数学广角说课稿(15篇)

发布者:倚窗望月 时间:2022-12-5 00:18

数学广角说课稿(15篇)

作为一名教学工作者,通常需要准备好一份说课稿,通过说课稿可以很好地改正讲课缺点。说课稿应该怎么写呢?以下是小编收集整理的数学广角说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学广角说课稿(15篇)

数学广角说课稿1

一、说教材:

“数学广角――简单推理”是新人教版二年级下册第109页的教学内容。这是一节有趣的活动课,也是一节逻辑思维训练的起始课。本节课主要要求孩子们能根据提供的信息,进行判断、推理,得出结论,使学生初步掌握推理的简单方法。本节课立足学生认知发展水平,在问题设计的难度上都不是很大,一般都有一个可以直接判断的条件,学生只要找准关键句,就能较为轻松地推理出其他的相关结论。让学生亲身经历对生活现象判断的过程,从而锻炼学生的逻辑推理能力是教材编写的重要目的之一。

二、说学情:

二年级的孩子由于他们的年龄特点,他们具有较高的学习热情,喜欢做游戏,喜欢与他人合作,同时也具备了一些简单的推理能力。基于以上分析,我将游戏带入了课堂,整堂课设计成一节猜一猜、做一做的游戏课,让学生通过生动有趣、形式多样的猜测、推理游戏,使学生在具体的情境中感受简单推理的过程,初步获得一些简单推理的经验。培养学生初步的分析推理能力、合作能力。

三、说教学目标及重难点:

根据教材的编排意图以及学生的实际情况,我制定了本课的教学目标为:

知识技能:让学生了解简单的推理知识,初步获得一些简单推理的经验;培养学生初步观察、分析、推理能力和有条理思考问题的意识。

过程方法:让学生经历简单的推理过程,体验逻辑推理的思想与方法,体会逻辑推理条件与结论之间的联系。

情感态度:感受逻辑推理的趣味性、严谨性以及数学结论的确定性,培养学生积极思维的学习品质。

重点:经历简单的推理过程,培养学生初步的分析推理能力和观察能力。

难点:培养学生初步的有序地、全面地思考问题及数学表达的能力。

四、教法、学法

《数学课程标准》中明确的提出:“要让学生在参与特定的教学活动,在具体情境中初步认识对象的特征,获得一些体验。”所以在这节课的设计中,根据教学内容的特点,我采取游戏引入、情境教学与谈话引导等方法让学生在自主探究、合作交流中去充分体验数学学习,感受成功的喜悦。

五、说教学过程

对于本节课的设计,我试图体现以下几个特点:

(一)在“想猜”中领悟

平时,只要老师抛出“请小朋友猜一猜”这样一句话,学生们就来劲了,会争先恐后地举起小手急着要猜。可见“猜想”是学生们最乐意解决的问题。这节课引入环节。我就设计了让学生猜想盒子中的礼物,共分三个层次,先让学生“瞎”猜(即漫无边际地猜),学生从中意识到这样是猜不到确定的答案的;然后在我的提示下“犹豫”猜,结果有两种答案,还不能确定,学生从中感悟到有了提示条件,答案的范围缩小了;最后在我的第二个提示下,学生很快猜出了正确的答案,学生从中领悟到了“猜想”要根据提示条件猜。从而引出推理的概念。这个猜想环节与本课时内容相关密切,为本课顺利教学做了很好的铺垫,同时激起了学生的学习兴趣和学习欲望。

(二)在“游戏”中内化

游戏活动是学生的至爱,学生一做起游戏就不知疲倦,十分投入。这节课中,我设计猜文具在哪儿、猜动物名字以及猜年龄等一系列活动,让学生参与其中,在活动过程中,学生猜想并从中内化了简单逻辑推理的来拢去脉、前因后果,体验推理的过程,同时进一步培养学生有序、全面思考问题的意识及数学表达的能力。

(三)在“交流”中提升

这节课中,教学例1时,先让学生认真观察情境图,理清信息,有哪几个人,有哪几本书,再让学生在独立思考的基础上主动探究解决问题的策略,学会从众多的信息中选择关键的信息推理出某种结论。再通过让学生小组内交流想法,培养学生进一步有序的思考问题的意识,提高学生的数学语言表达能力。同时在学生讲清思路之后,我又提出能不能用一种简洁的方式表达我们的思维过程和结论呢?由此引出连线法,让学生上台边连边说理由,使学生明白原来自己的想法可以用连线的方法更简单,清晰地表示出来。

(四)在“设计”中深化

先从生活中简单的,不是??就是??一句话的推理问题入手,调动学生的积极性,再用放松游戏进行巩固。从生活中的推理延伸到数学中的推理,进入数学乐园,数学乐园大门的密码也是一个简单的只有两种情况的推理。再过渡到例1.三种情况的推理。先根据信息确定一种情况,再根据提示判断另外两种情况。在讲解完例1以后,用儿歌小结推理的方法。

再开始设计练习。练习的层次有易到难,每一个练习的设计都有一定的针对性。第一关:文具在哪儿?是例1的同类型题。第二关:小狗叫什么名字,则有了一定的变化,加入了乐乐比欢欢重,而不再是简单的不是??就是??的推理。第三关:猜猜我几岁?则没有给出一个很直接的信息,而是要结合两句提示,综合运用排除和推理,先由美羊羊和沸羊羊都不是最小的,用排除的方法,确定懒羊羊是最小的,然后再进行下一步的推理。

最后第四关的推理,又加大了难度,需要学生有一定的语言理解能力,又具备清晰的逻辑思维。在这一关的过程中我还是采取了先集体收集信息,有哪几个人,他们是干什么的,再让学生小组讨论,讨论出结果以后再独立连线,然后梳理清自己的想法,最后请学生汇报,集体反馈交流。然后教师小结。

数学广角说课稿2

尊敬的评委、老师:

大家晚上好!今天我说课的内容是四年级下册数学广角里的《植树问题》,下面我将从教材分析、教法学法、教学过程、板书设计四方面说课。

一、说教材:

《植树问题》是四年级数学下册第八单元《数学广角》中的内容,这一单元主要内容就是植树问题,教材将植树问题分为几个层次,有两端都栽、两端不栽、以及环形情况,方阵问题等,这节课是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。

1.说教学目标:

[知识目标] 利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系。通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

[能力目标] 经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力。渗透归纳推理和转化的思想、方法。培养学生研究问题的科学素养。

[情感目标] 感受日常生活中处处有数学,体验学习成功的喜悦。尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

2.说教学重、难点:

重点:理解"植树问题"中棵树与间隔数的关系,应用规律解决实际问题。

难点:能把从植树问题中总结出的规律准确地应用到解决实际问题中去。

二、说教法、学法:

在本节课中我主要采用“尝试探索”的教学法,应运生活中的实例让学生先猜测,再动手操作,实际验证。然后通过课件的直观演示辅助教学,引导学生以趣激思,以思促学,在创设的生活情境中尝试探索,形成概念

三、说教学过程:

(一)激趣导入:

1、同学们你们知道吗?在我们的手中,还藏着数学知识呢,你们想了解一下吗?

