五年级数学说课稿汇编8篇
五年级数学说课稿汇编8篇
作为一名老师,很有必要精心设计一份说课稿,通过说课稿可以很好地改正讲课缺点。我们应该怎么写说课稿呢?下面是小编精心整理的五年级数学说课稿8篇,仅供参考,大家一起来看看吧。
五年级数学说课稿 篇1
今天我说课的内容是人民教育出版社出版的九年义务教育六年制小学数学教材第十册第四单元《分数的意义》一课。
一、教学指导思想
《数学课程标准》指出:数学教学,要让学生亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过数学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。因此,在教学中我们将以学生发展为立足点,以自我探究为主线,以求异创新为宗旨,借助多媒体辅助教学,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的过程中,使学生观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。
二、教材结构分析
《分数的意义》是在四年级学生已经初步认识了分数,并且知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示的基础上进行教学的;重点是使学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。纵观学生的知识基础及对教材的剖析,我们确立该课的教学目标及教学重难点。
1、知识目标:建立单位“1”的概念,理解分数的意义,知道分数各部分的名称及意义,这是第一项目标也是基本目标;借助为分数配图,深入理解分数的意义,发展学生对美的体验与欣赏;揭示分数的产生,丰富学生的数学文化;这两项目标是在第一项目标的基础上对学生思维的一种拓展。
2、能力目标:通过直观教学和动手操作,使学生在充分感知的基础上,理解并形成分数的概念;培养学生的实践、观察及创新能力,促进其思维的发展;通过同学间的合作,进而促进学生的倾听、质疑等优秀学习习惯的养成。
在教学中拟订教学的重难点为建立单位“1”的概念,理解分数的意义。
三、教学设计思路
根据学生由“感知—表象—抽象”的认知规律,在教学中主要采用了创设情境、动手操作及自主探究的教学方法,即把问、说、讲、做的权利和时间交给学生,力途为学生营造一个宽松、民主的学习氛围,充分调动学生眼、口、脑、手等多种感官参与认识活动,让孩子们真正感受到“我能行”。在深入剖析教材分析学生的基础上,全课以“谈话导入,唤醒已知—动手操作,创造分数—媒体演示,揭示产生”三大主线贯穿全课,其中动手操作,创造分数这一大环节包括动手操作,感知意义;师生互动,理解意义;深化整体,总结意义;巧妙练习,强化意义四步。设计了如下一节课:
(一)谈话导入,唤醒已知
轻松谈话:“在四年级的时候,我们已经初步认识了分数,你们知道哪些与分数有关的知识?”在唤醒学生已有知识的同时,学生可能会谈到(课件)教师适时小结一个苹果、一张饼都称之为一个物体,一米长的绳子把它叫做一个计量单位,一个物体、一个计量单位,我们可用自然数1来表示。当学生已经把所相关的知识说充分了,教师适时走进去“老师知道它也和分数有关,你们看(课件)这是10个小朋友,当我们把它看作一个整体的时候,还可以说是一群小朋友,这一群小朋友也可以被分,分得的结果用分数表示。
此环节的设计意图是借助集合圈渗透一个整体的同时,让孩子们感知到当我们把很多物体看作一个整体的时候,我们也可用自然数1表示。它也可以被分,分得的'结果也可用分数表示。为下一环节的动手操作指明了道路。
(二)动手操作,创造分数
1、动手操作,感知意义
学生四人一组为单位,每组有一套学具,包括一米长的绳子、一张纸、六块饼干、12个小方块……(课件)然后让学生选一种或几种学具自己动手创造分数,并提出要求:在创造分数的过程中,你可以动手摆一摆、分一分、说一说、你
把谁看作了一个整体,你是怎样分的,创造了一个怎样的分数。学生操作、汇报交流展示的是学生把不同物体看作一个整体所创造的分数。(课件)
此环节的设计意图是让学生直观地感知一个物体、一个计量单位、及许多物体组成的一个整体平均分成若干份,表示其中的一份或几份的数,都可用分数来表示,也就是初步感知分数的意义。
2、师生互动,理解意义
在学生初步感知意义的基础上,采用师生互动的形式,借助多媒体课件,帮助学生进一步理解意义。互动分为两次,第一次借助小旗图,(课件)以教师首创了一个分数1/2为例,激活学生的思维,”还是这幅图,你能创造不同的分数吗?“激发他们创造的欲望,学生动手操作一定会创造出不同的分数如(课件)。第二次出示熊猫图的辨析题(课件)教师引题”当我们把6只熊猫看作一个整体,把这个整体平均分成3份,每份是这个整体的几分之几?由于教师给出了三个答案,进而引发学生的思考,在学生辩解、交流中,知道把这个整体平均分成3份每份就是这个整体的三分之一。(课件)
此环节的设计意图是直观的帮助学生感知份数与个数的不同,从而更加深入地理解分数的意义,为概念的建立奠定了基础。
五年级数学说课稿 篇2
尊敬的各位专家评委,早上好!
