x2)3+x2-x4

③(-2)2(-23)4 ④100010n(103)2

设计意图:①幂的乘方与同底数幂乘法及合并同类项的混合运算,不仅要弄清计算顺序,而且更要清楚什么样的运算用什么样的法则,加强新旧知识的联系,拓展思维。

②不同层次学生的思维得到不同的发展,促进学生从模仿走向成熟。新课标指出:数学学习中教师的教和学生的学必须是开放多样的,适当增加练习的难度,可以使学生的思路更广阔、更灵活。

(3)比较同底数幂的乘法和幂的乘方法则的区别和联系(多媒体演示)

设计意图:有了例2的铺垫,学生有了形象的感知后,重新疏理知识,内化为理性认识,从而突破难点。

4、反馈练习,拓展思维

(1)出示改错题(多媒体演示)

下列各题计算正确吗?

①(x2)3+x5=x5+x5=2x5

②x3x6+(x3)3=x9+x9=x18

③x2(x4)2+x5x2=x10+x10=x20

设计意图:加深同底数幂乘法、幂的乘方及合并同类项的区别。

(2)设计一个探究活动(多媒体演示)

魔方是匈牙利建设师鲁比克发明的一种智力玩具,设组成魔方(如图1)的每一个小立方块(我们称它为基本单元)的棱长为1,那么一个魔方的体积是33,现在设想以这种魔方为基本单元做一个大魔方(如图2),那么这个大魔方的体积能否用3的正整数次幂表示?怎样表示?如果再以这个大魔方为基本单元做一个更大的魔方呢?

设计意图:以学生熟悉和喜爱的智力玩具魔方为背景,探索大魔方的体积为表示方法,体会幂的乘方的自然应用,寻找运算法则的实际意义。让学生体会数学美和数学的价值,同时也激发了学生的学习兴趣。

5、学有所思,感悟收获

设计三个问题:

①通过本节课学习,你学会了哪些知识?

②通过本节课学习,你最深刻的体验是什么?

③通过本节课学习,你心里还存在什么疑惑?

设计意图:学生畅所欲言,在以生为本的民主氛围中培养学生归纳、概括能力和语言表达能力,同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人。

6、布置作业,学以致用

必做题:作业本

选做题:①已知1624326=22x-1,(102)y=1020求x+y.

②已知:比较2100与375的大小。

设计意图:分层次作业使不同层次的学生得到了不同的发展,又为后续学习打下了良好的基础。

六、板书设计幂的乘方幂的乘方法则的

推导过程同底幂的乘法法则

幂的乘方法则范例板书

学生练习设计意图:展示知识结构,突出重难点,加强理解记忆。

七、设计说明

1、以学生为本。每个教学环节的设计,都注重以学生原有的知识和经验为基础,面向全体学生,让学生主动参与到教学中来,允许不同学生提出不同的想法,使不同学生在思维上得到不同的发展。

2、注重反思。数学家波利亚强调问题解决有四个步骤,其中第四步就是回顾反思。只有把培养反思能力与培养观察探究能力、合作交流能力和解决实际问题等能力有机结合起来,才能使学生学会学习,才能真正实现教是为了不教,学是为了会学!

初中数学说课稿2

一:教材分析:

本节课主要是在学生学习了有理数概念基础上,从标有刻度温度计表示温度高低这一事例出发,引出数轴画法和用数轴上点表示数方法,初步向学生渗透数形结合数学思想,以使学生借助直观图形来理解有理数有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识重要工具,还是以后学好不等式解法、函数图象及其性质等内容必要基础知识。

二:教学目标:

根据新课标要求及七年级学生认知水平我特制定本节课教学目标如下:

1. 使学生理解数轴三要素,会画数轴。

2. 能将已知有理数在数轴上表示出来,能说出数轴上已知点所表示有理数,理解所有有理数都可以用数轴上点表示

3. 向学生渗透数形结合数学思想,让学生知道数学于实践,培养学生对数学学习兴趣。

三:教学重难点确定:

正确理解数轴概念和有理数在数轴上表示方法是本节课教学重点,建立有理数与数轴上点对应关系(数与形结合)是本节课教学难点。

四:学情分析:

