高中一年级数学《同角三角函数的基本关系》说课稿设计(通用7篇)
高中一年级数学《同角三角函数的基本关系》说课稿设计(通用7篇)
作为一名辛苦耕耘的教育工作者,通常需要准备好一份说课稿,借助说课稿我们可以快速提升自己的教学能力。那么什么样的说课稿才是好的呢?下面是小编整理的高中一年级数学《同角三角函数的基本关系》说课稿设计,欢迎大家分享。
高中一年级数学《同角三角函数的基本关系》说课稿设计 1
一、教材分析
1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。
2、教学目标的确定及依据
A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:
1)已知一个角的一个三角函数值能求这个角的其他三角函数值;
2)证明简单的三角恒等式。
B、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点
重点:同角三角函数基本关系式的推导及应用。
难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。
二、学情分析:
学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。
三、教法分析与学法分析:
1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。
2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。
四、教学过程设计
例1、设计意图:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的'终边位置的不确定,因此解的情况不止一种。本题主要利用的数学解题思想是:分类讨论
例2、设计意图:
(1)分子、分母是正余弦的一次(或二次)齐次式,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以 ,将分子、分母转化为 的代数式;还可以利用商数关系解决。
(2)“化1法”,可利用平方关系 ,将分子、分母都变为二次齐次式,再利用商数关系化归为 的分式求值;
五、教学反思:
如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了&qut;教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展&qut;的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。
由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。
高中一年级数学《同角三角函数的基本关系》说课稿设计 2
一、教学背景
《同角三角函数基本关系式》是人教版高中数学必修第四册第一章第二节中的内容。本节课的内容在教材中有着承上启下的作用,是在学习了任意角和弧度,并了解正弦、余弦、正切的基本概念之后进行教学的,同时同角三角函数的基本关系也为之后学习两角和差公式奠定了基础,起着衔接作用。运用同角三角函数关系,能够更好的解决有关三角函数中求同角的其他三角函数值使解题更方便。学生在获得三角函数定义的过程中已经充分认识到了借助单位圆、利用数形结合思想是研究三角函数的重要工具。本节课内容中所体现的数学思想与方法在整个中学数学学习中起重要作用。
高中学生已经具备了初等代数、初等几何的相关知识,以及一定的抽象思维能力和逻辑推理能力。学生已经比较熟练的掌握了三角函数定义的两种推导方法,从方法上看,学生已经对数形结合,猜想证明有所了解。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究能力较弱。因而通过本节课的学习,学生能较好地培养学生的思维能力、推理能力、探究能力及创新意识。
根据新课标的要求,以及对教材和学情的分析,我确立了如下三维教学目标:
1、知识与技能目标:掌握三种基本关系式之间的联系,熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
2、过程与方法目标:牢固掌握同角三角函数的八个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力,能灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力。
3、情感与态度目标:通过用数学知识解决实际问题,让学生体会数学与自然及人类社会的密切联系,激发学生学习数学的兴趣,增强学生学习数学的信心。
根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的重点为:同角三角函数基本关系式sin2α+cos2α=1;tanα=sinα/cosα的运用。教学难点为:理三角函数值的符号的确定,同角三角函数的基本关系式的变式应用。
二、活动评价
在课堂教学过程中,我将对学生的学习情况进行及时而有效的评价。注重课程中的过程性评价,无论是在学生开始遇到问题、产生疑惑、给出猜想的时候,还是在逐步思考、交流、探索的教学过程中,我都会注重对于学生学习成果的评价。比如,在课堂讨论较难理解的问题时,我将先请一位平时善于解决数学问题的学生来回答,并请其他同学对其进行评价,然后再请大家给出不同的意见,从而形成良性的互动,在学生们的思维碰撞之中,正确、完善的结论将自然形成。从始至终,我都将贯彻以学生为主体、教师为主导的教学思想。