今天我执教的《真分数和假分数》是人教版五年级下册第四单元的内容。是在分数意义的基础上学习真假分数,拓展对分数意义的理解。虽然这是一节全新的概念课。可要学生识记它的概念并不难,但概念的教学不应以概念获得为目的,不能为教概念而将概念具体化——也就是说不能先有概念定义,再去寻找使之具体化的材料、实例。因此不能用机械的方法让学生识记概念内容,而应通过具体的分数抽象出真假分数的概念,进而有效地拓展运用。基于这样的思考和理解,本节课我确立了以下教学目标:
1、认识真分数和假分数的意义及特征,了解假分数的产生过程。
2、理解真分数和假分数的意义及特征。
3、结合具体情境渗透数形结合的数学思想,培养学生全面思考问题的习惯。
为了达成以上教学目标;突出重点:理解真分数与假分数的意义;突破难点:理解真假分数特征。我在教学中努力做到以下三个“一”。
遵循一个规律:——概念形成的规律。
本节课的设计就是在遵循学生对概念认知的发展规律基础上,利用“数形结合”,凸显先“过程”后“对象”的认知顺序,充分理解概念。借助数轴和图形理解真分数、假分数与1的关系,将概念深化。
真假分数概念的形成,本节课分4步走:
1、就是通过填四分之几这个分数了解学生起点。用图形表示出来,以了解学生对分数意义的理解。
2、运用图片建立假分数的表象:通过怎样表示5/4?让学生产生了认知上的矛盾:1个单位“1”不够时,怎么办?让学生在辨析中明白5/4的意义。
3、在分类活动中构建真分数与假分数模型。在概念的形成过程中,让学生充分表达自己的想法,“4/4”到底划到哪一类中,引导学生通过比较、分析。最后产生看书的必要性。
4、完善概念的认知。数学概念一旦形成,既要通过练习巩固概念,更要关注概念外延的有效拓展。因此,在教学中,我让学生从数轴上判断真假分数的特征.从找规律中,拓展对真分数概念的认知,借助特殊的假分数,理解假分数有大于1,也有等于1的情况。尤其是最后的题组练习。从最基础的分类,引导发现,再到用字母表示,引导学生从具体到抽象,将具体、繁多的分数提升到“b/a”这一个分数表示形式,把书教薄,将知识系统化。
渗透一种思想:——“数形结合”的思想。
在课的开始阶段让学生用图形表示出相应的分数,这里是第一次借助数形结合的思想,通过图形让学生直观的理解5/4,感受假分数的产生过程。图形与分数的一一对应让学生初步感知真、假分数与1的大小关系。第二次借助数形结合的思想是利用真假分数在数轴上的位置,再一次感受真假分数与1之间的关系。同时借助数轴的让学生感受真假分数“无限”性,这里话虽没挑明,但学生已能感受到了真分数和假分数的.个数都是无限的。
培养一个习惯——全面思考的习惯。
我们的孩子在思考问题时往往习惯于唯一答案,不会全面思考问题,更不善于分类思考问题。因此在含有字母的分数中,除了完成判断的同时更注重分类思想的渗透,让学生从小接触不确定因素——a/6是真分数还是假分数?让学生学会全面的思考问题,课堂中我充分发挥评价语的导向作用,使学生学会从不完整到完整的表述。这个环节的教学时间的比重是比较大的,为的就是将学生思维不断提升,从形象的呈现分数判断到让学生形成抽象的符号化思想。
总之,我认为概念教学是不可能一步到位的。因此,我力求在概念建模后层层递进,不断地进行延伸,拓展概念的内涵和外延,完善概念的理解认知,进一步使概念变得立体丰厚。
以上只是我对本节课的一些想法,敬请各位专家批评指正!