⑴知识掌握上,七年级学生刚刚学习有理数中正负数,对正负数概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统去讲述。

⑵学生学习本节课知识障碍。学生对数轴概念和数轴三要素,学生不易理解,容易造成画图中掉三落四现象,所以教学中教师应予以简单明白、深入浅出分析。

⑶由于七年级学生理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动形象,引发学生兴趣,使他们注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习主动性。

⑷心理上,学生对数学课兴趣,老师应抓住这有利因素,引导学生认识到数学课科学性,学好数学有利于其他学科学习以及学科知识渗透性。

五:教学策略:

由于七年级学生理解能力和思维特征,他们往往需要依赖直观具体形象图形年龄特点,以及七年级学生刚刚学习有理数中正负数,对正负数概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”研讨式学习方法。教学中积极利用板书和练习中图形,向学生提供更多活动机会和空间,使学生在动脑、动手、动口过程中获得充足体验和发展,从而培养学生数形结合思想。

为充分发挥学生主体性和教师主导辅助作用,教学过程中设计了七个教学环节:

(一)、温故知新,激发情趣

(二)、得出定义,揭示内涵

(三)、手脑并用,深入理解

(四)、启发诱导,初步运用

(五)、反馈矫正,注重参与

(六)、归纳小结,强化思想

(七)、布置作业,引导预习

六:教学程序设计:

(一)、温故知新,激发情趣:

首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉带刻度度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

(1)零上5°C用 5 表示。

(2)零下15°C 用 -15 表示。

(3)0°C 用 0 表示。

然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上点表示正数、负数和0呢?答案是肯定,从而引出课题:数轴。结合实例使学生以轻松愉快心情进入了本节课学习,也使学生体会到数学于实践,同时对新知识学习有了期待,为顺利完成教学任务作了思想上准备。

(二)、得出定义,揭示内涵:

教师设问:到底什么是数轴?如何画数轴呢?

(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美感觉。)

(2)标正方向(这里说明我们在水平位置数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线一部分,因此标上箭头指明正方向,并表示无限延伸。)

(3)选取单位长度,标数(这里说明任选适当长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度长短,可根据实际情况而定,但同一单位长度所表示量要相同。)

由于画数轴是本节课教学重点,教师板书这三个步骤,给学生以示范。

画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通过教师亲切语言启发学生,以培养师生间默契)

通过讨论由师生共同得到数轴定义:规定了原点、正方向和单位长度直线叫做数轴。

至此,我们将一个具体事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论认识过程。

(三)、手脑并用,深入理解:

1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?

A、B、C三个图形从数轴三要素出发,D和F是学生可能出现错误,给学生足够观察、思考时间然后展开充分讨论,教师参与到学生讨论之中去接触学生,认识学生,关注学生。

2、为进一步强化概念,在对数轴有了正确认识基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

学生在画数轴时教师巡视并予以个别指导,关注学生个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生发展;并强调:原点、正方向和单位长度是数轴三要素,画数轴时这三要素缺一不可。

我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念理解;一个是通过动手操作加深对概念理解。

(四)、启发诱导,初步运用:

有了数轴以后,所有有理数都可以表示在数轴上,那么反过来,数轴上点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数学习埋下伏笔,这里不再展开。

安排课本23页例1,利用黑板上例题图形让学生来操作,教师提出要求:

1、要把点标在线上 2、要把数标在点上方

通过学生实际操作,可以加深对数轴理解,进一步掌握用数轴上点表示数方法,同时激发学生学习兴趣,调动学生积极性,从而使学生真正成为教学主体。

当然,此题还可以再说出几个有理数让学生去标点,好让更多学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上点表示,从而加深对数形结合思想理解。

(五)、反馈矫正,注重参与:

为巩固本节教学重点让学生独立完成:

1、课本23页练习1、2

2、课本23页3题(给全体学生以示范性让一个同学板书)为向学生进一步渗透数形结合思想让学生讨论:

3、数轴上点P与表示有理数3点A距离是2,

(1)试确定点P表示有理数;

(2)将A向右移动2个单位到B点,点B表示有理数是多少?

