小学数学六年级上比的意义说课稿(通用11篇)
小学数学六年级上比的意义说课稿(通用11篇)
作为一位不辞辛劳的人民教师,常常需要准备说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。优秀的说课稿都具备一些什么特点呢?以下是小编为大家整理的小学数学六年级上比的意义说课稿,欢迎阅读,希望大家能够喜欢。
小学数学六年级上比的意义说课稿 1
尊敬的各位评委、各位老师:
大家好!
今天我说课的内容是人教版六年级上册第三单元第三小节《比的意义》,我将从——教材内容分析、教学目标确定、教学过程设计、学习方法指导、课堂教学评价这几个方面来阐述。
一、教材内容分析。
1.教材的地位和作用。
“比的意义”过去是安排在小学的最后阶段“比和比例”单元中学习的,而且主要强调的是两个同类量的倍数关系。新课程实验教材中,把比的知识提前安排在六年级上册第三单元“分数除法”中学习,在内容的安排上,既讲同类量的比,又讲不同类量的比。一方面是由于比与分数、除法有密切的联系,同时,比也是两个量比较关系的一种扩展。通过对比的知识的学习,既能加强知识间的内在联系,又为以后学习比例知识、为进入中学学习物理、化学等知识打下较好的基础。
2.教材的结构和联系。
这部分内容是在学生已经学习了除法、分数等知识,并且会解决相关的实际问题的基础上进行教学的。本节教材分为三段:比的意义,比的基本性质和比的应用,本节课执教的内容《比的意义》为第一课时。本课知识对于学生来说是全新的概念,但这些新概念却是与旧知识有着密切联系的。
3.教材的重点和难点。
比的初步知识,大体上显现出由概念到性质,再到应用的递进学习过程。本节课的教学重点是:理解比的意义,会求比值。教学难点是:理解比和除法、分数之间的关系。
二、教学目标确定
1.学情分析。
六年级学生已经有了一定的知识基础,积累了一些生活经验,具备了一定的学习能力,能够发现生活中的数学问题。而比的有关知识在生活中应用非常广泛,例如按一定的比稀释清洁剂,加工混凝土等等都用到了比的知识。因而可以从学生的认知习惯出发,通过观察、比较、讨论,归纳概括出比的含义,进而了解比与除法、分数的关系。
2.课标要求。
新课标第二学段目标明确指出:应使学生经历从现实生活中抽象出数量关系,并运用所学知识解决问题的过程。
3.教学目标。
根据课标要求和学生情况分析,本节课我制定了如下教学目标:
①知识与技能:理解比的意义,能正确读写比,会求比值,理解比与除法、分数的关系。
②过程与方法:让学生经历从具体的问题情境中抽象出比的过程,通过学生自主探究、合作交流、归纳概括出比的意义。
③情感态度与价值观:,让学生在学习过程中,感受数学与生活的密切联系,培养学生的应用意识。在具体的情境中培养学生的爱国情感。
我制定的教学目标既符合学生的实际,又符合课程标准的要求。本人认为在教学中利用新课程理念作为指导,要达到这个目标是完全可行的。
三、教学过程设计
(一)揭示课题。
本节课我准备了两个实物出示给学生,让学生进行观察,发现比在生活中的应用,从而引入比,揭示课题——比的意义。
(二)创设情境。
1.情境一:神七发射直播录象。
当神舟七号进入运行轨道后,在距地341千米的高空作圆周运动,平均90分钟绕地球一周,大约运行42000千米。
提问学生:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?学生回答出求速度用路程÷时间表示,得出算式42000÷90。
教师讲解:用除法表示两个数的关系时,我们还可以用一种新的表示形式——比。比如路程÷时间,也可以说成路程和时间的比是42000比90。
2.情境二:神七宇航员太空漫步。
在太空中,执行此次太空漫步任务的航天员翟志刚在飞船外向人们展示了中华人民共和国国旗。国旗的长是30cm,宽是20cm。
提问学生:你能根据这两个条件提出什么数学问题?学生提问并口头解答。
教师讲解:像刚才你们提到的“长是宽的几倍”,用30÷20,我们也可以说成长和宽的比是30比20;“宽是长的.几分之几?”用20÷30,我们就可以说成宽和长的比是20比30。
3.情境三:盐水配制。
在我们的生活中,经常需要配制溶剂。比如盐水的配制,其实,盐水的配制就用到了比的知识。
比如:在1000克的盐水中,盐有10克,盐占盐水的几分之几?学生得出算式10÷1000后,要求学生用比的形式表示出盐和盐水的比是10比1000。
(三)学生探究。
本节课通过对以上3个问题的解决,得到了3个除法算式。让学生仔细观察、相互讨论后,得到这三个算式的共同的本质的特征是两数相除。接下来引导学生根据这个特征归纳概括出比的意义是:两个数相除又叫做两个数的比。
设计这个探究活动,体现了新课程的一个重要理念,就是为学生提供“做”数学的机会,让学生在学习活动中体验数学知识的形成过程,目的是让学生初步学会在具体情境中抽象出数量关系并进行归纳概括的数学方法,从而建构比的意义这一概念。
(四)深入了解。
1.比的各部分名称。老师结合42000︰90=42000÷90=1400/3向学生介绍比号、前项、后项和比值。
2.比和除法、分数之间的联系区别。
结合例题30÷20=30︰20=3/2,并通过填写表格,让学生着重理解比和除法、分数之间的关系。
(五)练习设计。 在此基础上,老师进一步引导学生用字母表示出比和除法、分数之间的关系,并理解:与分数中的分母,除法中的除数一样,比的后项也不能是0。得到:a︰b=a÷b=a/b(b≠0)。
课堂练习是在学生自我建构基础上的巩固,是学生个体对知识所进行的自我解读,更是对前面各个教学环节实施效果的检测。因此我设计了以下练习:
第1题:填空。
小敏和小亮在文具店买同样的练习本。小敏了6本,共花了1.8元。小亮买了8本,共花了2.4元.小敏和小亮买的练习本数之比是( ):( ),比值是( );花的钱数之比是( ):( ),比值是( )。
这是一道根据条件和要求写出比并求比值的填空题,设计的目的是为了让学生进一步理解比的意义。
第2题:判断。
(1)小强的身高1米,爸爸的身高是173厘米,小强和爸爸的身高比是1︰173。 ( )
(2)大卡车的载重量是6吨,小卡车的载重量是3吨,大小卡车载重量的比是2。 ( )
(3)90班收看“神七”直播人数和未收看人数的比是6︰1,那么未收看人数是收看人数的1/6。 ( )
设计这一道题是 为了让学生在理解比的意义的基础上,联系以前所学过的数学知识,沟通比和除法、分数之间的联系,提高学生分析解决问题的能力。
第3题:小刚做了一项这样的调查:
一列特快火车5小时可行800千米; 一辆汽车8小时可行640千米。
根据题目中提供的条件,寻找合适的量,说出两个数量之间的比。
这是一道开放性的题目,看学生是否能灵活地运用今天所学的知识解决问题,更是为了培养学生的创新能力,为以后学习比的应用打下基础。
第4题:课外阅读。通过向学生介绍黄金比,培养学生用数学的眼光去发现生活中的美的能力。
(六)总结升华。
本节课的知识点较多,我让学生采用自己喜欢的形式梳理本节课的知识点,然后谈谈本节课的收获,从而进一步加深学生对比的意义的认识,培养学生的总结概括能力。
四、学习方法指导
1.教法。