五年级数学说课稿 篇3
师:我们今天要来研究2和5的倍数的特征。可是自然数那么多,我们能一个一个研究吗?
生:不能。那样的话永远也研究不了,自然数太多了,是无限的。
师:那怎么办呢?
(同桌讨论)
生:我们可以先研究小范围里面的数。再推广。
师:他的想法真棒!那我们就先确定一个比较小的范围1-100,看看这100个数里2和5的倍数有哪些特征。
师:同学们通过自己的努力,发现了1-100中所有5的倍数个位上的数字都是5或0。那么在所有的自然数中,是不是5的倍数都有这个特征呢?
生:(凌乱地回答)是!
师:肯定吗?这只是我们的——猜测。要证明这个猜测对不对,我们还要进一步验证。那如何验证呢?有那么多自然数啊?
(同桌讨论)
生:可以找一个数看一看。
师:找怎样的数呢?怎么看一看呢?谁能说得更明白呢?
生:就是找一个末尾是0或者5的数,然后除以5看看,能不能除得尽。
师:哦,如果找不到这样的数,那说明——在大范围里面也适合。
如果找得到这样的数,那就是有了反例,说明——在大范围里面不适合。
(学生在本子上举例)
……
师:我们举了大量的例子,没有找到反例。那现在我们可以得出怎样的结论了呢?
生:所有5的倍数,个位上的数字都是5或0。
师:谁能完整地说一说呢?在怎样的范围内呢?
生:在自然数中,个位上的数字是5或0,那这个数一定是5的倍数。
师:当然,我们研究的是不是0的自然数。
……(练习)
师:我们已经找到了5的倍数的特征,并能灵活运用了。那我们来回想一下,我们是怎样来研究5的倍数的特征的呢?
(同桌讨论,教师巡视并启发)
生1:我们先确定了一个范围。
师:为什么呢?
生1:因为不确定范围的话,数太多了,不可能研究得完。
生2:我们找到了这个范围内5的'倍数特征后,就把范围扩大到所有不是0的自然数,进行了猜想。
生3:猜想后,我们又进行了验证。
师:我们是用怎样的方法进行验证的呢?
生4:举例。看看有没有反例。
师:说得真好,最后我们才得出了结论——在所有不是0的自然数中,5的倍数的特征是个位上5或0。然后运用这些结论能快速判断。
师:谁能完整地把这个研究过程说一说呢?(同桌说——全班说)
……
师:那2个倍数特征我们怎么研究呢?
生:也是先确定范围,寻找一定范围内的2的倍数特征。然后扩大范围,举例,寻找反例,最后得出结论。
师:那我们就用这样的研究方法,四人一小组开始研究2的倍数的特征。
五年级数学说课稿 篇4
教材分析:
《因数》这一课时的主要内容是了解因数的概念,在1-100的自然数中找出某个自然数的所有因数;知道质数、合数的意义,会判断一个数是质数还是合数,能找出100以内所有的质数。学习倍数和因数是学习质数和合数的基础,又是进一步学习公倍数和公因数、约分和通分,以及分数混合运算的重要基础。教材设计了两个学习活动,充分利用学生已有的知识,引出因数、质数、合数的概念,从而让学生探寻找一个数的因数的方法及判断质数、合数的方法。
学情分析:
因数是建立在学生已经掌握了许多自然数的知识之后,四年级的学生有一定的自主学习的能力,因此在教学中主要调动学生的学习积极性来提高学生课堂活动的参与性,体验成功的乐趣,通过学生的探索和体验来达到学习知识、掌握所学知识的目的。同时感受数学学习中的奥妙,增加学习数学的兴趣。
教学目标:
(一)认知目标
1、 在自主写算式和找1-10各数的所有因数的活动中,了解因数的概念,发现一个数的因数中最大的数与最小的的数及其个数方面的特征,在1-100的自然数中能找出某个自然数的所有因数;
2、 通过列举、比较,得出质数与合数的特征,会判断一个数是质数还是合数,能找出100以内所有的质数。
(二)能力目标 通过各种数学活动,培养学生的观察能力、分析能力、判断能力及从多种渠道解决问题的能力。
(三)情感目标 让学生通过探索学习,感知知识间的区别与联系,能积极主动地参加学习活动,愿意把自己发现的结果告诉他人,获得成功的体验。
这样的目标设计打破了传统概念教学的规律,从过多地注重概念本身,转化到更多地关注学生的学习过程和情感体验,立足教学目标多元化,不仅要使学生掌握认知目标,还要在学生的学习过程中发展各方面的能力,获得成功的体验。
教学重点:
能准确找出某一个自然数的.因数及判断一个数是质数还是合数的方法。
教学难点:
在找某个自然数的因数时如何做到不重复、不遗漏。
教学过程:
一、创设情境,激发兴趣。
我创设了一个情境,森林舞会马上要开始了,可是小动物们还没有找到自己的搭档,同学们你们能帮帮他们的忙吗?