(3)再由B点向左移动9个单位到C点,则C点表示有理数是多少?

先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识基础上达到灵活运用,形成一定能力。

(六)、归纳小结,强化思想:

根据学生特点,师生共同小结:

1、为了巩固本节课教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同有理数?

让学生牢固掌握一个有理数只对应数轴上一个点,并能说出数轴上已知点所表示有理数。

(七)、布置作业,引导预习:

为面向全体学生,安排如下:

1、全体学生必做课本25页1、2、3

2、最后布置一个思考题:

与温度计类似,数轴上两个不同点所表示两个有理数大小关系如何?

(来引导学生养成预习学习习惯)

七:板书设计:(略)

总之,在教学过程中,我始终注意发挥学生主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样教学实践取得了良好教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎好教师。

以上是我对本节课设想,不足之处请老师们多多批评、指正,谢谢

初中数学说课稿3

一、教材分析

1、从教材的地位与作用看:

⑴本节课的主要内容是平方差公式的推导和平方差公式在整式乘法中的应用。 ⑵它是在学生已经掌握单项式乘法、多项式乘法基础上的拓展和创造性应用;

⑶是对多项式乘法中出现的较为特殊的算式的第一种归纳、总结;是从一般到特殊的认识过程的范例。

⑷它应用十分广泛,通过乘法公式的学习,可以丰富教学内容,开拓学生视野。更是今后学习因式公解、分式运算及其它代数式变形的重要基础。

2、从学生学习过程的角度看:

⑴ 学生刚学过多项式的乘法,已经具备学习和运用平方差公式的知识结构;

⑵ 由于学生初次学习乘法公式,认清公式结构并不容易,因此,教学时不可拔高要求,追求一步到位;

⑶ 学生在本节课学习过程中出现的错误,迸发出的思维火花、情感都是本节课较好的教学资源。

3、教学目标分析

(1)知识与技能

1、经历探索平方差公式的过程、

2、会推导平方差公式,并能运用公式进行简单的运算、

(2)过程与方法

1、在探索平方差公式的过程中,培养符号感和推理能力、

2、培养学生观察、归纳、概括的能力、

3、情感与价值观要求

在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美、

让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战、勇于探索的精神和善于观察、大胆创新的思维品质。

教学重点

平方差公式的推导和应用、

教学难点

理解平方差公式的结构特征,灵活应用平方差公式、

教学关键:“认清结构,找准a、b”。

二、教学程序分析

教学流程安排:

活动1:创设情境 激趣引入

活动2:自主探究 归纳发现

活动3:解释运用 解决问题

活动4:反馈练习 拓展应用

活动5:反思小结 布置作业

三、教法学法分析

1、学情透视:

(1)有利因素:

学生已经具备了导出平方差公式的知识与技能;同时,有了对整式运算“快”,“准”的积极心理;

学生独立探索,合作交流的习惯正逐渐养成。

(2)不利因素:

两个多项式相乘的形式复杂多变,学生较易被假象所迷惑;

部分学生对多项式相乘还不够熟练和细心,学生学习能力也参差不齐。

2、学法指导:对于数与代数的学习来说,重要的是让学生学会探究模式、发现规律、而不是死记结论,死套公式和法则。[]只有经过自己的探索,才能不仅“知其然”,而且知其“所以然“,才能真正获得知识,懂得公式的意义,掌握公式的应用。而且通过探究公式的活动,可以提高探索能力,也有利于掌握数与代数的运算和规律。因此通过创设“速算”的情境来激发学生的探究兴趣。

(1)自主探究:指导学生认真思考,细心观察,大胆发现得出平方差公式,学会探索,学会学习。遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中

(2)合作交流: 有学生之间的交流,也有师生之间的交流,在课堂中构建和谐,民主的气氛。

3、教学构思:

(1)教学方法:我采用的是探究性学习教学模式,利用多项式的乘法,探索归纳出平方差公式,领会a,b 的含义,从操作活动中探索公式的几何背景,让学生带着原有的知识背景、生活体验和理解走进学习活动,并通过自己的主动探索,与同学合作交流、反思等,构建对知识的形成和运用。这样不仅能够理解、归纳平方差公式的特点,而且充分感受到数学演绎的过程和数学知识的整体性,学会进行有条理的表达。使教法、学法和谐统一,形成由感性到理性认知过程,促进学生全面发展。

(2)教学手段:利用多媒体等教学手段,激发学生的学习兴趣,帮助学生突破难点,提高课堂教学效率

四、设计说明与思考

《新课程标准》中明确指出:“数学教学是数学活动的教学,学生数学学习的主人。教师的职责在于向学生提供从事数学活动家机会,在活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。”在教学设计时,以课标理念为指导思想,以多媒体教学课件为辅助手段,突出对平方差公式的推导和应用。自主探究、举一反三、语言叙述、推导验证、几何解释、应用巩固等活动都是根据学生的认知特点和所学知识的特征,让学生经历数学知识的形成与应用过程,以促进学生的有效学习。

在教学活动的组织中始终注意:

(1)以问题为活动的核心。在组织活动前,结合学习内容和学生实际,更好地使用教科书,创设问题情境。

(2)探究是一个活动过程也是学生的思维过程,对学生的发展来说是最重要的。在对比中学,在对比中用,在对比中再进行比较,从基本类型的题目到变化多端的题目,从单一题型到复杂题型,从式中的位置、符号、系数、指数、项数等逐一对比,引导学生多角度思考问题,抓住公式、法则的实质,达到运用自如的效果。让学生认知内化,形成能力。

(3)促进学生发展是活动的目的。数学教育要以获取知识为首要目标转变为首先关注人的发展,这是义务教育阶段数学课程的基本理念和基本出发点。因此,本节课组织上活动的目的,不是为了单纯地传授知识,而是注意让学生在参与平方差公式的探究推导、归纳证明、解释应用的过程中促进学生代数推理能力、表达能力、与人合作意识、数学思想方法等各方面的进一步发展。

我紧紧抓住这节课的教学重点:平方差公式的推导和应用;突破一个难点:理解平方差公式的结构特征,灵活应用平方差公式,注意符号问题;在例题教学中,让学生深刻理解这节课的关键:识别完全相同的项a和互为相反数b;精心选择练习题,培养学生熟练运用公式能力,尽量满足不同层次学生的要求。

通过这节课我认为今后的教学还需要备好学生、备好教材(要深挖),设计好自己的教案,注重学生的主体地位,渗透数学想方法,把握好知识的发生过程,不是机械的记忆,简单的叠加,而要做到理解的基础上记忆,符合认知规律的重新构建,设计时注意要有阶梯,且要适度,提高自己的点拨技巧,为上好每一节课而不懈努力。

初中数学说课稿4

我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。

一、教材分析

多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。

二、学情分析

1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。

2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。

三、教学目标分析

新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。

【知识与技能】

掌握多边形的内角和公式,并能熟练运用。

【数学思考】

(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

【解决问题】

通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

【情感态度】

1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。

2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。

基于以上教学目标,我确定以下教学重难点:

【教学重点】探索多边形的内角和公式。

【教学难点】探究多边形内角和时,如何把多边形转化成三角形。

因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。

四、教法和学法分析

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1.教学方法:

根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

2.学习方法:

利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

五、说教学流程

1、环节一:创设情景、引入新课

情景:请学生观察“上海世博园”的宣传视频。

从 “情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。

2、环节二:合作交流、探索新知。

活动1:

猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量” 、“剪拼”、“作辅助线” 等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。

针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。

想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

活动2:

做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。

上节课我们学习了多边形的对角线,我们来看对角线与多边形的边数和多边形的内角和之间有什么关系?

议一议:

问题1:对比上面探究四边形内角和的过程,你能得出五边形的内角和?六边形的内角和?

问题2:能否采用不同的分割方法来解决这些问题?

问题3:n边形的内角和是多少?