2、伸出你们的右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把这种空格叫做间隔,也就是说,5个手指之间有几个间隔?3个间隔是在几个手指之间?其实这样的数学问题在我们的生活中随处可见。

(通过摆动手指,创设情境,其实手指问题就和植树问题是一样的道理的。通过动手,观察,激发学生学习的兴趣,集中注意力走进新课。)

(二)创设情境,引入学习:

1、同学们知道每年的3月12日是什么日子吗?就是我国的植树节。你们知道植树都有什么好处吗?今天我们就一起来研究植树中的数学问题。

板书课题:植树问题

(三)探究新知:

1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

(1)、指名读题

(2)、师:理解“两端”是什么意思?指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

说明:如果把这根米尺看作是这条小路,在小路的两端要种就是在小路的两头要种。

怎么解决?(引导学生用画图的方法来解决,但数据太大,可以化繁为简,先研究短距离的路上的植树问题的情况)

(3)学生探究短距离路上的植树规律。

①假如路长只有15米,要栽几棵树?如果路长是25米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

②画一画,简单验证,发现规律。(填表)

路全长(米) 相邻两棵树间的距离 间隔(个) 棵树(棵) 图示

A 15 5 3 4

B 20 5 4 5

C 25 5 5 6

D 30 5 6 7

发现了:

a. 先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段 4棵)

b. 跟上面一样,再种20米看一看,这次你又分了几段,种了几棵?(板书:4段 5棵)

c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

(板书: 2段 3棵;4段 5棵)

d. 你发现了什么?(学生可能会说棵树比段数多1,这是我引导学生段数就是间隔数)

小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

(板书:两端要种:棵树=间隔数+1)

③应用规律,解决问题。

a. 问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

100÷5=20 这里的20指什么?(20个间隔)

20 +1=21 为什么还要+1? (棵树=段数+1)

师:通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

(在做题时先引导学生分析题目中的数量关系,要求的是需要多少棵树苗,必须要知道有多少个间隔,间隔数加一才是需要的棵数,间隔数是用全程长除以间隔距离,让学生将刚才掌握的规律说清楚,通过例题让学生一方面巩固刚发现的规律,并且说清算理,同时让学生运用自己总结出的规律解决实际问题,使学生体会成功的喜悦,另一方面认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。再利用教材第118页上面的做一做进行强化练习,要求学生在列式之前将题目中的数量关系分析清楚,养成学生解决问题的良好习惯。这一环节的教学主要是通过猜测法、分析法以及直观演示法掌握两端要种的植树规律并运用这一规律解决实际问题,同时我也运用了大量的创设情境加强对学生数学思想和解决复杂问题能力的培养。)

(四)回归生活,实际应用

我们身边类似的数学问题。(课件出示习题)

1.学校到5路车站一侧植树,每隔5米种一棵,一共种了26棵。从第1棵到最后一棵的距离有多远 ?

小结:说一说,在我们生活中,还有哪些像植树问题这样的现象呢?小组同学说说,然后汇报情况。如手指与间隔,栏杆与间隔,站队列,插彩旗,种白菜,围墙柱子,作业本的横线与间隔……

(在学生基本掌握了植树问题中两端都种的规律以后我设计了一道巩固反馈练习题,这道题是两端都种的植树问题的逆运算,应运用“全程长=间隔距离*间隔数;间隔数=棵树-1”。)

2.老师去某班教室,从一楼开始,每走一层有32个台阶,一共走了96个台阶,你知道卓老师去几楼的教室吗?

(引入生活中的“植树问题”如:上楼梯等问题,这些题目都体现了数学知识的生活化。这二题是典型的两端都种植树的问题,这一环节我主要是通过练习法让学生将所学到的知识运用到生活中的解决问题中去,努力体现学习本课的价值和作用。)

拓展:一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

8÷2=4(段)4—1=3(次)

问 :为什么要—1?这种类型的植树问题以后我们会更深入的学习。

(在学生掌握了两端不种的植树问题的规律的基础上,我设计了一道强化练习题,一根木头长8米,每2米锯一段。一共要锯几次?学生自主分析题意,解决问题。这一教学环节虽然不是本节课的主要教学目标,但为了使学生的合作探究能力有更进一步的发展,和今后更好的学习植树问题。我做了这样的安排,相信一定会取得较好的学习效果。)

(五)全课总结

通过今天的学习,你有哪些收获?

师:通过今天的学习,我们不仅发现了植树问题中两端要种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,我们以后再去学习。

四、说板书设计:

植树问题

棵树=间隔数+1

100÷5=20(段)

100÷5+1=21(棵)

(在板书设计方面,将本节课的重点,两端都栽的植树问题的规律:植树棵数=间隔数+1呈现在学生面前。)

数学广角说课稿3

一、说教学内容

“烙饼问题”是人教版《义务教育课程标准实验教科书·数学》四年级上册P112“数学广角”中的内容。主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的应用。烙饼虽然是我们日常生活中常见的一种家务劳动,但里面蕴涵的数学问题和数学思想却是深刻的,教材的编排目的是通过日常生活中烙饼的简单事例,让学生尝试从解决问题的多种方案中寻找最优方案,从而向学生渗透优化的思想,让学生体会统筹思想在日常生活中的作用,使学生感受到数学的魅力。

二、说学情

因为四年级的学生已经有了一定的解决问题的能力和基础,可以说,在日常的学习生活中,学生能很容易找到解决问题的方法,而且还会找到解决问题的不同策略,但这里的关键是让学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生的解决问题的能力。本节内容,“烙饼问题”学生是陌生的,而且“烙3个饼”的最佳方法与实际生活是有距离的,给学生的理解带来了困难。如何突破难点,让学生真正掌握,初步感受优化的数学思想方法呢?这对于学生来说还是比较抽象的。基于以上思考,我制定了以下教学目标:

三、说教学目标

1.使学生通过烙饼这一事例,初步体会运筹思想在解决实际问题中的应用。并认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识.