课件出示搭档要求:凡是两个数相乘,积为12的两个小动物,便可结为搭档参加舞会。
此时的学生们一定争先恐后地回答,其实这样的题目学生利用已有的乘除法的相关知识非常容易解决,我这样设计是为了让学生从中可以让学生体会到成功的乐趣,进而可以以最佳的状态进入下面的学习。
随后让学生在练习本上把刚才判断的过程用乘法算式表示出来:学生可能出现六种情况,如果学生没有说出,教师可做为参与者补充,通过讨论后,整合为三种情况:(课件出示算式)
12=1×12,12=2×6,12=3×4,从而引出因数的概念,在乘法算式中,乘数也叫因数。1、2、3、4、6、12这些数都是12的因数。(课件出示):并随机板书课题:因数。
二、主动参与,探索新知。
(一)、理解因数的概念,探索找一个自然数因数的方法。
(1)首先是强化“因数”的概念认识。根据以往学生在表述倍数时容易出现表述不完整的情况,我在此出示判断题:因为12=3×4,所以3和4是因数,12是倍数。( )请学生思考,此时肯定引起学生的一片争议。通过反例的教学,意在强调因数和倍数表示的是两个数之间的关系,不能单独存在,因此要说明谁是谁的因数,谁是谁的倍数。因此,刚才的话应该完整地表述为因为12=3×4,所以3和4是12的因数,12是3和4的倍数。
(2)及时练习。在这里我让学生自己出题,说说谁是谁的倍数,谁是谁的因数,既达到了巩固的目的,来自学生自身的材料又更加真实,学生更容易接受。同时考虑到学生受思维定势的影响,可能所举例子都是乘法算式,教师就需及时有效“介入”比如,因为“24÷3= 8”,我们就可以说3和8是24的因数,24是3和8的倍数。促成学生不仅从乘法的角度去思考而且也可以从除法的角度进行,为后面找一个数的因数做好伏笔。
(3) 自主探索,找出如何找一个数的因数方法。(教材第90页试一试)。
在学生对因数有了比较深刻地认识之后,教师提出练习要求:师:下面就请大家用自己的方法分别找出18和24的所有因数,并写出来,由学生独立完成,与此同时,我进行巡视,重点了解学生找因数的方法。待学生完成之后提问
谁愿意汇报一下你写的结果,并说一说你是怎样找到这些因数的?
学生交流写的结果和自己找的方法,学生找因数的方法可能有
利用乘法找。因为18=1×18,18:2X9,18=3X6,所以18的因数有1、2、3、6、9、18;因为24=1×24,24=2×12,24=3×8,24=4×6,所以1、2、3、4、6、8、12、24是24的因数。
利用除法找。因为18÷1=18,18÷2=9,18÷3=6,所以18的因数有1、2、3、6、9、18;因为24÷1=24,24÷2=12,24÷3=8,24÷4=6,所以1、2、3、4、6、8、12、24是24的因数。
一个一个找,可能按照从小到大或从大到小的顺序找。
不管学生用哪种方法,只要做得对就要给予鼓励。学生可能还会出现说不完整的情况,也要先鼓励学生,再请其他学生补充完整。
在学生一一说明自己的方法之后,提出问题:同学们都用自己的方法找出了18和24的所有因数。现在,大家讨论一下,要写一个数的所有因数,怎样写就不会遗漏或重复了呢?这是本课学习的一个难点,因此要给学生充分讨论的时间。
让学生在对比刚才出现的方法后,充分发表自己的意见,学生想到的方法可能是:从小到大,一对一对地找。找到出现之前重复的因数为止。如果学生想不到,教师可作为参与者参与讨论得出方法,从而打破难点。
通过列举、分析、比较,探索一个数因数的特征。进而认识质数与合数。(第二个例题)
课件出示例题二:刚才我们通过讨论得出了找一个数所有因数的方法,现在就清大家用这种方法,找出1~10各数的所有因数,把它们写下来。
学生书写,教师巡视,重点指导学生找因数的方法,检查书写中是否有遗漏或重复现象。学生由于个体差异,完成的速度有快有慢,此时我提示写得快的同学同桌之间互相核对一下,以便检查是否有遗漏的因数,同时也是对速度稍慢一些的同学的等待。随后请同学们进行汇报。我根据学生的回答课件随机出示。出示时,有意识地将其排成三列,质数一列,合数一列,1单独写成一列。
出示完成后,提问:(课件出示)观察写出的因数,你发现了什么?