为了突出学生的主体地位,发挥教师的组织、引导作用,建构良好的师生关系,更好地完成本节课的教学目标。我通过情境创设,调动学生经验储备,让学生感受“数学生活化”原则,激发学生学习兴趣,通过引导学生合作探究,培养学生发现数学问题的能力,初步学会在具体情境中抽象出数量关系并进行归纳概括的数学方法,发展学生的语言表达能力和思维能力。通过巩固提高及课外延伸,加深学生对新知的理解和认识,培养学生发现美的能力。
2.学法。
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人。”鉴于此,教学中,我们不仅要让学生掌握所学知识,还要让学生学到科学的学习方法。根据六年级学生的心理特点和认知水平,在课堂的主体环节中,我准备以学生的自主探究与合作交流为主要学习方式,使他们在指导下获得学习数学,研究数学的基本方法,增强他们学习数学的能力。
五、课堂教学评价
新课程标准指出:对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度。根据这一理念,我准备采用师生、生生互评的多元评价方式,关注学生在学习过程中的表现,以朋友式的平等的身份,参与学生的评价并指导学生的评价。
小学数学六年级上比的意义说课稿 2
一、说教材
本课是苏教版国标本六年级上册P68~69的《比的意义》。本节课是“认识比”这一单元的起始课。之前,学生已经分阶段认识了分数及除法的关系,学习了分数乘、除法的意义和计算,这些知识和方法都是学习本节课内容的直接基础。
本课教材在安排比的意义的学习时,分为三个层次:比的意义、比的各部分名称、比与分数及除法的关系。深入理解比的意义及比与分数、除法的关系对后继学习特别是综合应用各种知识解决问题具有重要意义。有研究表明,没有对比的意义的准确理解与深刻把握,从表面上看,学生也能比较熟练地求比值、化简比,或者是解答按比例分配的实际问题,但在解决问题的灵活性和创造性上则表现得较弱,呈现出基础不扎实的弊端。因此,让学生深刻理解比的意义,沟通比与除法、分数之间的联系,排除现实生活中大量“差比”关系对本课学习的负迁移,显得尤为重要。
我做了如下的目标设定:
A:知识与技能目标:
1、使学生在具体情境中理解比的意义。
2、掌握比的读写方法,知道比的各部分名称,会求比值。
3、初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。
B:过程与方法目标:
1、使学生经历探索比与分数、除法关系的过程,体会数学知识之间的内在联系。
2、使学生在解决问题的过程中,通过自学课本主动建构知识,掌握自学的方法。
C:情感态度价值观目标:
1、通过阅读“你知道吗?”,让学生体会数学在生活中的运用,感受数学的美。
2、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
教学重点:理解比的意义及比与分数、除法的关系。
教学难点:理解比的意义。
二、说教法、学法
1、教法:
为了抓住重点,突破难点,使学生能达到本节课设定的教学目标,我确定以下教学方法:
⑴从实际的生活中,引导学生发现数学知识。
⑵采用情景引题,观察、对比、总结的教学方法。
2、学法
日本著名数学教育家米山国藏指出:“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神,数学的思想、研究的方法和着眼点等,这些随时随地发生作用,使他们终身受益。”因此,学习方法比知识本身更为重要。因此,认真观察、自主学习与合作交流是本节课学生学习数学的重要方式。
三、说教学过程
教学过程共分四个教学板块:
(一) 创设情境,导入新课。
(二)自主活动,认识比。
(三)小组合作、深入认识比。
(四)巩固练习,深化理解。
第一板块、创设情境,导入新课:
从北京奥运会主场馆——鸟巢的图片导入新课,一方面将学生关于“两个量之间的倍数关系”的旧知与经验唤醒,为学生随后实现由旧知向新知的迁移搭建了平台,另一方面让学生发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识,为后面拓展介绍“黄金比”埋下伏笔,还让学生在无形中受到美的熏陶。这一板块的目的是唤起旧知,渗透C1、C2目标。
第二板块、自主活动,认识比:
1. 用比表示两个同类量的相除关系。
例1的教学,教师结合学生交流时出现的“表示两种量倍数关系”的句子,自然而然地展开引导:长是宽的 ,我们还可以说成:长到和宽的比是3比2;类似地,宽是长的 ,我们还可以说成:宽和长的比是2比3,使学生认识到:这里的“比”与刚才提到的“相差关系”不一样,有利于学生顺利地将新知纳入原有的认识结构中。再通过对比,加强对比的有序性的理解,提醒今后他们在描述某个比时,一定要按照叙述的顺序,弄清谁和谁比,不能颠倒。
“试一试”的教学,引导学生用自己的话进一步解释每个比的具体意义,从另一个侧面调用学生已有的关于倍数、份数、分数等经验,丰富学生对比这一抽象概念的认识。
2. 用比表示两个不同类量的相除关系。
通过例2的教学,唤醒学生相应的除法计算的数量关系,帮助学生明确:速度=路程÷时间,速度实际上是表示了路程与时间相除的关系。这种关系也可以用比来表示。由此引入两个不同类量之间的比。再通过讨论归纳,使学生认识到:两个数的比表示两个数相除。至此,学生对比获得了全面而感性的认识。
这一板块所要达成的教学目标是A1。
第三板块、小组合作、深入认识比:
对于比的意义的深刻把握不能只停留在文字的概念上,比的各部分名称以及比值的求法,它与除法和分数的联系也是对于比的意义的把握不可或缺的一部分,鉴于这部分的内容较多且比较零散,我让学生采取了自学和合作学习相结合的方式。对于相对简单的.各部分名称的认识以及比值的求法,独立自学完全能够掌握。我让学生看书自学,然后组织同学们汇报学习成果,引导学生介绍求比值的方法,再并引导学生运用方法,计算出比值,从而达到巩固知识的目的。在汇报过程中,寻找比值的规律,即可以是分数、整数,也可以是小数;而对于较为复杂的比、除法和分数的联系和区别,我则让学生在自学的基础上合作交流,互相补充,完善认识,促使了原有知识的重新建构,加强了知识之间的联系,并通过相关练习引出了“比的后项不能是0”,比较自然地突破了难点。
这一板块所要达成的教学目标是A2,A3,B1,B2,C2。
第四板块、 巩固练习,深化理解:
最后这个环节,先针对本课知识点进行辨析和判断练习,再计算课始三幅图中宽和长的比,不但提高了学生对于知识的掌握程度,还起到了一个梳理作用。到这个环节结束,学生对于比的概念的建构应该比较完善了。
最后通过一组资料介绍黄金分割这个有趣的比在生活中的广泛应用,让学生感受到数学在生活中的重要作用,特别是数学对于艺术美的价值所在。这个环节无论从广度还是深度上,都对比的意义进行了一个挖掘。同时这也是一个思想教育的过程,让学生不仅感受到艺术美,更感受到数学的价值。
这一板块是全面落实各类教学目标,重点是对课本知识的拓展。
教学是一门遗憾的艺术。在今天的教学中我感到还存在很多不足之处,最遗憾的就是在教学过程中还是以老师和学生之间的交流和学习为主,而真正让学生自主学习和互相学习的比较少。另外,由于我对新教育的学习刚起步,如何在课堂教学中体现新教育的理念,如何在课堂教学中落实“有效”二字,还需要我不断去探索和研究。希望各位老师多提宝贵意见,帮助我更快进步。谢谢!