2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。 这部分知识对学生来说,比较抽象,难以理解的。特别是“烙饼的数量与时间之间的规律”的探究是本课的难点。指导探究“三张饼”的最优化方案是本课的重点。

四、说学具、教具准备

学具为每组学生三个硬币,为攻破三个饼烙法提供实践操作材料。变抽象为直观。在教具的安排上,我同样安排了“三张饼”作演示用,并以直观的多媒体相辅,进一步增加直观性,提高教学效率。

五、说教学策略

新课程积极倡导自主、合作、探究的学习方式。本着以学定教、教服务与学的教学思想。在教学活动中,主要运用自主探究合作的学习方式进行教学,在突破本课重点时通过情境创设,激发学生学习兴趣,变“要我学”为“我要学”,在探究最佳方案时充分发挥学生的主动性,让学生小组合作自己动手操作,在操作的过程中发现问题、解决问题,体会解决问题时优化思想的应用。体现“做中学”的理念。在教学活动中,体现由引——帮——放的教学策略,符合学生的认知规律。在教学过程中,采取多媒体辅助教学,通过多媒体的直观演示,让学生观察、探索、思维与语言表达结合在一起,使学生对烙饼问题有一个形象的感知,并利用多媒体将知识直观动态地展示出来,同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习意识与创新意识。

本着“将课堂还给学生,让课堂焕发生命的活力”的指导思想我设计了六个板块的内容:

第一二个板块是创设生活情境,激发学习兴趣。

目的有两个:一是拉近与学生的距离,二是为本节课提供一种好的环境。

第三四板块是自主探究,优化策略。

这一部分内容通过“操作感悟——抽象内化——巩固应用”三个片段,使学生在教师的点拨引导下,沿以下四个步骤:“两张饼的烙法(基础)→三张饼的最佳烙法(难点)→双数饼、单数饼的烙法(提升)→最佳方案、双数饼:两张两张烙;单数饼:两张两张烙+最后3张饼交叉烙(优化)进行探究。

1.探索烙3张饼的最少时间是本节课的重点也是难点,优化的数学思想只能是“渗透”而不能“明透”,也就是说只能让学生在潜移默化的过程中理解,而不能仅仅靠传授。因此,本课中蓄势----为探索最佳方法打基础的方法,自认为运用得恰到好处。例如,围绕“烙2张饼最少要花6分,为什么烙1张饼与2张饼所用的时间一样多呢?你们是怎么想的?”这个问题,让学生体会烙2张饼是用足了空间,而烙1张饼浪费了空间和时间,为探索烙3张饼埋下了伏笔。

2.学生的自主探索是需要动机的,如果总是在教师的命令之下被动探索,那么效果是不会好的。要让学生主动探索,产生探索的源动力,关键就是要把握认知冲突,引导学生积极地投入到探索的全过程中。本课中,探索烙3张饼的最少时间,就是运用了“初步尝试暴露问题,再引导重新操作”的策略,学生的探索积极有效。例如,在探索最佳方案时请学生回忆一下,“1个饼和2个饼都要用6分的原因是什么?”的问题,学生积极思考,合作操作,谜底终于被慢慢揭开----原来只要不让锅浪费空间,就可以做到时间最少。

3.培养学生的应用意识和渗透数学优化思想,不是靠几道题目的讲解和练习就能完成的,而是需要随时随地引导学生自觉运用,在运用中逐步培养和提高应用意识。本节课一个明显的特点就是,不以探索到的具体某次烙饼的最佳时间为终极目标,而是重点引导学生在后继的学习过程中掌握方法,自觉应用。例如,探索了3张饼的最佳方法,在讨论烙5张饼时,学生想到了把5分成2张和3张进行思考,因为都有前面的结论和方法,只要6+9=15分就可以了,而不是拘泥于“零起点”去进行从头探索。同样,在7张、9张时推广应用,逐步探索得出规律。

第五六板块是总结内化,拓展应用。

本课教学中,我通过在烙两个饼、三个饼的优化方案的基础上,通过烙更多的饼,把学习过程层层推进,把静态的知识转化成了动态的过程,让学生在思考、讨论中逐步构建并完善自己的知识体系。尤其是,本课的点睛之笔还在于课末的生活化应用。众所周知,烙两个饼、三个饼是研究统筹思想的精典范例,但如果仅局限于此,还不够深刻,至少在提升学生思维品质上还有所欠缺。因此,在课末我安排了“为妈妈设计烙饼方案”的环节。通过围绕“要烙 15 个饼,怎样烙时间最省”这一问题的讨论,让学生自觉地意识到“把 5 个饼看成一份”,从而把新问题转化成旧知识,在学生的脑海中牢固地构建起烙饼策略的数学模型。

六、教学中的困惑

《课数课程标准》指出:学生的数学学习内容应当是现实的,有意义的,富有挑战性的。现在人人都知道数学于生活,应该体现数学生活化,生活数学化,但是如果脱离了我们的生活实际,即便这样时间最短又有什么意义呢?以烙饼为例:为了体现时间最短,在烙三个饼子时,先烙1号2号的正面,然后把其中1号翻个面,另一2号则拿出去放一边,同时把外面的3号饼放进去烙,两分钟后,1号饼熟了拿出,同时把锅里的3号翻个面、把外面的2号饼再放进锅里烙,如此折腾确实花费的时间是最短的,在时间上来说确实是最优化的策略,可是在现实生活中没见过一个饼子没烤熟,只烤半边,然后放一边凉一会再烤另半边的做法,应该说在理论上是最优化策略,在生活中就不是那么回事了。能不能换一个既贴切生活又能渗透优化思想的例子呢?