活动3:

想一想:采取表格的形式,首先请学生找出将多边形分割成三角形的个数,再根据三角形个数求出多边形的内角和。学生分组讨论、归纳分析并展示自己发现的规律,要求用已“探究”的不同多边形来有条理地发现和概括出多边形的边数与内角和之间的关系,水到渠成地归纳、类比推出n边形的内角和公式,让学生体会从特殊到一般的思考问题的方法根据本组探究过程填写下面表格的第二、三、四列,你能从中发现什么规律?

尝试完成第五列n边形的探究。

由于学生不熟悉完全归纳法,采取表格的形式使归纳更富条理性。为了让学生更好的理解多边形内角和公式(n-2)×180°,我又鲜明的指出:N表示什么?

但是学生有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,边数每增加1条内角和就增加 180°。但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

练一练:为了使学生达到对知识的巩固与应用,我特地设计了一组(5个)即时抢答题,通过这些题目学生当堂训练、独立计算,并根据学生都喜好竞赛的特点,采用抢答式完成。运用所学公式解决问题并巩固、理解、记忆公式。

抢答:

(1)过一个多边形一个顶点有10条对角线,则这是 边形.

(2)过一个多边形一个顶点的所有对角线将这个多边形分成五个三角形,则这是 边形.

(3)多边形的内角和随着边数的增加而 ,边数增加一条时它的内角和增加 度。

(4)十二边形的内角和等于 度。

(5)一个多边形的内角和等于720度,那么这个多边形是 边形.

3、环节三:例题讲解,知识巩固

在此,我设计了2个例题,并对教科书上的例题作了较小的改动,书上的例1简略讲解,这个例题就是对四边形的内角和的简单应用,对于学生来说比较简单;对于例2我把书后面的85页习题第9题变成例题,这一道题目具有较好的典型性,特别是知识间的融会贯通,主要要求学生掌握:三角形、五边形的内角和,正五边形等相关知识。

4、环节四:分组竞赛、情感升华

(1)智慧大比拼

内容:P87的练习分成2类。

通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。

(2)拓展探究

内容:用一把剪刀,将一张正方形卡片一个角截去,剩下的卡片是一个几边形?它的内角和是多少?

小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

(3)情系世博

内容:20xx年5月1日世博会在上海拉开帷幕,小明为了纪念这一特殊年号,他想用20xx°设计一个多边形,他的愿望能实现吗?

引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

5、环节五:畅所欲言、分享成果

请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。

6、环节六:布置作业、课后提升

(1)习题7.3第2题、第4题。

(2)选做题:用另外两种作辅助线的方法证明多边形内角和定理。

采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。

六、评价分析

评价学生,不仅仅是一个手段和结果,它对学生的人格、个性的发展有着极其重要的作用。新课程对课程的评价应把握形成性、发展性评价和终结性评价相结合,在实践中我打算在课堂上从以下几个方面进行评价:

1、评价在学习中各种能力〈如表达、想象、动手、思维、自学能力等〉的发展情况。

2、评价学习过程中的创新表现。

3、评价在学习过程中对身边事物、社会现实的关注程度。

评价必须最大限度地考虑最终结果,要以培养学生的荣誉感、自尊心和进取心为目的,使其产生获取成功的动力。

七、说板书设计

最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,并体现教师的示范作用,突出本堂课的重难点,及主要的思想方法。

板书设计:

多边形的内角和

以上是我对本节课的设计说明,从说教材、说学情、说教法、说学法、说教学程序上说明这节课“教什么”和“怎么教”,并且阐明了“为什么要这样教.我的说课到此结束,谢谢大家。

初中数学说课稿5

一、教材分析:

(一) 教材的地位与作用

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导学生动手实验突出重点,合作交流突破难点。

二、学情分析

初二学生已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要学生通过动手操作,在观察的基础上,大胆猜想数学结论。但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

三、教学与学法分析

教学方法

叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导

为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

四、教学过程

首先,情境导入 激问设疑

给出生活中的'实际问题,调动学生兴趣,启迪学生思维,激发学生创新热情和和情感体验。是学生带着好奇心开始本节课的学习。

其次,自主探究,获取新知

勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

1. 追溯历史 解密真相

让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。

2.动手操作----探求新知

通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

这里首先引导学生观察图1、图2、图3,让学生计算每个图中的三个正方形的面积,(注意:学生可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于学生主动参与探索,感受学习的过程,培养学生的语言表达能力,体会数形结合的思想;也有利于突破难点,让学生体会到观察、猜想、归纳的思路,让学生的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导学生利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