三、课程设计
在新课改理念的指导下,针对本课的教学目标和重难点,我将采用故事法、探究法、自主学习和合作探究等教学法,先从一个情境问题出发,然后引导学生循序渐进地对一组问题进行思考和探究,逐步归纳总结出同角三角函数的基本关系式,并在期间采用学生自评、小组互评、教师评价等多种方式,培养学生积极主动参与学习的兴趣。下面我将详细阐述本节课的教学过程。
1、趣味导入:上课伊始,我会通过多媒体讲述“蝴蝶效应”的故事,引导学生理解事物是普遍联系的观点,如果说南美亚马逊雨林中的一只蝴蝶与北美德克萨斯的龙卷风这两种看来是毫不相干的事物,都会有这样的联系,那么同一个角的三角函数应当也会有着非常密切的关系。通过这样的故事导入,能够激发学生的学习兴趣和探索热情,活跃其思维,为本节课的学习埋下伏笔。
2、温故知新:在这一环节,我将引导学生回顾三种常见三角函数的概念,单位圆中的任意角概念,以及初中学段学习的同角三角函数的两个基本关系式,进而引导学生思考如何证明任意角的三角函数也具备相应的基本关系。在这个过程中,我会请不同层次的学生起来回答,并请其他学生进行补充,引导全体学生进行复习和思考。学生依据以往证明三角函数平方关系的思路,能够较快想到利用单位圆中的勾股定理关系,证明得到sin2α+cos2α=1,同样的,根据任意角的正切函数定义,得到tanα=sinα/cosα。
接下来,我将引导学生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)学生可能会跃跃欲试,先用平方关系式计算余弦值,但却会遇到开方时判别正负号的问题,于是才会根据α是第二象限角这个条件进行判断。这时我将会引导学生学会先判断任意角的区间及其三角函数的符号,再利用公式进行计算的解题思路。这样学生就能够更轻松地探索出例2的解答方法。例2当中,由于根据余弦值的范围,确定α可能在第二或第三象限出现,于是学生就能够想到采用分类思想进行解答。通过学生的自主思考和我的适当引导,可以自然而然地突破本课的难点。
3、归纳总结
经过前面的师生共同参与的探究讨论,就逐步归纳总结出了同角三角函数的基本关系式。在这个过程中,我会根据不同学生的特点,分别请他们发言,并请其他同学进行补充,在师生互动中,共同推导出结论,这种方法既可以有效地突出本课的.重点,又自然而然地突破了本课的难点。
4、实践应用
为巩固所学知识,我会从教材中分梯度选取习题,给学生进行课堂练习,并请2-3位同学在黑板上完成,在练习后我会进行及时讲解。
在布置作业时,为了使所有学生都能够根据自身情况巩固所学知识,我将布置一类“必做题”和一类“探究题”,其中“探究题”是提供给那些学有余力的学生在课余时间完成的,帮助其拓展思维,培养兴趣。
5、课程总结
本节课的内容是极富探索性,我通过提问式复习和情境问题导入,学生产生好奇心和探索热情。接着,以学生为主体,我来引导学生根据已学的知识和方法,循序渐进地进行探究,逐步归纳总结出同角三角函数的基本关系式,从而自然地完成本课的教学过程,同时帮助学生体会数形结合的思想方法。
在板书设计方面,我会用简洁、工整的方式给出相关探究问题,同时以多媒体辅助展示平移动画,便于学生进行观察和探究。
四、教学体会
本节课我主要采用的是“引导发现、合作探究”的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法。整个教学中既突出了学生的主体地位,又发挥了教师的指导作用。在课堂随机提问以及讨论结果的过程中,我采用多层次多角度的评价方式,不仅能促使学生思考问题,掌握学习知识的技巧和方法,还能调动学生积极性,激发课堂气氛。
高中一年级数学《同角三角函数的基本关系》说课稿设计 3
一、教材分析
1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。
2、教学目标的确定及依据
A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:1)已知一个角的一个三角函数值能求这个角的其他三角函数值;2)证明简单的三角恒等式。
B、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点
重点:同角三角函数基本关系式的推导及应用。
难点: 同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。
二、学情分析
学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。
三、教法分析与学法分析
1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。
2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。
四、教学过程设计
强调:sin是(sin)并不是sin
设计意图:从具体到抽象,引导学生完成抽象与具体之间的相互转换
2、思考:
问题1:从以上的过程中,你能发现什么一般规律?
问题2:你能否用代数式表示这两个规律?
设计意图:引导学生用特殊到一般的思维来处理问题,通过观察思考,感知同角三角函数的基本关系。
3、证明公式:(同角三角函数基本关系)
(1)、平方关系: (2)、商的关系:
回忆:任意角三角函数的定义?