数学广角说课稿4

一、说教材

《数学广角——集合》是人教版新课标数学三年级上册第九单元的知识,涉及了学生在生活和学习中经常遇到的问题:求两个集合的并集或交集的元素个数。(集合是比较系统、抽象的数学思想方法,也是数学中最基本的思想。)

本节课教材例1在学生积累了较丰富的学习生活经验的基础上借助学生熟悉的题材,向学生渗透集合的有关思想,使学生理解用直观图(集合圈)表示“重复现象”的方法,了解直观图(集合圈)各部分的意义,特别是重复部分(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。这样安排不仅可以提高学生学习的兴趣,激发学生的好奇心,而且还让学生体会到数学知识与生活的密切关联,逐渐学会从数学的角度看待身边的事物。

二、说学情

三年级学生从一年级开始学习数学时就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。例如在数数时,把1个人、2朵花、3枝铅笔用一条封闭的曲线圈起来表示,这样表示出的数学概念更直观、形象;而且在以后学习的平面图形之间的关系都用到了集合的思想,如把一堆图形按照一定的标准分类,这种分类思想就是集合理论的基础。但这些都只是单独的一个集合圈,学生不一定从集合的角度来思考并解决问题。

三、说目标

在设计本节课的教学时,以新课程理念为指导,将数学知识与学生实际生活有机结合,通过预学提示、自主探究、合作交流、操作实践等方式让学生经历数学知识生成的过程,从而达到感悟知识的目标。

基于以上认识,本节课在把握教材意图的基础上,目标定位如下:

1、通过预学观察图表、自主探究和合作交流等活动,让学生经历解决问题的过程,了解简单的集合知识,初步感受集合的意义,获得数学学习的体验。

2、使学生通过理解用直观图(维恩图)表示“重复现象”的方法,学会借助直观图(维恩图)运用集合的思想方法来解决较简单的实际问题,从而感受到数学与生活之间的相互联系。

3、通过课堂教学活动,让学生体验数学的价值,培养学生合作学习的意识和学习的兴趣,提高学生的观察能力、思考能力、创新能力、评价说理能力。

四、说重难点

本节课的重点是让学生感知集合的思想,并能初步运用集合的思想解决简单的实际问题;难点是对重复部分的理解。

五、说设计

1、把自主探究与有意义的接受学习有机结合。

学生对于“重复的人数要减去”是有经验的,因此在充分尊重学生经验认知的基础上,放手让学生先自主探究,独立完成,再汇报交流。配合学生汇报,利用多媒体课件出示维恩图,运用讲授法引导学生认识并理解维恩图,并通过直观演示将两个集合圈合并的过程,引导学生讨论发现“集合中的元素是不能重复出现的”,体会集合元素的互异性;“集合元素的顺序可以不同”,体会集合元素的无序性。并让学生想一想说一说图中每一部分所表示的含义,尤其是“两项都参加的和参加这两项比赛的”,体会交集和并集的含义。

2、放手学生,让学生体会与交、并有关的计算。

学生在列式解答时,根据连线或维恩图,会列出多种方法。放手让学生尝试解决,并充分展示学生的方法,同时给予充分肯定。让学生结合维恩图体会各个算式所表示的含义,体会求“两个集合并集的元素个数”就是要将两个集合的元素个数相加后减去其交集的元素个数。突出基本的方法,加深学生对与交、并有关计算的体会和对集合知识的理解。

3、关注“冲突”,激发学生的探究欲望和兴趣。

提出需要解决的问题“参加这两项比赛的共有多少人?”后,学生的不同答案有可能引发“冲突”。抓住这一“冲突”,追问“你能确定有17人吗?”、“你能证明为什么不是17人吗?”,以此激发学生探究的欲望,让学生积极主动的投入解决问题的活动中去,用个性化的思考和处理问题的方式解决问题,为他们自主构建知识的意义提供保障。

4、培养学生收集、整理信息的意识和能力。

本着从实践中来到实践中去的原则,课堂上通过学生生活实际介绍了用维恩图表示集合及其交、并的方法,让学生亲身感知集合的思想,体验知识生成的过程,在过程中体验集合的思想,在过程中感悟重复,并顿悟重复问题的解决方法。让学生经历问题解决的数学化过程,获得数学学习体验。

5、培养学生思维的严谨严密性。

数学的教学,最重要的不是数学知识的教学,而是数学思维、数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。在教学过程,我注重培养学生思维的严谨严密性,如解读韦恩图的过程中,让学生表述各个部分的意思。大圈是表示“参加跳绳人数”和“参加踢毽人数”,而去掉了都参加的部分后是“只参加跳绳人数”和“只参加踢毽人数”,多了一个字“只”,虽然只有一字之差,但是意思完全不一样。还有“既参加跳绳又参加踢毽”让学生明白这是两种活动都参加的。

6、锻炼根据实际情况解决问题的能力。

具体情况,具体分析。课堂最后设计的课后思考题目对学生所学知识灵活运用的能力既是锻炼又是提高。

(四)巩固练习

通过三个练习,分层次的练习达到巩固。

1、基本练习:完成105页的1、2题

﹙1﹚理解集合圈里各部分的意义。会读集合圈中的信息,会按条件填写集合圈。完成105页的1题

﹙2﹚你从图上能很快地看出哪些信息?再算出语数有多少人?

2、解决问题:先分析题意,学生独立完成。再请学生汇报,全班交流。

(五)课堂小结

请学生谈收获,其他学生补充。最后,教师总结全课。

六、课堂上运用课件着重体现的数学思想方法有:

1、课件出示小动物回家,引入课堂,使课堂教学更加高效、生动、活泼。使带有一定强制性的教学过程转变成学生高效的自学,使儿童在小组合作中体验与情感结合起来,学生的学习兴趣高涨,注意力更加集中,思维更加活跃,从而更好地掌握知识、发展技能。

2、培养学生收集、整理信息的意识和能力。集合的抽象性是在它最终形成结论才具有的,而在结论形成过程中,必然以大量的具体内容为基础。本着从实践中来到实践中去的原则,课堂上我们让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,让学生在过程中体验集合的思想,在过程中感悟重叠,并领悟重叠问题的解决方法。让学生经历问题解决的数学化过程,获得数学?学习体验。

3、培养学生思维的严密性严谨性是数学学科的基本特征之一。

数学的教学,最重要的不是数学知识的教学,而是数学思维,数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。如课件出示韦恩图,引导学生填写、理解的过程中,让学生表述各个部分的意思。课堂上时时注重学生严密的思维。

另外一个体现就是:教学中要注意克服学生的思维定势。能促使学生发现问题,培养学生的质疑精神,长此以往,由质疑进而求异,突破传统观念,大胆创立新说。

根据实际情况解决问题的能力。谢谢大家!