3、自己动手,拼出弦图

让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。在求正方形C的面积时,学生将展示"割"的方法, "补"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

以上三个环节层层深入步步引导,学生归纳得到命题,从而培养学生的合情推理能力以及语言表达能力。

感性认识未必是正确的,推理验证证实我们的猜想。

合作交流,讲述论证

教材中直接给出"赵爽弦图"的证法对学生的思维是一种禁锢,我创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出"学生是学习的主体,教师是组织者、引导者与合作者"这一教学理念。学生会发现两种证明方案。

方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。

方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让学生体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。增强了学生学习数学的兴趣和信心。

我按照"理解—掌握—运用"的梯度设计了如下四组习题。

(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

最后、温故反思 任务后延

在课堂接近尾声时,我鼓励学生从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

然后布置作业,分层作业体现了教育面向全体学生的理念。

五、板书设计

板书勾股定理,进而给出字母表示,培养学生的符号意识。

六、学习评价

本课意在创设和谐的乐学气氛,始终面向全体学生,"以学生的发展为本"的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发学生的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助学生去理解和转化,而更多时候需要学生自己去探索,尝试,得出正确结论。

初中数学说课稿6

一 教材分析

(一)地位和作用:《正方形》这节课是人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

(二)教学目标

根据大纲要本节课制定以下三方面的教学目标。

知识目标

1、要求学生掌握正方形的定义及性质;

2 、能正确运用正方形的性质进行简单的计算、推理、论证;

能力目标:

1、通过本节课培养学生观察、操作、探究、分析、归纳、总结等能力;

2、发展学生合情推理的意识,主动探究的习惯,逐步掌握说理的基本方法;

情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神。

3、通过感受正方形图形的完美性,培养学生品格的完美性

重点与难点:本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。

二 教法,学法分析

1教法(说教法)针对本节课的特点,为了更有效的突出重点突破难点,采用"实践--观察--总结归纳--运用"为主线的教学方法。 通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理。

2学法(说学法) 叶圣陶说“教是为了不教“,也就是我们传授给学生的不只是知识的内容,更重要的是指导学生掌握一些数学的学习方法。本节课重点以培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

三 教学过程

(一)相关知识回顾 :以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是 由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过动手操作演示以上两种变化,从而得出结论。

(二)新课讲解 通过之前学生们的发现引出今天的课题“正方形”

1、正方形的定义 :引导学生说出自己变化出正方形的过程,请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。(由课件演示)再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质(由课件演示) 定理1:正方形的四个角都 是直角,四条边都相等; 定理 2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分 一组对角。以上是对正方形定义和性质的学习,之后进行例题讲解。

3、例题讲解(由课件显示) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。

此题是文字证明题,由学生们分组探讨,共同研究此题 的已知、求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。通过完成例题培养他们语言表达能力,让学生的个性得到充分的展示

4、课堂练习

设计目的

(1)进一步理解正方形的性质,并考察学生掌握的情况。

(2)通过生活中实际问题的举例,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学的实质是来源于生活并且服务于生活。

5课堂小结 :此环节通过图表小结正方形和前阶段所学特殊四边形之间的内在联系,从而体现出正方形完美的本质。渲染学生们应追求象正方形一样完美的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:教材课后习题19.2的7,13,15, 17题,通过此作业让同学们进一步巩固有关正方形的知识

四、教学反思

1、本节课设计是以问题为主线,培养学生有条理思考问题的习惯和归纳概括的能力,并重视培养学生语言描述,然后进行引导交流形成规范语言。

2、通过拓展延伸练习题,鼓励学生大胆尝试,同时鼓励其他同学互帮互助,交流自己解决问题的过程,给学生留下了充分的空间,不断激发学生的探索精神,培养了学生的动手操作、合作交流,逻辑推理能力,提高学生分析和解决问题的能力。以上是我对正方形这节课的教学内容的设计,请大家多提宝贵意见,谢谢