小学数学六年级上比的意义说课稿 3
一、教材及学生情况分析:
“比的意义”是小学五年级第十册教材中第四单元的起始课,是本册教材的教学重点之一。它在教材中起着承上启下的重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。
1、教学目标:
“从知识与技巧”、“过程与方法”、“情感态度与价值观”三个维度确定以下目标。
(1)理解并掌握比的意义,会正确读与写。记住比各部分的名称,并会正确求比值。
(2)通过主动发现的讨论式学习,激发合作意识,理解并正确掌握比与除法、分数之间的联系,明确比的后项不能为零的道理。同时懂得事物之间是互相联系的。
(3)培养学生比较、分析、抽象、概括和自主学习的能力。培养他们在生活中发现数学问题,提出问题的意识。
2、教学重点难点:
理解掌握比的意义,比与分数、除法之间的联系。
二、教学方法的设计
1、用创设情境法,激发学生对比的知识的研究兴趣。
2、从日常生活中,培养学生能够发现数学问题。
3、改变学生的学习方式,让学生在自主探究、合作交流中提高解决问题能力。
4、当堂巩固,当堂反馈练习,练习形式多样,使学生从多种学习方式的活动中理解比的`意义。
5、采用激励、评价等多种有效的方法,鼓励学生多比较、多思考,善于探究与协作交流,培养学生养成良好的学习数学的习惯。
三、教学过程的活动与安排
(一)创设情境,导入新课
利用一则消息引起学生对比的知识的研究兴趣,学生对这则消息进行讨论、交流时,不但可以受到思想教育获得情感体验,同时能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。
(二)自主探究,合作交流
1、“比的意义”教学。
第一步给出班级男生人数与女生人数两个条件,请学生提出问题并列式,根据学生列的除法算式,明确是男生和女生两个量在比,启发学生思维,除了用以前学的除法知识对两个量进行比较外,还可以用一种新的方法进行比较。然后展开“比的意义”教学活动,说成男生人数与女生人数的比是多少比多少。第二步看算式,运用新知识说说。(说明:从学生身边的数量中提取数学问题,从而引出新知识。运用旧知识进行传递,轻松快乐。)第三步,出示表格(填表)使学生初步知道两个不同类的数量之间的关系也可以用比来表示。在上面两个例子的基础上,让学生概括出比的意义。
2、比的读法与写法、各部分的名称、求比值的方法的教学。
教师引导学生掌握比的读法和写法,在小组合作学习中,自主探究比的各部分名称和求比值的方法。然后组织同学们汇报学习成果,引导学生介绍求比值的方法。知道后,并引导学生运用方法,能够写出几个比的实例,计算出比值,从而达到巩固知识的目的。在汇报过程中,寻找比值的规律,即可以是分数、整数,也可以是小数。
3、比与除法、分数之间的关系,比的后项为什么不能为零?
通过引导学生看板书,合作交流能够比较出“比”、“除法”、“分数”之间有什么联系,填写出表格,再通过“相当于”这一词的理解,明确他们的区别。
(三)、总结、归纳引导学生谈学习感受。
通过本节课学习,同学们学到了那些知识,请把你的收获告诉大家好吗?在学生汇报中,使本节课的知识点得以巩固。
(四)、多层次练习,巩固新知识。
练习形式多样,既巩固本节课的知识,又增加了乐趣,特别是培养学生养成了独立思考的习惯。
小学数学六年级上比的意义说课稿 4
一、说教材
首先谈谈我对教材的理解,《比的意义》是人教版小学数学六年级上册第四单元第一节的内容,本节课的内容是认识比、比的意义和理解比、分数、除法之间的联系和区别。
本节课是在学生学习了除法、分数等知识以后进行学习的,为本节课的学习奠定基础。本节课的学习也为后面学习比的性质以及利用比解决实际问题起到铺垫的作用,同时本节课的学习为生活提供了帮助。
二、说学情
接下来谈谈我班学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析、归纳、类比等能力,能够将一些抽象的事物具体化,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
理解比的意义,会读写比;认识比的各部分名称;掌握求比值的方法,能准确的求出比值;理解比、分数、除法之间的联系和区别。
(二)过程与方法
通过观察和思考,理解数学知识之间是相互联系的,体会变中有不变的思想。
(三)情感态度价值观
感受数学与生活的联系,提高对数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:理解比的意义。教学难点是:理解比和分数、除法之间的关系。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,我会展示这样两个问题。
1.六(一)班有男生25人,女生20人。男生人数是女生人数的几倍?女生人数是男生人数的几分之几?
2.甲地到乙地的路程是160km,汽车行驶100分钟可以到达,汽车行驶的速度是多少?
复习利用除法解决问题的应用题,为后面比的相关知识的学习做好铺垫。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
我先播放“天宫一号”发射过程视频。并介绍2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。宇航员杨利伟叔叔在飞船里向人们展示了联合国旗和我国国旗。
提问:这面国旗就是杨利伟叔叔展示的国旗,长15 cm,宽10 cm。比较这面国旗长和宽的关系,你会提出怎样的问题?
我预设学生会有如下答案。
预设1:长比宽多几厘米?宽比长少几厘米?15-10=5(cm)
预设2:长是宽的几倍?15÷10
预设3:宽是长的几分之几?10÷15
根据学生的回答我会追问1:刚才我们用15÷10来表示长是宽的几倍,我们又可以把它们之间的关系说成长和宽的比是15比10。请同学们想一想,10÷15表示宽是长的几分之几又可以怎么说?15比10和10比15一样吗?能随便调换两个数字的顺序吗?
在学生充分回答了以后,我介绍“神州”五号进入运行轨道后,在距地350km的高空做圆周运动,平均90分钟绕地球一周,大约运行42252km。那么飞船进入轨道后平均每分钟飞行多少千米?引导学生用比来表示。
接下来让学生思考,比较上面两个例子,有什么相同点和不同点?并让学生以小组为单位进行探究。
根据学生的讨论,我们共同总结出。相同点,都用除法,又都能说成几比几;
不同点,第一个例子中的比是同类量的比,第二个例子中的比是不同类量的.比,不同类量的比得到的是一种新的量如路程和时间的比表示的是速度。
接下来让同桌交流:谁能归纳一下,两个数的比表示什么意思?
师生共同总结:比的概念以及各项的名称,什么是比值以及如何求比值。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。
为了让学生对于比有更加深入的了解,提问:大家现在对“比”已经有了一定的了解,谁能举几个生活中的“比”的例子?
屏幕出示足球比赛场景图片,比分为2:0。
追问:这是比分,这里的2:0是什么意思?你们觉得这个“比”想说明的意思和我们今天学的“比”一样吗?
引导学生发现比的后项相当于除法中的除数,分数中的分母,不能为0。
追问:比的后项相当于除法中的除数、分数中的分母,那前项呢?比号呢?