数学广角说课稿5

我执教的是义务教育课程标准实验教材小学二年级数学上册第99页例1排列组合。

一、教材分析:

“数学广角”是义务教育课程标准实验教科书从二年级上册开始新增设的一个单元,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透数学思想方法方面做了一些努力和探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来。

教材的例1通过2个卡片的排列顺序不同,表示不同的两位数,属于排列知识,例1给出了一幅学生用数字卡片摆两位数的情境图,我在设计本课时,我把排列1、2两个数组成不同的两位数,改成了学生喜欢的拼图游戏。游戏后直接进行三个数组成两位数的排列,学生进行小组合作学习,然后小组交流摆卡片的体会:怎样摆才能保证不重复不遗漏。从而找到排数的方法。为巩固排数的方法,我设计了以下几个教学活动:抽奖,握手,搭配衣服,比赛场次、路线等学生熟悉而又感兴趣的生活场景向学生渗透这些数学思想方法,将学习活动置于模拟情景中,给学生提供操作和活动的机会,初步培养学生有顺序地、全面地思考问题的意识,为学生今后学习组合数学和学习概率统计奠定基础。

二、学情分析:

在日常生活中,有很多需要用排列组合来解决的知识。如衣服的搭配、路线、乒乓球的比赛场次,彩票的中奖号码等等,作为二年级的学生,已有了一定的生活经验,因此在数学学习中注意安排生动有趣的活动,让学生通过这些活动来进行学习,经历简单的排列组合规律的数学知识探索过程,让学生在活动中探究新知,发现规律,从而培养学生的数学能力。

三、教学目标:

1.通过观察、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程;

2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力;

3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。

四、说教法

根据学生认知特点和规律,在本节课的设计中,我遵照《课标》的要求和低年级学生学习数学的实际,着眼于学生的发展,注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学。做到

1、从生活情景出发,为学生创设探究学习的情境。

我对教材进行了灵活的处理,创设了“拼图”一个游戏情境,做为新课的引入,接着在抽奖,握手,搭配衣服,比赛场次,回家路线等一个又一个的活动情境中渗透排列和组合的思想方法,让学生亲身经历探索简单事物排列和组合规律的过程,在活动中主动参与,在活动中发现规律。

2、联系生活实际,让学生体会数学与生活的密切联系。

3、改变学生的学习方式,让学生合作学习,培养学生的合作能力。

五、说学法

以小组合作的形式贯穿全课,充分应用分组合作、共同探究的学习模式,在教学中鼓励学生与同伴交流,引导学生展开讨论,使学生在合作中学会了知识,体验了学习的乐趣,思维活动也更加活跃。

1、联系生活实际解决身边问题,体验学数学、用数学的乐趣。

2、在具体的生活情景中让学生亲身经历发现问题,提出问题、解决问题的过程,体验探索成功的快乐。

3、通过动手操作、独立思考和开展小组合作交流活动,完善自己的想法,构建自己独特的学习方法。

4、通过灵活、有趣的练习,提高学生解决问题的能力,同时寻求解决问题的多种办法。

六、教学流程:

学习简单的的排列就是为了在生活中应用,让数学与生活密切联系,并且让学生在活动中发现数学的价值。本节课我力求体现数学的“活”。

一、创设情境,激发兴趣。

我从学习喜欢的拼图游戏入手,通过拼图,让学生惊喜的发现三张图摆放位置不同,拼出的效果就不一样,竟然能拼出三毛和一休他们喜欢的图片。

我进行小结:“看,用了不同的图,拼出了不一样的效果,如果老师给你数字卡片,你能拼出什么呢?”

我通过创设拼图游戏的情境,激发学生的学习兴趣,符合低年级儿童的年龄特点,抓住了“童心”,让学生在游戏中产生兴趣,在活动中找到启示。同时为新课的进行作好了铺垫。

二、合作学习,探索新知

活动一:摆一摆。(学生用数字卡片1、2、5排数)

学生用屏幕出示的1、2、5三个数字,从中任选两个数字组成两位数,小组合作摆一摆,能组成哪些两位数,边摆边记录,组长把结果记录在答题卡上,比比看,哪个组找的最多,学生开始活动。小组汇报记录的结果,这时学生写出来的两位是无序的,而且会有遗漏,重复的可能性不大,但也会有。通过汇报,使学生注意到这一点。

接着我进一步质疑:怎样才能使摆出来的两位数既不重复又不遗漏呢,你有什么好的方法吗?小组合作,用你的方法再摆一摆,边摆边记录。小组汇报,这次的汇报主要是汇报你用什么方法摆的,组成了哪些两位数。这时我使用课件,把学生汇报的结果展示在大屏幕上。再找和这个组方法同样的组说说是怎么想的。对他们的方法进行表扬和肯定。“还有不同的方法吗?”学生可能还会不同的方法。这时我在课件中预先设计了些方法,在汇报时我出示这种方法的排列过程。再让学生说一说你喜欢哪种方法。这样既鼓励方法的多样性,又给学生自由选择方法的机会。

最后师生小结:我们在排数的时候要按照一定的顺序先固定最前面一个数,再用这个数与其他两个数分别组合在一起,这种方法既不重复又不遗漏。

这一教学环节是通过学生合作学习,在操作、交流中研究出了排列的方法,使学生在体验中感受合作的快乐和操作中的成功,在交流中找到方法,并进行应用。

活动二、抽奖

抽奖活动是对前面排列方法的应用与巩固,同时也对排数提出了更高的要求,由三个数的排列到四个数的排列,对学生来说有一定难度。所以我把这个知识点放到了活动当中,让学生在游戏中体会排列的方法。

我抓住学生好玩的特性,请他们来参加一个抽奖的活动。我出示四张数字卡片:2、5、7、8。提出要求,中奖号码就在这四张卡片中任意两张组成的两位数中,让学生猜中奖号码。然后抓住时机,让学生把所有可能中奖的号码写出来。汇报写了几个两位数,都是哪些?选择其中一组展示在屏幕上。让学生把写有所有号码的题卡扣在桌上,推选一名同学到前面抽奖。先抽出一张,做为第一个数,让学生猜中奖号码可能是什么?再抽出第二张,学生宣布中奖号码。把题卡翻过来,把抽到的号码在题卡上圈出来,用你喜欢的方法对中奖的同学表示祝贺。

通过这个活动,让学生在合作交流的过程中经历由3个数过渡到4个数的排列,给学生留有较大的探索交流空间,这样既有利于学生的学习,又培养了学生乐于合作的习惯。

活动三、握一握。

承接上一活动,同学们你们真是勤于思考的孩子,我要向中奖的同学握手表示祝贺。提出疑问:我和他,我们两个人握了几次手?学生会说一次?接着我问如果每两个人握一次手,三个人握几次手呢?猜猜看?猜测过后,小组同学合作,组长做裁判,握一握。学生汇报3次。课件演示,三个小朋友握手的过程,显示次数。

接着我提出问题:为什么三个数字能排成六个两位数,而三个人每两个人握一次手,却只握了三次呢?小组同学讨论讨论。通过讨论交流,再汇报,使学生明白两个数字交换位置变成了两个数,而握手时两个人即使换位置还是这两个人,所以就是一次。

这一活动通过用实践活动培养学生的实践和应用意识,让学生感受到数学的乐趣,从而体现课堂的发展要按学生的思维发展进行这一理念。

三、拓展应用

1.小喜鹊超市

承接上一活动,同学们的解释使我豁然开朗,为了表示感谢,老师带大家到小喜鹊超市去选一套衣服。课件出示四件衣服。

你有几种搭配方法?学生商量后汇报。并选出自己喜欢的一套。

2.快乐狗活动室

让我们穿着自己搭配好的衣服到快乐狗活动室去转转。今天活动室有新项目。是什么呢?谁来读一读?指生读题:课件出示二年级三个班和三年级四个班进行踢毽子比赛。每两个班进行一场比赛,要进行多少场呢?出示排列图,学生在本上画一画连一连。

3.有多少条路?