学生不难发现:(课件出示)
1是每个数的因数。
一个数最大的因数就是它本身,最小的因数是1。
1个数的因数的个数是有限的
……
此时教师要及时地做出肯定:大家说得都非常好,说明大家观察得很仔细。我们看到了不同的自然数,因数的个数是不同的。现在,我们就按照因数的个数把这些数分一分类,让学生小组之间交流讨论,进行分类,最后师生共同总结,教师板书
像这种只有1和它本身两个因数的数叫质数(也叫素数。)。
除了1和它本身以外还有其他因数的数叫合数。
学生对照板书齐读两遍,加深对质数与合数意义的认识。随后进行提问:“根据质数合数意义,你认为1是质数还是合数?”有了上面对质数与合数意义的认识,学生根据其意义进行对照,发现1既不是质数又不是合数便水到渠成了。这时都师也随机进行板书:“1既不是质数,也不是合数。”
随后,请几名学生举几个质数的例子,举几个合数的例子,学生举例的同时,让其他的同学判断,意在通过多种方法巩固、检查学生对质数和合数概念的理解程度。
进而学生独立完成91页练一练的第1题,然后交流汇报。意在让学生掌握如何判断一个数是质数还是合数的方法。
在学生掌握了如何判断一个数是质数还是合数的方法之后,出示问题:你能找出1-50的自然数中的所有质数吗?(练一练第2题)鼓励学生按照自己的方法找质数,有问题的可以小组合作。教师巡视,重点看学生用什么方法找的,指导学生寻找一种又快又准的方法。之后进行汇报
学生可能出现的方法有
按照质数的概念逐个进行判断。
根据能被2、3、5整除的数的特征,把2留下,把2的倍数都画去;接着把3留下,其他的3的倍数都画去;把5留下,其他的5的倍数都画去;然后再一个一个找。
不管学生用哪种方法,只要找对就要鼓励。
如果学生没有说出第二种方法,教师要作为参与者提出第二种方法,让学生明确质数表就是这样产生的。
在自主找50以内的所有质数和交流过程中,体验成功的快乐,体验方法的多样化,培养优化算法的意识和能力。学会找50以内各数所有质数的方法。
学生有了上面找50以内所有质数的过程体验,已经掌握了一定的方法,因此放手让学生去找50-100所有的质数。学生独立完成后交流总结:我们找到了100以内所有质数,大家数一数共有几个。指导学生把两个题找的结果整合在一起。得出一共是25个。
同时提出要求:这25个数十分特殊,也很重要,老师希望同学们能记住它们。还要记住我们是怎样找到它们的。
三、变式训练,学以致用。
习题是学生对所学知识巩固与提高的一个必要过程,也是学生“用数学”的重要体现,因此在本课时的习题设计时,我整合了之前几课所学到的相关知识,力求做到层层深入,步步递进,使学生能融会贯通,学以致用。
第一题“我会填一填”,这是最为基础性的概念,学生必须理解和掌握的,在此做到了有针对性和实用性。
第二题“火眼金睛”,在这道题中陷阱重重,学生如果考虑稍有不到,便会出错,因为也是培养学生仔细分析、慎重考虑的一个途径。在此又体现了习题的灵活性。
第三题,“我是一休”。一休可以说是每个学生都喜欢的角色,喜欢一休无非是在于他的智慧,因此,在练习时我让学生以“一休”的角色去处理问题,大大激发了学生的探索个欲望,同时又给了学生展示自己智慧的平台。随后让学生把自己的电话号码也以这样的方式让学生猜一猜。这既体现了习题的创新性,又体现了其趣味性。
四、提出要求、拓展学习
同学们善于观察、肯于动脑,太好了。关于质数与合数的学问多着呢!你们听说过数学皇冠上的明珠——“哥德巴赫猜想”吗?若感兴趣,就上网去查一查吧!