共同总结除法、分数、比三者之间的关系。
至此本节课的主要教学内容已经完成,做到了突出重点,突破难点。在讲解的过程中,一直坚持以学生为主体这一课改理念,让学生充分理解本节课的知识。
(三)课堂练习
接下来是巩固提高环节。
1.小敏和小亮在文具店买同样的练习本。小敏买了6本,共花了1.8元。小亮买了8本,共花了2.4元。小敏和小亮的练习本数之比是( ):( ),比值是( );花的钱数之比是( ):( ),比值是( )。
2.3:( )=24 ( ):8=0.5
这样的问题的设置,让学生对知识进一步巩固,让学生逐渐熟练掌握。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
本节课的课后作业我设计为:课后练习1、2、3题。
这样的设计能让学生理解本节课的核心,达到活学活用的目的。
小学数学六年级上比的意义说课稿 5
教学内容
教科书第46~47页和相应的“做一做”,练习十二的第1~4题。
教学目的
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比同除法、分数的关系。
教具准备
长3分米、宽2分米的红旗一面,投影仪。
教学过程
一、复习
教师:在日常生活和工农业生产中,常常需要对两个数量进行比较。比如这面红旗(教师出示红旗),它长3分米,宽2分米。要对这面红旗的长和宽进行比较,可以用什么方法?
引导学生回答:可以用减法,比较长比宽多多少或宽比长少多少。用除法,比较长是宽的几倍,或者宽是长的几分之几。
板书:3÷2==1……………长是宽的1倍
2÷3=……………………宽是长的
二、新课
1、导入新课。
教师:刚才我们用以前学过的方法对红旗的长、宽进行比较。这节课,我们要在用除法对两个数量进行比较的基础上,学习一种新的对两个数量进行比较的数学方法──比。(板书:比。)
教师:比表示什么意义呢?它怎么读,怎么写?各部分的名称是什么?比又和除法、分数有什么关系呢?这些都是我们这节课要学习的内容。下面我们先学习比的意义。(板书课题。)
2、教学比的意义。
教师:(指3÷2)看这个除法算式,长是宽的几倍需要哪个量和哪个量比较?
(长和宽比较。)
红旗的长是多少?宽呢?红旗的长和宽比较也就是几和几比?
(长和宽比较也就是3和2比。)
求红旗长是宽的几倍又可以说成长和宽的比是3比2.(板书:长和宽的比是3比2.)
(指2÷3)宽是长的几分之几是哪个量和哪个量比较?根据这个例子(指上例),想一想,宽是长的几分之几又可以说成什么?
引导学生说出:宽和长的比是2比3.教师板书。
小结:现在我们知道谁是谁的几倍或几分之几,又可以说成谁和谁的比。
教师:这两个例子都是对长、宽两个量进行比较,为什么一个比是3比2,而一个比是2比3呢?
引导学生回答:3比2是长和宽的比,2比3是宽和长的比。
这两个例子告诉我们:两个数量进行比较一定要弄清谁和谁比。谁在前、谁在后不能颠倒位置。
教师:刚才我们用除法和比的方法对红旗的长、宽进行了比较。在日常生活中,两个数量进行比较的事例有许多,请看这个例子(出示投影片):
“一辆汽车2小时行驶了100千米,这辆汽车的速度是每小时多少千米?
求汽车行驶的速度怎样计算?
学生回答时,板书:100÷2=50(千米)
100千米是汽车行驶的什么?2小时呢?汽车的速度需要哪个量和哪个量比较?
(路程和时间比较。)
那么汽车行驶的速度又可以说成路程和时间的比。
教师:在这个例子中,路程和时间的比是几比几?
学生回答后教师板书:路程和时间的比是100比2.
教师:现在看这些例子,都是用什么方法对两个数量进行比较的?(用除法。)那么表示两种量的两个数,它们之间具有什么关系?(相除关系。)是几个数相除?(两个数相除。)
学生回答后板书。
再看长和宽的比是3比2,宽和长的比是2比3,路程和时间的比是100比2,这又是用什么方法对两个数量进行比较的?(比的方法。)几个数的比?学生回答后教师板书:两个数的比。
(教师引导学生总结出比的意义:)通过这些例子可以清楚地看出:两个数相除又叫做两个数的比。
从比的.意义看,两个数的比是表示两个数之间的什么关系?(相除关系。)学生回答后,教师在相除二字下面画上着重号,然后齐读。
3、教学比的读写法,各部分名称及求比值的方法。
教师:以上我们学习了比的意义,在数学中,比还有这样的记法。
3比2记作(板书:记作),先写3,再写“∶”,最后写2.(板书:3∶2)
提示学生比号的两个小圆点要写在两个数的正中间,它叫比号,读作“比”,那么这个比就读作3比2.让学生齐读一遍。
2比3记作(板书:记作),先写什么?再写什么?最后写什么?
教师提问,学生回答后教师板书。
100比2怎么写?学生回答后,教师板书:100∶2.
这两个比会读吗?齐读一遍,学生练习写比。
教师:在比中,每一部分都有它的名称。我们以3∶2为例(板书:3∶2),这叫什么符号?(学生答后板书:比号)比号前面的数叫做比的前项,(板书:前项)比号后面的数叫做比的后项。(板书:后项)
根据比的意义,比的前项和后项是什么关系?(相除关系。)在这个比中,用谁除以谁?(3除以2.)3除以2的商是多少?(1)
教师指出:我们把比的前项除以后项所得的商叫做比值。(板书:比值)1在这里就叫做3∶2的比值。
板书:3∶2=3÷2=1
┇ ┇ ┇┇
前比后比
项号项值
教师:从上面的式子可以看出,同除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于除法的商,可以用下表来表示。
比
前项
∶(比号)
后项
比值
除法
被除数
÷(除号)
除数
商
列完表后,教师指出:比和除法还是有区别的,不能完全混同起来,除法是一种运算,而比表示两个数的关系。
教师提问:那么,比和比值有什么区别和联系呢?
引导学生根据比的意义和比值的定义,弄清楚比值是一个数,是比的前后项相除所得的商,它通常用分数表示,也可以用小数表示,有时也可能是整数;而比是表示所比较的两个数的关系,如3∶2,也可以写成分数形式(但不能写成带分数,仍读作3比2.)
需要指出:比的后项不能是零。
让学生想一想这是为什么?引导学生联系比和除法的关系,由于比的后项相当于除法的除数,而除数不能为零,所以比的后项也不能为0.同时还要进一步指出,在体育比赛中的“几比几”,也使用“∶”号。但这只表示哪一队对哪一队比赛,各得多少分,不表示两队所得分数的倍比关系,与数学中的比的意义不同。比赛中时常出现0∶0或几比0的情况,而数学中比的后项是不能为0的。另外,比赛中的几比几是不能化简的。
4、做教科书第62页上半部分“做一做”的题目。
(1)完成第1题。
指名一学生在黑板上板演,其他学生独立完成。教师注意巡视,并察看学生是否将比号的位置写得规范。
然后提问:每个比的前项是几?后项是几?能不能把比的前项和后项颠倒?