学生回答:设α是一个任意角,它的终边与单位圆交于点P(x,y)则:
sin=y;cos=x,
引导学生注意:单位圆中
所以: sin+cos=; =
设计意图:引导学生运用已知知识解决未知知识,体会数学知识的形成过程。
4、辨析讨论—深化公式
辨析1思考:上述两个公式成立有什么要求吗?
设计意图:注意这些关系式都是对于使它们有意义的角而言的。如(2)式中
辨析2判断下列等式是否成立:
设计意图:注意“同角”,至于角的形式无关重要,突破难点。
辨析3思考:你能将两个公式变形么?
(师生活动:对于公式变式的认识,强调灵活运用公式的.几大要点。)
设计意图:对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用)
5、运用新知、培养能力。
自然界的万物都有着千丝万缕的联系,大家只要养成善于观察的习惯,也许每天都会有新的发现.刚才我们发现了同角三角函数的基本关系式,那么这些关系式能用于解决哪些问题呢?
例1、
思考1:条件“α是第四象限的角”有什么作用?
思考2:如何建立cosα与sinα的联系?如何建立他们与tanα的联系?
设计意图:借助学生对于刚学习的知识所拥有的探求心理,让他们学习使用两个公式来求三角函数值。
思考:本题与例题一的主要区别在哪儿?如何解决这个问题?
设计意图: 对比之前例题,强调他们之间的区别,并且说明解决问题的方法:针对α可能所处的象限分类讨论。
变式2、
设计意图:类比练习,已知正弦,也可求余弦、正切。
变式3、
设计意图:通过例题与变式使学生掌握基本关系式的应用:已知一个角的一个三角函数值能求这个角的其他三角函数值,并在求三角函数值的过程中注意由函数值正、负号的选取而导致的角的范围的讨论,培养学生分类讨论思想。突破重难点。
小结:(由学生自己总结,师生共同归纳得出)
3,注意:若α所在象限未定,应讨论α所在象限。
设计意图:利用例题与变式,共同总结两类问题的解决方法,培养学生归纳分析能力。
例2、已知tan=2,求 的值
设计意图:
利用商的关系的灵活使用,解法多样,通过对公式正向、逆向、变式使用加深对公式的理解与认识。
证法2:通过变形等式,先把分式化为整式,再利用同角三角函数的平方关系即可证得.
设计意图: 同角三角函数平方关系灵活使用,通过对公式正向、逆向、变式使用加深对公式的理解与认识。
思考:是否还有其他的证明方法?
方法3:左边减去右边,如果等于零,则等式成立。
方法4:左边除以右边,如果等于一,则等式成立。(保证分母不为零)
设计意图:发散学生的思维,为下面的总结做好铺垫, 突破本节难点
总结证明三角恒等式经常使用的方法:
1:从等式左边变形到右边;
2:从恒等式出发,转化到所要证明的等式上;
3:左边减去右边等于0;
4:左边除以右边等于1(保证分母不为零)。
6、课堂小结,深化认识
让学生自己总结本节课的重点、难点和学习目标,教师再补充.这样做,会检测出学生听课、分析、思考和掌握知识的情况,对本节课的教学起到画龙点睛的作用。
公式推导:具体算式→观察→猜想→论证→基本关系式
公式应用:
一般方法(例1):先确定象限角再求值。分类讨论思想
特殊方法(例2):化切为弦 和化弦为切。整体思想、化归思想
灵活运用公式(例3):证明恒等式
7、作业布置:
(1)、已知,求 、
变式1、
变式2、
设计意图:巩固所学公式,并灵活运用;分层设计,题(1)是在课堂例题的延伸,题(2)是在课堂上没讲的题型,检测学生对知识的迁移能力。
8、板书设计
同角三角函数基本关系式
一、公式 二、例题 例2
1、sin2+cos2=1; 例1
2、tan= 变式1
公式变形: 例3
,变式2
, 变式3
三:总结
……
五、教学反思:
如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了"教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展"的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。
高中一年级数学《同角三角函数的基本关系》说课稿设计 4
一、教材结构与内容简析
本节内容在全书及章节的地位:三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。三角函数的定义是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的。三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。紧紧扣住三角函数定义这个宝贵的源泉,可以自然地导出本章的具体内容:三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试类比、数形结合等数学思想方法。
二、教学重点、难点、关键
教学重点:任意角的三角函数的定义,三角函数的符号规律。
教学难点:任意角的三角函数概念的建构过程。
教学关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。
三、学情分析
学生已经掌握的内容及学生学习能力
1、学生在初中时已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2、学生的运算能力较差。
3、部分同学对数学的学习有相当的兴趣和积极性。
4、在探究问题的能力,合作交流的意识等方面发展不够均衡,必须在老师一定的指导下才能进行。
四、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
1、基础知识目标:使学生正确理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;
2、能力训练目标:通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力。
3、情感目标:通过学习,渗透数形结合和类比的数学思想,培养学生良好的思维习惯。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
五、教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学教法,在课堂结构上,设计了①创设情境——揭示课题②推广认知——形成概念③巩固新知——探求规律④总结反思——提高认识⑤任务后延——自主探究五个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈一谈这堂课的教学过程:
六、教学程序及设想
总体来说,由旧及新,由易及难,逐步加强,逐步推进,给定定义后通过应用定义又逐步发现新知识,拓展、完善定义、
先由初中的直角三角形中锐角三角函数的定义,过度到直角坐标系中锐角三角函数的定义,再发展到直角坐标系中任意角三角函数的定义。
(一)创设情境——揭示课题
问题1:在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?
【设计意图】学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展)。温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少。
问题2:角的概念推广之后,这样的三角函数定义还适用吗?
问题3:若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。
能表示吗?怎样表示?针对刚才的问题点名让学生回答。用角的对边、邻边、斜边比值的说法显然是受到阻碍了,由于前面已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数。
【设计意图】
从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程。
教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!
师生共做(学生口述,教师板书图形和比值)。
问题4:对于确定的角,这三个比值是否与P在
的终边上的位置有关?为什么?
先让学生想象思考,作出主观判断,再引导学生观察右图,
联系相似三角形知识,探索发现:对于锐角α的每一个确定值,
六个比值都是确定的,不会随P在终边上的移动而变化。
得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化、所以,六个比值分别是以角α为自变量、以比值为函数值的函数。
(二)推广认知——形成概念
将锐角的比值情形推广到任意角α后,水到渠成,师生共同进行探索和推广出:任意角的三角函数定义。同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数,对数学学习能力较好的'同学起到了很好的指导作用。
教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆。
(关于值域,到后面再学习)。
【设计意图】定义域是函数三要素之一,研究函数必须明确定义域、指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握。
(三)巩固新知——探求规律
为了使学生达到对知识的深化理解,进而达到巩固提高的效果,
例1、已知角的终边过点,求的六个三角函数值
要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照板书,模仿书面表达格式。
巩固定义之后,我特地设计了一组即时训练题,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动,培养学生分析解决问题的能力。
例2、求的正弦、余弦和正切值。
分析:终边上有无穷多个点,根据三角函数的定义,只要知道终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义)
师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。
取特殊点能使计算更简明。
等待学生基本理解和掌握三角函数定义后,观察、分析初、高中所计算的函数值有何变化,让学生意识到三角函数值的正负与角所在象限有关,然后引导学生紧紧抓住三角函数定义来分析,从而导出三角函数值的正负与角所在象限的关系,进而由教师总结符号记忆方法,便于学生记忆。
【设计意图】判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求、要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的“才”字符号法则,这也是理解和记忆的关键。
(四)总结反思——提高认识
由学生总结本节课所学习的主要内容:⑴任意角的三角函数的定义及其定义域;⑵三角函数的符号规律。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(五)任务后延——自主探究
学生经过以上四个环节的学习,已经初步掌握了任意角的三角函数的定义及三角函数的符号规律,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的作业,其中思考题的设计思想是:综合练习巩固提高,更为下节的学习内容打下基础,同时留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的,以有利于全体学生的发展。
七、简述板书设计。
cotα、cscα、secα的定义写在sinα、cosα、tanα的左下方,突出本节重要内容的主体地位。
结束:以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。
高中一年级数学《同角三角函数的基本关系》说课稿设计 5
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者。教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生年龄特征,今天我将从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
首先谈谈我对教材的理解,《两角和与差的三角函数》是北师大版高中数学必修四第三章第二节的内容,主要讲授了运用平面向量的数量积推导两角差的余弦公式以及两角和与差的正、余弦公式的应用。本节课的内容是在熟练掌握了部分特殊角的正弦、余弦和正切等三角函数值和平面向量知识的基础上进行教学,既是三角函数和平面向量知识的延伸,又是学习两角和与差的正切公式、二倍角公式、半角公式等后继内容的基础,起着承上启下的重要作用。