出示课件。小明从家到学校有多少条路?课件显示的信息是:小明从家到学校要经过一条小河,从家到小河有两条路,从小河到学校有3条路。学生独立找到回家的路。

通过拓展练习,让学生在活动中运用新知识,三个层次的情境安排,给学生留有充足的空间,让他们利用学过的数学知识来解决生活中的问题,来体现数学的应用价值。

四、畅谈收获,全课小结

数学广角说课稿6

我说课的内容是义务教育课程标准实验教科书数学三年级下册第九单元数学广角中的第一课时《重复》。

一、教材分析

重叠问题是日常生活中应用比较广泛的数学知识。对于三年级学生来说,学习这部分内容,思维力度较强,有一定的挑战性。在本节课前,学生虽然已经学习过分类的思想方法,但集合这部分内容比较系统、抽象。针对三年级学生的认知水平,在这节课我只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础。

二、设计理念:

《课程标准》中明确指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,让学生在生动具体的情境中学习数学。”根据这一理念,结合本节课教学内容,我大胆对教材进行再创重组,以学生喜欢的游戏活动进行教学,力求让学生自主学习,并努力引导学生积极思考,充分激发学生的学习兴趣,努力做到以学为主,当堂达标。

三、教学目标:

根据课标的要求、教材内容和本班学生实际我设立了如下教学目标:

1、使学生借助贴近生活的情境,利用集合的思想方法,解决简单的实际问题,并能运用数学语言进行描述。

2、通过丰富、直观的游戏活动,发展形象思维,提升抽象思维能力。

3、使学生在主动参加数学活动过程中,获得成功的体验,提高学生学习数学的兴趣与能力。

本节课的重点是让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。难点是对重复部份的理解。

四、教学过程

本节课我主要遵循多学少教的原则,设计了以下五个教学环节:

(一)激趣导入,感受新知

创设“理发师的困惑”的问题情境,从学生熟悉的生活经验,两对父子的身份关系入手,在解决为什么只有三个人的困惑中,理解两对父子中的重复身份,引导学生用四个手指表示重复关系,使学生初步建立“重复”的数学模型。这样的设计有利于突出重点,突破难点。

(二)活动体验,揭示新知

在这一环节我设计了抢椅子和猜拳两个游戏,这两个游戏具有很强的趣味性,我会巧妙的抓住“抢椅子”3人和“猜拳”4人,一共是7人,为什么只有6人站起来?进行质疑,让学生自主对教师的质疑作出合理的解释,最后引出请呼啦圈作裁判,进而引导学生继续主动学习。

(三)深度体验,理解新知

在这一环节里我利用呼拉圈来帮助学生直观理解集合思想。参加两个游戏的学生分别站到两个呼啦圈里,并引导学生自主把两个呼拉圈相交,让重复参加游戏的学生站在相交处。这样学生就能通过亲身经历探究创造出学生心中集合圈,这时老师帮助学生把呼拉圈学问提升到数学的集合圈,利用呼拉圈画出数学的集合圈,并用贴名条的方法,把参加游戏同学的信息补充完整,来进一步理解集合圈各部分表示的意思。我想通过这样的自主发现学习,让学生真正成为课堂的主人。

(四)解决问题,运用新知

让不同的学生学习不同的数学,让不同的学生有不同的发展,是我设计练习的宗旨。因此,在练习中我设计了这样几个环节:

1、给动物分分类。再次巩固对集合图的理解。

2、根据直观图画,计算商店一共进货多少种,让学生利用集合知识解决问题。

3、根据统计表解决一共有多少名同学的问题,让学生在独立解题的过程中感受到所学知识对解决问题的价值。

习题的设计由浅入深,循序渐进,既培养学生运用所学知识的能力、,又让学生在应用知识中体验了数学的价值。

(五)回归生活,拓展新知

这是本节课的最后一环节,我将组织同学们统计班级内爸爸吸烟和喝酒情况,来进一步巩固本节课所学知识,并让学生找出既不吸烟也不喝酒的爸爸的位置,从而拓展渗透全集概念。

总之,本节课的设计我遵循以学生发展为本的教育理念,多学少教,以学定教,联系生活实际激发学习兴趣,使学生体会数学课堂学习的快乐,体验幸福的数学学习生活。

以上是我对本节课的一些设想,还有待于在实践中去完善,如有不当之处,敬请各位评委给予批评和指正。

数学广角说课稿7

一:教材分析

(一)教材的地位及作用

“数学广角”是新课程标准实验教科书二年级上册开始新增设的一个单元,是在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅在学生以后的实际生活中应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,本教材在渗透数学思想方法方面做了一些努力和探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来。(二)教学目标

知识与技能

1、通过观察、猜测、操作等活动,找出最简单的事物的排列数。

2、使学生经历探索简单事物排列规律的过程。

3、培养学生有顺序地、全面地思考问题的意识,感受数学与生活的紧密联系。

过程与方法

经历观察、比较、自主合作探究等活动,讨论事物排列的规律。

情感态度与价值观

让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。

(三)教学重难点

教学重点:自主探究,掌握有序排列、巧妙搭配的方法,并用所学知识解决实际生活的问题。

教学难点:怎样排列可以不重复、不遗漏。理解简单事物搭配中的有序、无序的不同。

二:学情分析

(一)心理特征

从心理特征来说,二年级的学生由于年龄小、好奇、好玩,通过自身体验获得知识能使头脑更加活跃 ,保持愉悦的学习情趣。并且他们的注意力集中的时间有限,要在课堂上适当安排一些与教学相关的小游戏。