教师指出:正如前面所讲,求长是宽的几倍,用长÷宽;求宽是长的几分之几,用宽÷长;所以交换了比的前后项的位置,比的具体意义就变了。
(2)完成第2题。
让学生独立完成,教师巡视,做完后集体订正。
5、教学比与分数的关系。
教师:两个数的比也可以写成分数形式。例如:3∶2可以写作,在这里,它表示两个数的比,仍读作3比2.
让学生齐读。
进一步举例:2∶3可以写作,100∶2可以写作。然后让学生齐读。
提问:分数和除法有什么关系呢?(分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。)
提问:根据分数和除法的关系以及比和除法的关系,比和分数又有什么关系呢?
引导学生弄清楚:比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。列表如下:
比
前项
∶(比号)
后项
比值
除法
被除数
÷(除号)
除数
商
分数
分子
──(分数线)
分母
分数值
列完表后,提问:比和分数有没有区别呢?
让学生明确分数是一种数,而比表示两个数相除的关系。
总结比、除法、分数三者在意义上的区别:比是指两个数相除,表示两个数的关系;除法是一种运算;分数是一种数。它们的意义是不同的。
6、做教科书第62页下半部分“做一做”的题目。
让学生独立完成,教师巡视。
集体订正时,指名学生说说自己用分数表示的比,并强调指出:虽然写的是分数形式,但不能读作几分之几,而应读作几比几。
三、巩固练习
1、做练习十二的第1题。
(1)做第(1)题。
教师提问:路程和时间的比是两个同类量的比,还是不同类量的比?(不同类量的比。)
路程和时间的比,得到的是什么量?(速度。)
教师指出:路程和时间的比表示的意义就是速度。
然后让学生独立做在练习本上,最后集体订正。
(2)做第(2)题。
先让学生独立完成,教师巡视。
集体订正时,让学生说说模型总数和人数的比表示的意义是什么。(表示的是平均每人做的模型数。)
(3)做第(3)题。
让学生独立完成,集体订正。
2、做练习十二的第2题。
让学生独立完成,教师注意巡视。完成后集体订正。
3、做练习十二的第3题。
让学生独立完成。集体订正时,可以让学生对比一下两个比值的关系,指出这种关系是一种反比例关系,今后要进一步学习。
4、做练习十二的第4题。
先让同桌的两名同学讨论对不对,教师注意旁听学生的讨论情况,然后指名学生回答自己的讨论结果。
教师指出:小强和爸爸身高的比属于同类量相比,同过去求一个数是另一个数的几倍或几分之几一样,相比的同类量的单位大小不一致时,比就失去了它的意义。因此,要求小强和爸爸身高的比,就要先把两个数量化成同单位的数。所以小强和爸爸身高的比应该是100∶173.
小学数学六年级上比的意义说课稿 6
教学内容:
课本43—44页以及相关练习
教学目标:
1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。
2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。
教学重点:
理解比的意义以及比与除法、分数的关系
教学难点:
弄清比和比值的联系和区别。
教学准备:
课件,投影。
教学过程:
一、创设情境,生成问题
师:同学们,你们知道我国的第一艘载人飞船叫什么吗?(出示情境图)
问:怎样用算式表示国旗长与宽的关系?(引导学生说出:可以求长是宽的几倍?或求红旗的宽是长的几分之几?)
小结:长和宽的倍数关系可用除法表示。
二、探索交流,解决问题
1、比的'意义
(1)两个同类量的比
比较这两个数量之间的关系,除了除法,数学上还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。
不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。
思考:两个数量组成比时,谁比谁,谁在前,谁在后,可以交换位置吗?为什么?(小组交流,汇报补充,深层体会比的意义)
(2)两个不同类量的比
“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?
(算式:42252÷90,依据是速度可以用路程÷时间表示)
对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。
问:路程和时间的比表示什么含义?(生自由发言,理解“路程比时间”表示速度)
(3)归纳比的意义。
通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)
2、比的写法
(1)阅读课本自学
问题:几比几怎样写?怎样读?
比的各部分名称是什么?
怎样求比值?比值可以怎样表示?
比和比值有什么联系和区别?
(2)小组交流汇报。
3、比、除法和分数的联系
(1)比与除法的关系
问:比的前项相当于什么?后项相当于什么?比值相当于什么?比的后项可以是零吗?为什么?
小组交流汇报。
(2)比与分数的关系。
根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)
三、巩固应用,内化提高
1、完成课本“做一做”。
2、练习十一第1、2题。
四、回顾整理,反思提升
通过这节课的学习,你有什么收获?
课后延伸:
在生活中找一找,在哪里存在比?表示什么含义?
板书设计:
比的意义
15:10 = 15 ÷ 10= 3/2
前项比号后项比值
小学数学六年级上比的意义说课稿 7
教学目标:
1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的基本性质。
2、通过自主探究,掌握化简比的方法并会化简。
3、渗透事物是普遍联系的辨证唯物主义观点。
教学重难点:
理解比的基本性质,推导化简比的方法正确化简比。
教法:
引导探究
教学过程:
一、导入:
1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。
2、提问:根据这些信息,你能提出什么数学问题?
板书课题:
二、探究新知:
1、学生按学习指南自学。
学习指南:根据题意可以怎样表示长和宽的关系?
2、汇报自学情况
3、教师指导:
长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。
4、苹果有4个,梨有5个。
提问:苹果和梨的关系可以怎样说?
尽量找学困生回答。
5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。
6、学生举例。
请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。
学生互相讨论后,再指名回答。
7、指导学生自学教材后,说说比的含义。
板书课题:比的意义
3比2 3:2
2比3 2:3
100比2 100:2
两个数相除又叫两个数的比。
比的各部分名称
15:10=15÷10=3/2
前项比号后项比值
教师重点指导:
(1)关于“比值通常用分数表示,也可以用小数表示,有时也可能是整数”,你怎样理解?
(2)比的`后项为什么不能为0?
比分数除法的联系与区别
三.课堂检测:
1、完成教材第44页“做一做”的第1、2题。
2、完成教材第47页练习十一的第1——3题。
四.小结:
谈一谈本节课的收获。
小学数学六年级上比的意义说课稿 8
教学目标:
1、通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分的名称,理解比和分数、除法之间的关系。
2、会正确写出两个数倍比关系的对应比,掌握求比值的方法,能正确求比值。
3、通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辩证唯物主观点。
4、培养学生抽象、概括能力。
教学重点:
1.理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2.弄清比同除法、分数的关系。
教学难点:
1.理解比的意义,学会比的'读写法,掌握比的各部分名称及求比值的方法。
2.弄清比同除法、分数的关系。
教学准备:
投影
教学过程:
一、 导入
揭题出示:我们六(5)班有男生23人,女生21人。师:根据这两条信息你能想什么办法对六(5)班男生、女生人数进行比较?师选择: ⑴男生人数比女生多多少人?⑵女生人数比男生少多少人? 师:请同学口头列式。⑶男生人数是女生的多少倍? 板书:23÷21⑷女生人数是男生的几分之几? 21÷23师:从同学们对六(5)班男生和女生的比较中可知,比较的方法主要有两种:一种是什么?(求一个数量比另一个数量多多少或少多少),是比差关系。用什么方法?(减法)。另一种是什么?(求一个数量是另一个数量的几倍或几分之几),是倍比关系。用什么方法?(除法)。师:今天这节课,我们主要来研究用除法对两个数量进行比较。我们把用除法对两个数量进行比较的这种新的数学比较方法叫做--比。今天我们一起来学习“比的意义”。
二、 探索新知
1、 教学比的意义
⑴指⑶ 师:23÷21,是谁和谁比?师述:用新的数学比较方法说,求男生是女生的几倍,又可以说成男生人数和女生人数的比是23比21(板书)。扶放启发:请同学想一想,仿上例(指21÷23)那么21÷23又可以怎么说呢?女生人数和男生人数的比是 21比23(板书)
⑵说一说:
①苹果有4个,梨有5个。苹果和梨的关系怎么说?