提出著名的“哥德巴赫猜想”就是关于质数与合数的问题,鼓励有兴趣的同学课下在网上查阅有关资料,将学习延伸到课外。介绍“歌德巴赫猜想”,不仅可以丰富课本知识,拓展学生的知识面,也可以使学生综合应用知识的能力、解决数学问题的素质都得到提高。
板书设计:
最小:1
因数
最大:本身
只有1和它本身两个因数的数叫做质数。
除了1和它本身以外,还有其它因数的数叫做合数。
1既不是质数,也不是合数
五年级数学说课稿 篇5
教材分析:
本节课是北师大版小学第三册教材第二单元第10~11页内容。 乘法口诀是我国小学生提高计算能力的有趣的工具。5的乘法口诀作为学习乘法口诀的起始内容,是在学生初步认识乘法的意义,并具有数数技能的基础上来学习的,应切实学好。教材创设数松果的现实情境,通过轻松的、自然地情景引导学生自觉投入学习活动,主动探索、体会5的乘法口诀的形成过程。教材设计的5 的乘法口诀的练习丰富多彩,既有学生喜欢的游戏,也有他们力所能及的问题解决。
学情分析:
由于二年级的小学生以具体形象思维为主,喜欢动手操作。在教学中,可以根据学生的思维特点,采用形象与逐步归纳相结合来组织教学。但是学生对本节课还是比较熟悉。
目标定位:
根据学生好动、思维活跃的特点,制定如下教学目标:
1、引导学生借助已有知识和经验理解5的乘法口诀的来源和含义,感知口诀的基本特征。
2、熟记5的乘法口诀,能灵活运用5的乘法口诀。
3、体会用一句口诀计算乘法算式,感受学习乘法口诀的好处。
4、在经历编、记、用口诀的过程中初步培养学生解决问题的能力。
虽然本班学生对乘法口诀已经有了一定的接触,但由于5的乘法口诀是编制口诀的第一课时,还应当做新授课。所以,我确定本课的教学重点是:让学生经历归纳5的乘法口诀的过程,难点是:理解5的乘法口诀的意义。
设计理念:
学生是学习和发展的主体,教师是学习活动积极的组织者和引导者。数学教学应以学生的自主探究和合作交流为基础,大力倡导自主、合作、探究和实践的'学习方式,充分发挥师生双方在教学中的主动性和创造性。要想达到预期的效果,教师的有效引导就显得尤为重要,但无论是教师的积极引导,还是多媒体课件的直观、生动呈现,在教学中我都在努力为学生创设一种教学情景,不断地激发学生的学习兴趣,使学生将全身心投入到教学活动中来,在教学中,我采用多种形式来训练学生的数学能力,使学生在自主、民主的氛围中快乐地学习,在自主探究和合作交流中掌握《5的乘法口诀》的知识,并加深同学之间的友谊。
五年级数学说课稿 篇6
一、 说教材
1、教材内容:小学数学第十册《解简易方程》及练习二十六1~5题。
2、教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
3、教学目标:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
4、教学重点及难点:理解方程的意义,掌握方程与等式之间的关系。
教具:天平一只,算式卡片若干张,茶叶筒一只。
二 、说教法学法
(一) 创设情境,自主体验
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中(cn—teacher。com)有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的`光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
(二) 突出重点,自主探索
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
(三) 自学思考,获取新知
在教学解方程和方程的解的概念时,通过出示两道自学思考题
(1)什么叫方程的解?请举例说明。
(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
(四) 使用交流,注重评价
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
五年级数学说课稿 篇7
一、说教材
《成长的脚印》一课是北师大版小学数学第九册第六单元的第二课时。以往的小学数学几何图形面积计算的内容,仅局限于计算规则图形的面积,但实际生活中存在着大量不规则图形面积的估算问题,如何估计出这类图形的面积,是本课的学习内容。这对学生来说是一个完全陌生的问题,难以直接运用计算组合图形的方法加以解决,需要有一种新思路、新方法。在此之前,学生经历了平行四边形、三角形、梯形以及组合图形的面积探索过程,并能利用数方格的方法计算规则图形的面积,这些都将成为估算不规则图形面积的基础。
基于以上对教材的分析并结合学生的认知结构特点,根据课标的“四基”目标,我确定了以下几个维度的教学目标
1、能用数方格的方法估计不规则图形的面积。