(二)认知状况

作为二年级的学生,缺乏空间想象力,直接要学生来学习,显得非常空洞,也没有好的效果,但学生已有了一定的生活经验,因此在数学学习中注意安排生动有趣的活动,让学生通过这些活动来进行学习,经历简单的排列组合规律的数学知识探索过程,让学生在活动中探究新知,发现规律,从而培养学生的数学能力。

三:教学模式

教法:根据学生认知特点和规律,在本节课的设计中,我遵照《课标》的要求和低年级学生学习数学的实际,着眼于学生的发展,注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学。1、从生活情景出发,为学生创设探究学习的情境。2、联系生活实际,让学生体会数学与生活的密切联系。3、改变学生的学习方式,让学生合作学习,培养学生的合作能力。

学法:以小组合作的形式贯穿全课,充分应用分组合作、共同探究的学习模式,在教学中鼓励学生与同伴交流,引导学生展开讨论,使学生在合作中学会了知识,体验了学习的乐趣,思维活动也更加活跃。

四:教学设计

课前游戏:

猜年龄,两个数排列,课前活跃气氛。

一:创设情境,引出新知

去数学城堡看看,想进去,得有密码才行,看看要求。生动的情景可以调动学生学习的兴趣。

二:小组活动,探索新知

1、给出问题:找出需要注意的点,要明白组数的要求。弄清楚要解决的问题,才能顺利的进行小组活动。

2、数学活动:用数字卡片摆一摆,并记录下来。

同学汇报总结:教师挑选出的同学汇报,教师在大屏幕投影学生作品,学生解释自己做题方法。预设四种情况(重复、遗漏、位置互换、固定)。前两种无序,比较乱,别人看不懂,还易重复遗漏,后两种有序思考,才能全面,不重复,不遗漏。允许不同方法解决,引导有序思考。学生总结出方法,让学生体会方法有助于学生举一反三利用方法解决问题。

三:体会方法,巩固新知

1、 涂色练习

用红黄蓝3种颜色给两个城区涂上不同的颜色,一共有多少种涂色方法?请你涂一涂。

2、 拍照练习

巩固解题方法与思路,虽然对象不同,但思路相同。

四:全课总结

畅谈感想:今天我们一起学习了搭配中的学问,我们要学会有序地、全面地思考问题,就能做到不重复、不遗漏。

帮助学生梳理知识,认识到有序思考的重要性。

五:板书设计

数学广角——搭配(一)

有序 互换位置法 固定法

《数学广角——搭配》搭配说课稿《数学广角——搭配》搭配说课稿《数学广角——搭配》搭配说课稿 1 2 : 12、13 2 1 1

《数学广角——搭配》搭配说课稿《数学广角——搭配》搭配说课稿《数学广角——搭配》搭配说课稿 不重 1 3 : 13、31 1 2 3

2 3 : 23、32 3 3 2

不漏

六:课堂评价

基础知识和基本技能评价:看能否准确找出最简单的事物的排列数,设计课堂环节和检测试题来巩固知识。

过程与方法的评价:课堂上注意观察学生的活动,看他们能否通过观察总结,倾听和理解别人的思路,有条理地表述自己的思考过程。

情感态度与价值观的评价:看学生能否找到学习数学的兴趣以及是否有用数学解决问题的意识。

七:课程资源的开发

文体资源:教科书、教参、其它教辅资料。

信息技术资源:多媒体、互联网资源

环境与工具:课件、给学生准备数字卡片、数位表格、彩笔等。

生成性资源:学生的疑问,老师的解答,师生互动推动了课程资源。

八:教学得失

得:

一、创设故事情境,激趣导入。

整节课始终用创设的故事情境来吸引学生主动参与,激发积极性。首先由“密码锁”这个情境引入,唤醒学生已有的知识,再由引导学生用二个数字探索排列组合的规律,过渡到引导学生用三个数字探索排列组合的规律。然后为了巩固这节课的重点,又创设了三人合影的问题。

二、自主学习,提供学生实践操作的机会。

《新课标》强调:教学要给学生留有足够的实践活动空间,让每个学生都有参与活动的机会,先让学生按照我提出的学习方法和步骤自主学习。学生同桌互助交流,一对一帮扶。教师巡视、指导。

三、合作交流,关注学生的生活经验和知识背景。

数学源于生活,又用于生活。所以数学教学应该是从学生的生活经验和已有的知识背景出发的。本节课在教学难点——掌握排列不重复、不漏掉的方法时。为了使每一位都能充分参与,我组织学生进行小组合作,展示交流。让每个学生知道在小组内是要解决什么问题。尽量保证学生合作学习的时间。教师深入小组中给予恰当的指导。合作学习后,让学生自己评价,即对展示的情况进行补充、质疑。这时,教师再在学生自己解决问题的基础,答疑解惑。以解决师生的双边互动。

失:

1.原本预设学生能写出“固定十位法”,但可能是在引入时,让学生产生了定向思维,导致学生反倒没有掌握这种方法。在这里费时较多。

2.自主学习的环节,教师提出的学习要求有点多,学生不完全明白要做什么?这里我可以先举一个例子,再由此引入。

3.数学实践活动中,虽然学生有意识要按规律有顺序地排列。但部分学生在没有提示之前,就不知道要这样来排?如何渗透懂得有序排列的数学思想?在今后教学实践中,怎样促进高效课堂?这些都是我感到困惑和值得深思的地方。

数学广角说课稿8

一、对教材的认识:

1、在教材中的地位。组合与排列知识不仅是学习概率统计知识的基础,而且也是日常生活中应用比较广泛的数学知识,同时也是发展学生抽象能力和逻辑思维能力的好素材。《新课程标准》中指出:“重要的数学概念与数学思想宜逐步深入。”教材注重体现这一要求,在二年级上册教材中,学生已经接触了一点排列与组合知识,学生通过观察、猜测以及实验的方法可以找出最简单的事物的排列数和组合数。如用两个数字卡片组成两位数的排列数,三个小朋友两两握手的组合数等。在三年级上册继续学习排列与组合这一内容,就是在学生已有知识和经验的基础上,继续让学生通过观察、猜测、实验等活动找出事物的排列数和组合数。

2、突出教学的重点。与二年级上册教材相比,三上教材的内容更加系统和全面,分别介绍了组合和排列。教学的重点是让学生用不同的方式(如学具操作、画简图、文字形式罗列、连线等)把排列组合的结果罗列出来(即有哪些组合或排列),使学生学会用更简洁、更抽象的方式来表达排列组合的方法。更为重要的是通过以上过程,引导学生思考如何才能不重复、不遗漏地把所有结果都呈现出来,初步培养学生有顺序地、全面地思考问题的意识,并发展学生有序思考的能力。