②舞蹈兴趣小组有女生9人,男生4人。(同桌互说,后指名说)。
⑶师: 用比的方法不但可以对同类量进行比较,还可以对不同类的量进行比较。[ 同类量:师可结合上例简单说明]师出示:一辆汽车2小时行驶100千米。问:
①求汽车的速度怎样计算?100÷2=50(千米)(板书)
②(指100÷2)路程和时间的关系还可以怎么说呢?路程和时间的比是100比2(板书)
师:路程和时间的关系可以用速度(即每小时多少千米)表示,也可以用比来表示。
⑷学生举例举一个可以用比来表示两个不同类数量之间关系的例子。(同桌互说,后指名说)
⑸总结
①思考、讨论: 什么情况下两个数的关系可以用比来表示?
②指导学生看书看看教科书上是怎么定义的?指名说一说答案,然后齐读。(划出“两数相除”点上着重号)
2、 自学比的读写法、比各部分的名称、比值、比和除法各部分的关系
⑴师:关于比,你还想知道些什么?请同学们自学教科书第47页第一个“做一做”上面的内容。
⑵汇报:通过自学,你知道了什么?
①比的读写法指23比21;21比23;100比2 ,问:还可以怎么写?(学生练习)。怎么读?(齐读)
②比的各部分名称、说一说比的前项、后项和比值分别是什么?
③比值。师:如何求比值?
[反馈练习]
①说一说比的前项、后项和比值分别是什么?8︰11=8÷11=8/11 1/4︰1/3=1/4÷1/3 =3/4 1.2 ︰0.3=1.2÷0.3= 4
②抢答。教师出条件,学生抢答比值。比的前项是100,后项是2,比值是()比的前项是21,后项是23,比值是()比的前项是2.4,后项是3,比值是()
③做一做a、有5个红球和10个白球,写出红球和白球个数的比,再写出白球和红球个数的比,并分别求出比值。b、某种型号的文具盒,每1箱装12只,共计人民币72元,写出这箱文具盒的元数与只数的比,并求出比值。(说一说比值表示什么意思)
④比和除法各部分的关系整理表格:
联 系区 别比前项比号(︰)后项比值 除法被除数除号(÷)除数商
⑶思考
①比的后项为什么不能为0?
②足球比赛中的0︰0,是不是我们数学上所说的比?
3、 继续自学两个“做一做”中间的内容
⑴让学生说说通过自学,你又明白了什么?
⑵想一想,辨一辨:既可以看作一个分数,又可以看作一个比,还可以看作比值。
⑶继续汇报,完成表格 联 系区 别比前项比号(︰)后项比值 除法被除数除号(÷)除数商 分数分子分数线(-)分母分数值 ⑷反馈练习变一变, 填一填3÷19=( )︰( ) 21︰100 =( )/( ) 4/23=( )︰( )1/8=1︰( )=( )÷ 8 A︰B =( )÷( )=( )/( )( )︰( )= ( )÷7=5/( )⑸找一找,比、除法、分数分别表示什么?(区别,完成表格)一种数 一种相除的关系 一种运算三、 课堂总结通过刚才的学习,同学们都学会了哪些知识?
四、综合练习
1、讨论:小强的身高1米,他爸爸的身高是173厘米。 小强说他和他爸爸身高的比是1︰173,对不对?你认为是什么?
2、看谁会动脑筋?题目:小明今年12岁,是六
(1)班学生,该班共有42个学生;小明爸爸今年38岁,再保险公司上班,年薪15000元;小明的妈妈每月工资800元,他所在单位有职工24人。(看谁会动脑筋,能根据题目中提供的信息,寻找合适的量,自己提出多种多样的问题,并说说这些量之间的比)。
板书: 比的意义 23÷21 相 23比21 (23︰21)21÷23 → → 21比23 (21︰23)100÷2 除 100比2 (100︰2)
小学数学六年级上比的意义说课稿 9
教学目标:
1、知识与技能:
⑴理解比的意义,学会比的读写法,掌握比的各部分名称和求比值的方法。
⑵弄清比同除法、分数之间的关系。
2、过程与方法:
⑴使学生经历“问题情景——建立模型——解释应用与拓展”这一过程,牢固掌握比的意义。
⑵通过自学和学生之间的合作学习,掌握比的各部分名称和求比值的方法,通过讨论与合作学习弄清楚比、除法和分数之间的联系。
⑶联系生活实际,增强学生对数学与实际生活联系的感受。
3、情感、态度、价值观:
⑴培养学生对美的感受能力,学到有价值的数学。
⑵通过教学,培养学生分析能力和初步的逻辑思维能力,帮助他们在自主探索和合作交流的过程中掌握基本知识和技能、数学思想和方法。
⑶通过对国情的了解,增强对祖国的热爱之情,提高忧患意识,培养主人翁精神。
教学重、难点:
1 、意义的理解,比同分数、除法的关系。
2 、在现实生活中发现比、感受比。
教具准备:
投影仪、课件,练习纸,学生准备生活中找到的比的例子。
教学过程:
一、情景引入,导入新课:
1 、我们六(1)班有男生29人,女生27人。
师:根据这两条信息你能想什么办法对六(1)班男生、女生人数进行比较?
⑴男生人数比女生多多少人?
⑵女生人数比男生少多少人?
⑶男生人数是女生的多少倍?
⑷女生人数是男生的几分之几?
请同学口头列式,教师板书。
师:从同学们对六(1)班男生和女生的比较中可知,比较的方法主要有两种:一种是什么?(求一个数量比另一个数量多多少或少多少),是差比关系。用什么方法?(减法)。另一种是什么?(求一个数量是另一个数量的几倍或几分之几),是倍比关系。用什么方法?(除法)。
2、师:在日常的工作和生活中,我们常常把两个数量进行比较。如黑板上方是一面长3分米、宽2分米的国旗,比较这面国旗的长和宽的关系,请你提出用除法计算的问题?
二、探究新知
l 、教学比的意义。
、师:求一个数量是另一个数量的几倍或几分之几用除法。今天这节课,我们要在对两个数量用除法比较的基础上,来学习一种新的数学比较方法——比。
师:比表示什么意义呢?它怎么读,怎么写?它的'各部分名称是什么?比又和除法、分数有什么关系呢?这些都是我们这节课要学习的内容。下面我们先学习比的意义。
师:用新的一种数学比较方法,求长是宽的几倍,又可以说成长和宽的比是3比2 。(板书:长和宽的比是3比2)
扶放启发:请同学们想一想,仿上例(指3:2),那么2:3又可以怎么说呢?