2、会用转化成基本图形再用面积公式计算的方法估计不规则图形的面积。
3、在估计的过程中,丰富估计的策略和方法。
根据教材的特点以教学目标为导向,我确定了如下教学重难点
1.教学重点:利用转化的方法估计不规则图形的面积。
2.教学难点:如何合理的进行转化。
二、 说教法与学法
《数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想与方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。为突出重点,突破难点,抓住关键,使学生能达到本节设定的教学目标,为此本节课主要采用自主探究与人合作的方法让学生参与到课堂中来,鼓励学生自主探究,小组合作交流,引导总结归纳的方式来探究新知,真正的做到把课堂还给学生,教师只是给予学生适时的引导,更好地迎合了教师是学生学习的组织者、合作者、引导者;学生是学习的主体的这一课程理念。
三、说教学流程
在分析教材,确定教学目标、合理选择教法学法的基础上,我预设五个活动贯穿整个课堂
活动1,估计淘气出生时的脚印面积。这是为了让学生体验估计不规则图形面积的两种方法,数方格和转化,并将两种方法进行比较,学生感知到用转化成近似基本图形的方法更快捷,为后续教学做铺垫。
活动2,估计淘气两岁时脚印的.面积。重在训练学生用转化成近似基本图形的方法估面积,并对方法的正确性进行评估,明确转化要以新图形与原图形的面积接近为基础。
活动3,估老虎头和枫叶的面积。图1是进一步巩固转化的方法;图二是灵活变式。学生体验到在实际生活中不只可以将不规则图形转化成一个基本图形,也可转化成几个基本图形再求面积。学生的思想层次得到提升。
活动4,估计三个圆的面积。旨在体会面积单位越小,估计的面积越接近精确值。为学生今后会学习到的“密铺”知识打下基础。
活动5,小组合作估手掌的面积。这个活动是对这节课所学知识的综合运用。如何估最简便?从画手掌轮廓到选择合适的方法估计,综合训练学生解决数学问题的能力。
五个活动层层递进、层层深入,学生逐步体会到用转化成基本图形的方法估计不规则图形的面积的优越性,并能选择合适的转化方法解决实际问题,从而突破教学重难点。
五年级数学说课稿 篇8
一、教材分析,学情解析,目标定位
(一)教材分析:
《方程的意义》是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。
《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。
(二)教学目标:
结合教材的特点和学生已有的知识生活经验以及新课标中概念教学的理念,本节课的教学目标为:
1、借助生活情境理解方程的意义,能从形式上判断一个算式是不是方程,区分等式与方程,理解等式与方程的关系,使学生初步理解等式的基本性质。
2、使学生在观察、分析、分类、抽象、概括和交流的过程中,经历从现实问题抽象成方程的过程,渗透集合思想。
3、感受数学探索的乐趣,培养学生认真观察,善于思考的学习习惯,加强数学知识与现实世界的联系。
(三)教学重难点
列方程时的数量关系与列算式时的思维过程有着明显不同。用算术方法列算式时的数量关系是充分运用已知数量的运算得出未知数量,它把已知和未知完全隔裂开来,已知条件作为一方,要求的问题为另一方。而列方程的数量关系,是把已知和未知融合起来,共同参与运算。从列算式求答案的习惯思维转向列方程表示等量关系,学生的思维会有一定的困难。
基于以上的思考,本节课的教学重点确定为:方程意义的理解以及在具体情境中建立方程的模型,理解等式与方程的关系,使学生初步理解等式的基本性质。教学难点是经历由问题抽象成方程的过程,渗透集合思想。
(四)学情分析:
课前我们对学生进行了调研,调研内容主要有三项:
一、求未知数
这道题主要是为解方程做准备。在这道题中,学生的书写格式错误较多,占40.2;会方法但计算错误的同学占10.9;格式计算都正确的同学占48.9。所以,在后面讲解方程的教学中,我们要规范学生的书写格式,讲清算理和算法,提高计算能力。
二、给式子分类,并写出每类的特点。
设计这道题的目的是想看看学生能否依据一定的标准进行分类,清楚分类的标准,为课上的分类做准备。通过调研,我们发现因为学生的关注点不同,所以分类的标准不同。有些学生关注的是式子当中的字母,所以根据有无字母把式子分为两类,一类式子当中有字母,一类没有字母,这样的学生占25;有些学生关注的是式子中的等于号,所以根据式子左右是否相等把式子分为两类,一类是等式,一类是不等式,这样的学生占26.1;有一些学生关注的是式子中的运算符号,所以分的类别较多,还有一些学生不知道根据什么来分,这样的学生占48.9。尽管一直以来学生总是在写等式,但对等式的概念学生并不清楚。所以,课上我们要让学生进一步理解等式的本质特征,真正理解等式的概念。
三、你们在生活中见过与跷跷板类似的物品吗?