3、要把握好教学要求。本节课,教材只要求学生能根据实际问题采用罗列、连线等方式,找出简单事物的组合数。允许学生用自己喜欢的方式去表示组合数,并能感受到有顺序思考,可用图示的方式把所有的组合情况罗列出来(即有哪些组合),不要求抽象地计算一共有多少种组合数。因此,在教学中要处理好过程与结果的关系。

二、准备过程中的思考:

1、根据教材的要求,第一次试教,整节课从新课到练习都研究有关两两组合的知识,由于学生在二年级上册已经接触了组合知识,一节课下来,只是解决了“由三选二到四选二”的拓展,知识的思考性不强,对学生学习的起点把握过低。

2、有了前面的问题,打算在把组合与排列知识,作为一个完整的知识体系,在同一节课中研究,把它们的的区别作为教学重点,通过尝试,事实证明,学生对于两个知识点不易接受,这样的要求对于三年级的学生太不切合实际。

3、以来前两次的思考与尝试,本节课的目标仍应定位在“探索简单事物两两组合的规律,理解并掌握有关两两组合的知识,能进行有条理的思考,而把排列知识作为拓展与延伸。”

二、教学目标和教学重难点:

根据以上分析,我拟订这节课的教学目标为:

1.使学生通过观察、猜测、实践活动等活动,理解并掌握有关两两组合的知识。

2.培养学生初步的观察、分析及推理能力以及有顺序地、全面地思考问题的意识和能力。

3.培养学生大胆猜想、积极思维的学习品质和与人合作的良好习惯,经历由具体形象向抽象概括发展的过程。

4.进一步激发学生学习数学的兴趣,使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。

教学重点是:

经历探索简单事物两两组合规律的过程,使学生能进行简单的、有条理的思考。

教学难点是:

能用不同的方法准确地表示出组合数。

三、课堂设计的想法:

1、让学生经历由具体形象到抽象概括过度的过程。

根据教材特点和学生实际,我认识到,纯粹的排列与组合知识,是高度抽象与概括的知识。对于三年级的小学生来说,较难理解排列与组合的实质,因此,在教学中必须从具体形象逐步过度到抽象概括,让学生有一个由浅入深的过程。具体表现在以下方面:

第一是学生学习材料的提供由具体形象到抽象概括。研究四个小朋友握手次数给学生提供的是形象的画面;研究乒乓球运动员进行循环比赛的场数要求学生用号码来代表运动员;研究火车票的种数为学生提供的是火车站的站名。

第二是表现在学习方式上。研究四个小朋友握手次数是让学生在四人小组共同合作,动手操作的基础上找出简单事物的组合数;研究乒乓球运动员进行

环比赛的场数则要求学生在前面的基础上进行独立思考,自己解决问题;在研究火车票的种数时先让学生独立尝试,然后在集体讨论交流的基础上进行比较,体会组合数和排列数的不同。

第三是学生数学思维的发展从具体形象到抽象概括,由浅入深。研究四个小朋友握手次数时,让学生比较不同的方法,是为了优化方法,体现有顺序地思考。在研究乒乓球运动员进行循环比赛的场数时,要求学生在会连线的基础上发现规律,进行有顺序地、全面地思考问题,化繁为简。而在在研究火车票的种数时对学生的思维提出了更高的要求,能通过比较,体会组合数和排列数的不同。

2、培养学生有顺序地、全面地思考问题的意识和能力。在整个教学活动中,不管是运用小组共同合作学习、独立探究学习,还是让学生通过猜测、操作、观察、比较等活动,都在向学生渗透一种数学思想——有序地、全面地思考问题。由于组合与排列这部分内容的活动性和操作性比较强,必须采取一定的方式方法才能使形式的思维有价值。因此,有序地、全面地思考问题,不仅是学习排列与组合知识、概率统计知识的基础,更是学习数学的一般方法,特别是解决实际生活问题所必须的方法。

数学广角说课稿9

一、说教材:

“数学广角简单推理”是新人教版《义务教育教科书数学》二年级下册第109页的教学内容。这是一节有趣的活动课,也是一节逻辑思维训练的起始课。逻辑推理能力是人们在生活、学习工作中很重要的能力。本节课主要要求孩子们能根据提供的信息,进行判断、推理,得出结论,使学生初步接触和运用排除法。教材试图通过一些生动有趣的简单事例,运用操作、实验、猜测等直观手段解决这些问题,渗透数学的思想方法,初步培养学生有顺序地、全面地思考问题的意识。本节课立足学生认知发展水平,在问题设计的难度上都不是很大,一般都有一个可以直接判断的条件,学生只要找准关系句,就能较为轻松地推理出其他的相关结论。让学生亲身经历对生活现象判断的过程,从而锻炼学生的逻辑推理能力是教材编写的重要目的之一。

二、说学情:

二年级的孩子由于他们的年龄特点,他们具有较高的学习热情,喜欢做游戏,喜欢与他人合作,同时也具备了一些简单的推理能力。基于以上分析,我们组将整堂课设计成一节猜一猜、做一做的游戏课,让学生通过生动有趣、形式多样的猜测、推理游戏,使学生在具体的情境中感受简单推理的过程,初步获得一些简单推理的经验。培养学生初步的分析推理能力、合作能力。

三、说教学目标及重难点:

根据教材的编排意图以及学生的实际情况,我制定了本课的教学目标为:

知识技能:让学生了解简单的推理知识,初步获得一些简单推理的经验;培养学生初步观察、分析、推理能力和有条理思考问题的意识。

过程方法:让学生经历简单的推理过程,体验逻辑推理的思想与方法,体会逻辑推理条件与结论之间的联系。

情感态度:感受逻辑推理的趣味性、严谨性以及数学结论的确定性,培养学生积极思维的学习品质。

重点:经历简单的推理过程,培养学生初步的分析推理能力和观察能力。

难点:培养学生初步的有序地、全面地思考问题及数学表达的能力。

四、教法、学法

《数学课程标准》中明确的提出:“要让学生在参与特定的教学活动,在具体情境中初步认识对象的特征,获得一些体验。”所以在这节课的设计中,根据教学内容的特点,我们数学组采取游戏引入、情境教学与谈话引导等方法让学生在自主探究、合作交流中去充分体验数学学习,感受成功的喜悦。

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。