(生说后师板书:宽和长的比是2比3)
2 、小结:从求国旗的长和宽的倍比关系知道:谁是谁的几倍或几分之几,又可以说成谁和谁的比。应注意的是:两个数量进行比较要弄清谁和谁比。谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。(如3比2是长和宽的比,2比3是宽和长的比。)
师:同学们真聪明,很快就学会了用“除法”和“比”的方法对红旗的长、宽进行了比较,请同学们再看下面一个例子。
“杨利伟承载的神舟五号进入运行轨道后,在距地350千米的高空作圆周运动,平均90分钟绕地球一周,大约运行42252千米。”
教师提出如下几个问题启发学生思考:
(1)求神舟五号运行的速度应怎样计算?
(2)题中的42252千米是神舟五号行驶的什么?90分钟呢?(路程、时间)
(3)神舟五号的速度又可以说成哪个量和哪个量的比,是几比几?
学生回答后教师板书:路程和时间的比是42252比90 。
3、引导学生总结出比的意义:
师启发:从上面两个例子可以看出,比较两个数量的倍比关系可以用什么方法?(用除法)又可以用什么方法?(比的方法)那么表示两个数的相除关系又可以怎样说呢?板书:两个数相除又叫做两个数的比。
4、我们今天学的比跟下面讲的比一样吗?
(1)第47届世乒赛,王励勤以4 ∶ 3战胜对手,夺得冠军。
(2)篮球比赛甲队以3:0打败乙队。比赛中的比只是借用比的形式记分的一种方式,而不是表示的相除关系。
5、自学比的读写法、比各部分的名称、比值。
(1)说明比的各部分名称及求比值的方法。
(2)根据上式,帮助学生弄清比同除法的关系、同分数的关系。
师指着上式启发学生观察比较得到:比的前项相当于被除数,比号相当于除号,后项相当于除数,比值相当于商。
6、接着帮助学生深化理解比的意义(提出如下问题启发):
(3)两个数的比是表示两个数之间的什么关系?(相除关系)
(4)两个例中的各个比有什么不同点?(第一个例子中的比是同类量的比,第二个例子中的比是不同类量的比。不同类量比,得到的是一种新的量,如路程和时间的比表示的意义是速度。)
三、练习提高:
找出下面各比,说一说它的意义。
我国人口和世界人口的比是1:5 。
我国国土面积和英国国土面积的比是40:1 。
**年中国人均和世界人均耕地面积的比是2:5 。
了解到了这些信息,你有什么感受?
四、联系生活实际,找到身边的比。
1、我们找到了这么多的比,在我们的身边有比吗?给大家展示一下你的发现。能解释一下这个比的意义吗?
2、在我们人体之中也存在许多有趣的比,介绍比在生活中的作用。
(将拳头翻滚一周,它的长度与脚的长度的比大约是1∶1;身高与双臂平伸长度的比大约也是1∶1;身高与胸围长度的比大约是2∶1,脚长与身高的比大约是1∶7……知道这些有趣的比有什么用处呢?比如,你到商店买袜子只要将袜底在你的拳头上绕一圈。就会知道这双袜子是否合脚,如果你长大是一个侦探,只要发现罪犯的脚印,就可估计出罪犯身高……)
3、你知道在人体中还存在哪些有趣的比吗?给大家介绍一下。
4、你知道黄金分割吗?1:0、618,这是一个很有意思的比。出示图片:芭蕾舞演员模特……
5、有什么感受?运用黄金分割这个比可以创造出很多更加美好的事物,除此以外,生活中还有一些很有趣的比,同学们以后可以慢慢的感受和发现。
6、联系实际设计的开放题:看谁会动脑筋?
题目:小明今年12岁,是六(1)班学生,该班共有42个学生;小明爸爸今年38岁,在保险公司上班,年薪15000元;小明妈妈每月工资800元,她所在单位有职工24人。(看谁会动脑筋,能根据题目中提供的信息,寻找合适的量,自己提出多种多样的问题,并说说这些量之间的比。)
[年龄比,年薪比,人数比,月薪比等]
四、课堂归纳总结
今天我们学习的是课本第55~56页的内容,同学们都学会了哪些知识?
然后让学生质疑问难。
五、布置作业。
小学数学六年级上比的意义说课稿 10
教材简析:
这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:
(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。
(2)比的后项不能是0。
教学内容:
苏教版九年义务教育六年制小学数学第十一册第52~53页比的意义。
教学对象分析:
学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,可组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。
教学目标:
1、理解并掌握比的意义,会正确读写比。
2、记住比各部分的名称,并会正确求比值。
3、理解并灵活掌握比与分数、除法之间的联系,明确比的后项不能是零的道理,同时懂得事物之间是相互联系的。
4、通过主动发现的小组合作学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力。
5、养成认真观察、积极思考的良好学习习惯。
教学重点:
理解和运用比的意义及比与除法、分数的联系。
教学难点:
理解比的意义。
教学媒体:
电脑课件、实物投影
教学过程:
一、创设情景,激发兴趣
1、 引入:同学们,2008年的北京将要举办什么盛会啊?(北京奥运会),在上届的雅典奥运会上中国代表团取得了非常好的成绩,那么关于奥运会你都知道些什么呢?(学生可以畅所欲言),(播放奥运会的相关资料)在学生说出的资料中选出中国金牌数和俄罗斯金牌数:中国获得金牌32块。俄罗斯27块。
你能列出算式表示中国与俄罗斯所得金牌块数之间的关系吗?(这里可能有学生列加减法,也可能会有除法。选出除法算式分析)
32÷27表示什么意思?(中国得的金牌是俄罗斯的几倍)
27÷32表示什么意思?(俄罗斯得的金牌是的中国的几分之几)
2、联系奥运,分析题目.
在奥运会上,你认为我国的哪块金牌的分量最重?(学生畅所欲言)如果没有人说刘翔,教师就稍微引一下
新科110米栏奥运冠军刘翔用沉甸甸的金牌让轻视黄种人的人闭上了嘴巴,他为中国夺得了有史以来中国在田径短跑项目上的第一块金牌,下面我们就共同回顾一下刘翔的夺冠历程(播放刘翔夺冠视频)。
看了这一段内容我们都非常的激动,为我们是中国人而感到骄傲和自豪。那你知道刘翔的夺冠成绩是多少吗?(12.91)
那你知道他的速度到底有多快吗?
如果我要你们列式来求该怎么求呢?(110÷12.91)你是根据什么来列式的?(路程÷时间=速度)
看完奥运,我们再来看看我们学校的事情
3、先来做一个小游戏:请栾人璇你们这组同学起立。请其他同学数数他们组女生几人,男生几人?你能用什么式子表示他们组女生人数和男生人数之间的关系?(4÷3和3÷4,分别问学生这两个算式分别表示什么意思?)
4、学校用150元买来3个小足球,每个小足球多少元?
(请学生自己读题,说说每道题求的是什么?数量关系是什么?怎样列式?