二、说学情
教学的基本前提是为了学生而进行的教学,其根本目的'在于促进学生的主动发展,因此在备课时要充分考虑所面对学生的特点。本阶段学生已拥有三角函数和平面向量等相关知识的储备,也具备一定的推理能力和计算能力,但是本章三角恒等变换公式较多,学生不能灵活利用转化思想进行公式的变形、逆用,所以,学生对本节课的学习是相对具有复杂度的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握用向量法推导两角差的余弦公式的过程,能够利用两角差的余弦公式以及诱导公式推导出两角差的正弦公式、两角和的正、余弦公式。
(二)过程与方法
通过经历两角差余弦公式的探索、发现过程,提升动手操作、自主探究的能力。
(三)情感、态度与价值观
在自主探索中感受到成功的喜悦,培养学习数学的兴趣。
四、说教学重难点
根据学生现有的知识储备和知识点本身的难易程度,学生很难构建知识点之间的联系,这也确定了本节课的教学重点为两角和与差的正弦、余弦公式及其推导。本节课的教学难点是:结合两角和与差的正弦、余弦公式的推导过程,灵活运用公式进行求值、化简。
五、说教法和学法
为了突破重点,解决难点,顺利达成教学目标,我结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、自主探究等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
高中一年级数学《同角三角函数的基本关系》说课稿设计 6
一、教学内容
本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。
二、教学目标
1、经历探索30°、45°、60°角的.三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。
2、能够进行含有30°、45°、60°角的三角函数值的计算。
3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。
三、过程与方法
通过进行有关推理,探索30°、45°、60°角的三角函数值。在具体教学过程中,教师可在教材的基础上适当拓展,使得内容更为丰富.教师可以运用和学生共同探究式的教学方法,学生可以采取自主探讨式的学习方法.
四、教学重点和难点
重点:进行含有30°、45°、60°角的三角函数值的计算
难点:记住30°、45°、60°角的三角函数值
五、教学准备
教师准备
预先准备教材、教参以及多媒体课件
学生准备
教材、同步练习册、作业本、草稿纸、作图工具等
六、教学步骤
教学流程设计
教师指导学生活动
1.新章节开场白. 1.进入学习状态.
2.进行教学. 2.配合学习.
3.总结和指导学生练习. 3记录相关内容,完成练习
教学过程设计
1、从学生原有的认知结构提出问题
2、师生共同研究形成概念
3、随堂练习
4、小结
5、作业
板书设计
1、叙述三角函数的意义
2、30°、45°、60°角的三角函数值
3、例题
七、课后反思
本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。
高中一年级数学《同角三角函数的基本关系》说课稿设计 7
1、教学目标:
一、借助单位圆理解任意角的三角函数的定义。
二、根据三角函数的定义,能够判断三角函数值的符号。
三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。
四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。
2、教学重点与难点:
重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。
难点:任意角的三角函数概念的建构过程。
授课过程:
一、引入
在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。
二、创设情境
三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?
学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。
问题:
1、锐角三角函数能否表示成第二种比值方式?
2、点P能否取在终边上的其它位置?为什么?
3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。
练习:计算的各三角函数值。
三、任意角的三角函数的定义
角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?
尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?
评价学生给出的定义。给出任意角三角函数的定义。
四、解析任意角三角函数的定义
三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)
对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。
五、三角函数的应用。
1、已知角,求a的三角函数值。
2、已知角a终边上的一点P(-3,-4),求各三角函数值。
以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:
1、已知角如何求三角函数值?
2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)
3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。
4、探究:三角函数的值在各象限的符号。
六、小结及作业
教案设计说明:
新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。
首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的.发生是可能的,自然的。
其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。
再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。