五、板书设计:略

初中数学说课稿7

一、教材分析

1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

2、教学目标

根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。

3、教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发。所以,本节课的重点是:由实际问题列出一元二次方程和一元二次方程的概念初中数学说课稿精选初中数学说课稿精选。鉴于学生比较缺乏社会生活经历,处理信息的能力也较弱,因此把由实际问题转化成数学方程确定为本节课的难点。

二、教法、学法

因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景———数学模型—————概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

三、教学过程设计

创设情景,引入新课

因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过微机演示课本中的实例,并应用微机对其进行分析,充分显示微机演示中的生动性、灵活性,把图形的静变成动,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

初中数学说课稿三

一、教材分析

(一)地位、作用

本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。

(二)教学目标

根据学生已经有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:

1、知识与技能

(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。

(2)掌握“对顶角相等的性质”。

(3)理解对顶角相等的说理过程。

2、过程与方法

经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力。

3、情感态度和价值观

通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。

(三)重点,难点

根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:

重点:邻补角和对顶角的概念及对顶角相等的性质。

难点:写出规范的推理过程和对对顶角相等的探索。

二、教学方法

在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程。

三、学法指导

让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。

初中数学说课稿8

开场白:

尊敬的各位考官,上午好,我是面试初中数学的6考生,今天我说课的题目是《相交线》。下面我将从说教材、说学情、说教法、说学法、说教学过程、说板书设计这六个方面进行说课。

一、说教材

《相交线》是人教版七年级下册第五章第一节的教学内容,本节课主要由生活中常见的剪刀入手,通过观察剪刀4个角的关系,抽象出两条相交直线形成的4个角的位置和大小关系,同时理解对顶角,邻补角的意义。本节是在学生学习了直线射线线段、角的基础上展开教学的,同时为后续学习相交线中特殊的垂线以及后续其他类型的角的位置关系打下了基础。起到了承上启下的作用。

在理解教材地位与作用的基础上,结合新课程标准,特制定如下三维教学目标:

1.知识与技能目标:学生通过对相交线的学习,在具体的情景中感受相交线相关角之间的关系,加深对平面图形的认识。

2.过程与方法目标:通过学生的观察与实践,体验相交线的学习过程,并且能够掌握应用相交线所产生的角之间的关系,从而来解决实际问题。

3.情感态度与价值观目标:学生体验数学的美感,从而了解数学,喜欢几何。

根据教学三维目标以及对教材的分析,我将本节课的重点确定为:学生了解两条直线相交后形成的角,探索它们之间的位置关系。而基于学生身心发展特点将本节课的难点确定为:学生掌握两条直线相交后所产生的4个角之间的关系,并且会应用此关系去解决实际问题。

二、说学情

掌握学生的基本情况,对于把握和处理教材具有重要作用,接下来我来说一下学情。七年级的学生虽抽象思维占优势,但还需感性经验的支持,这一年级的学生活泼、好动,叛逆心理比较强,教师应关注这些特点,多鼓励学生,充分发挥学生的主体作用。

三、说教法

科学合理的教学方法可以使教学活动达到事半功倍的效果,本节课我主要采用引导设问法、讨论法、练习法等方法,激发学生学习兴趣。

四、说学法

教法为学法导航,学法是教法的缩影。因此,本节课的学习以学生的自主探究、合作交流为主要学习方式。学生通过对新知的自主探究,促使学生更深入地去学习数学,乐于探究数学。

五、说教学过程

根据新课标教材及学生特点,为真正实现学生的自主学习,学生参与知识的过程,我将从五个环节展开我的教学。

1.导入

在上课伊始,我会在大屏幕上呈现剪刀剪开布的动态视频,引导学生观察剪刀把手之间的角度和刀刃之间的角度变化关系,学生会发现二者同时变大或变小,此时我会继续提出问题:如果把把剪刀的构造看作两条直线的相交,那大家会发现什么呢?通过学生动手画图,会发现4个角,我会乘胜追击,再次发问:这4个角之间又怎样的位置关系?从而引入课

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。