设计这道题的目的是想了解一下学生是否知道天平,为课上应用天平列式做准备。课下我们又找个别学生进行了访谈,让他们说一说天平与跷跷板有什么相同之处。通过调研,我们发现学生基本上知道天平,只有个别学生不知道。
(五)教法:
新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。根据小学生的认知特点和规律及教材特点,这节课,我们主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:
1、用直观的操作和演示,让每位学生理解和归结出结论。
2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。
3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。
(六)、学法
为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我们注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,亲自参与,动脑思考,动口表达,真正理解和掌握方程最基本的`知识,培养学生探索、发现和创新能力。
二、教学过程
教学活动主要安排了五个环节:
1、创设情景,抽象出等量关系,理解等式的性质
等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助学生熟悉的跷跷板首先让学生体会等式的含义。
活动一:感知平衡,体会等式含义,理解等式性质。
课件出示一架跷跷板,请学生仔细观察后说一说玩跷跷板可能会出现哪些情况?再请学生用一个式子表示跷跷板现在所处的状态。然后告诉学生像这样用等于号连接的式子就叫等式,紧接着就提问学生:什么样的式子叫等式?对“等式”的概念进行了强化。这个提问及时准确。接着,利用跷跷板理解等式的性质,即等式两边同加同减,左右两边仍然相等。然后启发并引导学生思考:如果等式两边同乘同除,等式会怎么样?通过学生举例,总结出等式的性质。从学生熟悉的生活情境入手,既让学生从跷跷板“平衡”中体会到等式的含义,又能较好地激发了学生学习的乐趣。这样的安排符合学生的认知特点。
活动二:观察发现,抽象出不同的式子
创设具体情境,让学生观察天平从不平衡到平衡的变化过程,通过天平的动态变化得出若干个不同的式子。然后提问学生:以上的式子都是等式吗?它含有未知数吗?让学生思考,交流后说出:有的是等式,有的是不等式。这样由“扶”到“放”,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。这样设计,主要是给学生创造一个用眼观察,用脑思考的机会,让他们亲自感知了多个含有未知数的式子的来源,将“重视结论”的教学转变为“重视过程”的教学,不生硬的塞给学生现成的结论,让学生充分经历方程模型的生成过程。同时也为下一个教学环节——给式子分类做好准备。
2.引导分类,抽象出方程的意义
运用刚才得出的式子进行分类,并让学生说说分类标准,然后从学生按照等式不等式的标准分类的教学资源中直接导出本节课的课题:方程,在此基础上,再次让学生观察,讨论与交流,找到方程的特点,从而进一步得出方程的意义。在分类的过程中,尊重学生的想法,肯定他们分类的方法。这样的设计主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。
3.讨论比较,辨析、概念——等式与方程的关系
为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过同桌合作用自己的方法创作“方程”与“等式”的关系图,并用自己的话说一说“等式”与“方程”的关系:方程一定是等式,但等式不一定是方程。。这是一道富有思维容量的习题,不但锻炼了学生的思维,培养了学生思维的灵活性和深刻性,而且能激发学生的创新意识,使学生的积极性、创造性得到保持与发展,同时渗透集合思想。
4.巩固深化,拓展思维——练习
在这一环节中,我们设计了“介绍方程”、“写方程”和“判断方程”三个活动。为了激发学生学习的兴趣,我们设计了“如果你是方程,你怎样介绍自己”之后让学生自己写一个方程,这样一个介绍,一个练写,不仅使学生爱做,而且还让学生进一步理解了方程的意义。然后让学生看式子进行判断,辨析;出示“方程一定是等式,等式也一定是方程”这句话让学生分析这句话对吗?说出理由。通过这些活动加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。特别是方程的判断,能引起学生强烈的争论,让学生在争论中巩固方程与等式的概念,方程与等式的异同,使教学达到高潮,极大的调动了学生学习的积极性,把学生的注意力高度集中到巩固新知的过程中。
5.小结新知,明确收获
让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。