学生读题回答,教师板书(总价÷数量=单价 150÷3)
3、揭示课题:这些题都是用除法算式来表示两种数量的关系的,在日常生活、生产和实验中,常常要对两种数量进行比较,今天我们就来学习一种新的对两个数量进行比较的方法——比。(板书:比)研究比的意义。(板书完整课题)
[设计意图:问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。]
二、自主探究,合作交流
1、比的意义。
(1) 那么在刚才的例子当中中国得的金牌是俄罗斯的几倍,用32÷27,现在我们就可以说成中国得的金牌与俄罗斯得的金牌数的比是32比27。
那俄罗斯得的金牌是的中国的几分之几可以怎么说呢?(学生试着说:俄罗斯得的金牌数和中国得的金牌数的比是27比32)
(2)小结:通过以上的学习后,我们知道,谁是谁的几倍或谁是谁的几分之几,又可以说成谁和谁的比。
质疑:可老师还有个疑问,以上两道题都是对中国得的金牌数和俄罗斯得的金牌数进行比较的,为什么一个是32比27,一个是27比32?
引导得出:两个数量进行比较要弄清谁和谁比,谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。
(2) 同学们真聪明,那么你们能像这样把其他的除法算式都变一个说法吗?先同座位两个人互相说说看。(学生同座位两个人说)
都说完了,那谁愿意站起来说一说呢?
(女生人数是男生人数的几倍可以说成女生人数和男生人数的比是4比3)就这样依次说完。
那路程除以时间等于速度可以怎么说啊?(速度可以说成是路程与时间的比)
那单价呢?可以怎么说啊?(单价是总价和数量的比)
在我们常用的数量关系中还有工作效率=工作总量÷工作时间
这里的工作效率还可以怎么说呢?(工作效率就是工作总量个工作时间的.比)
[设计意图:考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。既节省了教学时间,也使学生初步理解了比的意义,充分发挥了教师的引导作用。]
(3)从上面的例子可以看出,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?请同学们结合板书同位讨论一下。(前后四人讨论)
汇报,板书:两个数相除又叫做两个数的比。(齐读)
你们能不能自己举一个用比表示两数关系的例子?先说原题再把它改编成比的形式(学生自主举例,四人讨论汇报,教师板书)
[设计意图:通过以上例子的学习,使学生由形象感知过渡到建立表象的层面。遵循儿童的认知规律,用同桌之间互相讨论的方式,抽象概括出“比的意义”,同时充分发挥了学生的主体作用。]
(4)练习题:填空。
有5个红球和10个白球,白球和红球个数的比是( )比( ),红球和白球个数的比是( )比( )。
[设计意图:这是一组对应练习,旨在强化学生对比的意义的初步理解。]
2、比的读写法、各部分名称、求比值的方法以及与除法、分数的联系。
(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的52~53页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家以四人小组为单位进行自学,可以在小组里讨论,然后汇报一下你学会了什么?还有什么疑问?开始吧!
[设计意图:自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。]
(2)汇报。
1:我学会了比的写法,3比4记作3∶4。(让学生板演)
问:这个“∶”叫做什么呢?谁愿意给它起个名字?(强调:写“∶”应该注意上下对齐,点要圆一点,它不同于冒号。)那么4比3、110比12.51又记作什么?(指名板演,其他同学写在练习本上)3∶4 4∶3 110∶12.91又怎样读呢?
思考:刚才大家学会了用“∶”的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)
[设计意图:教材无非是个例子,站在培养学生创新意识的高度重新组合处理教材内容。学生汇报过程中,由教师引导,把“比号”“分数形式的比”前移,这样既符合学生的认知规律,又使课堂教学省时高效。]
2:我学会了比的各部分名称。(结合3∶4来说明)
如果告诉你“男生人数和女生人数的比是3:4”,你能想到些什么?(学生畅所欲言)
3:我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)
问:那么怎样求比值呢?(前项除以后项的商)
练习题:(课件出示)求出下面各比的比值。3∶4 0.7∶0.35 8∶4 0.2∶1/5
想:比值通常可以是什么数?
[设计意图:比值不同的四个比的举例,既加深了学生对比值意义的理解,又强化了学生对“比”和“比值”的区别。]
4:两数相除又叫做两个数比,看来比和除法之间有着一定的联
系,我们以前也学习过除法和分数的联系,那么比和分数之间是不是也有联系呢?(是)。
出示思考题:比与除法、分数有哪些联系?比与除法、分数又有什么区别?(以前后四人为小组,讨论填写)
相互关系区别比前项:(比号)后项比值一种关系除法被除数÷(除号)除数商一种运算分数分子—(分数线)分母分数值一种数
设计意图:以往教学比与除法、分数三者的联系,主要以教师的讲授为主,费时费力,教学效果也不是最佳的。所以要突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。
5:我还知道比的后项不能为“0”。
问:为什么呢?(引导学生从不同角度说明)
三、多层练习,巩固新知
小学数学六年级上比的意义说课稿 11
教学内容:
比的意义。
教学目的:
1.使学生理解比的意义,知道比各部分的名称;学会求比值的方法,能正确地求出一个比的比值;理解比同除法、分数的关系。
2.培养学生比较、分析、抽象、概括和自主学习的能力。
教学重点:
使学生理解比的意义。
教学过程:
一、创设情境
同学们,在我们的生活中,经常可以发现两个数量之间有关系。
1、比如说,周老师今年25岁,这位同学你今年几岁啊?(指着第一位同学)(12岁)
师:大家能列个算式表示出我们年龄之间的关系吗?
(25-12=13)这个是相差关系。
师:还可以用别的方法进行比较吗?
生;12除以25求的是倍数关系。
师:好的,请坐!
2、请这组同学起立,我们一起来数一数,有几个男生,几个女生啊?(老师指着一起数,男生5人,女生3人)
师:除了表示出他们人数之间的相差关系,你还能列什么算式表示出他们之间的关系呢?
生:倍数关系。
3、我们以前还学过这样的题,看大家还记得吗?看屏幕:
一辆汽车2小时行驶90千米,平均每小时行驶多少千米?
学校用150元买来3个小足球,每个小足球多少元?
自己读题,看看每道题求的是什么?怎样列式。
交流:谁来说第1个小题,指名回答,根据回答板书:
(电脑出示:速度90÷2)
这里的90表示的是(路程),2表示的是(时间)
那你能说一说数量关系吗?(速度=路程÷时间)
这里的速度表示的就是路程与时间的关系。
下一道呢?指名回答,
(电脑出示:单价150÷3)
数量关系式是什么呢?(单价=总价÷数量)
单价表示的就是总价和数量的关系。
好极了,请坐
师小结:我们看这些题都是用除法算式来表示两种数量之间的关系。
二、探究新知
(一)教学比的意义。
在我们日常的工作和生活中,常常要把两种数量进行比较,今天我们就来学习一种新的比较两种数量关系的方法。叫做“比”,一起来研究“比的意义”。(板书:比的意义)
1、这里的老师年龄是同学年龄的几倍用25÷12,可以说成“老师和同学年龄的比是25比12”
(电脑演示:老师和同学年龄的比是25比12)
一起读一下。
可以记作25:12(电脑演示25:12)
这里中间的两个圆点叫做比号,读作比。
那同学年龄是老师年龄的几分之几就可以说成同学和老师的年龄比是多少啊?(电脑演示:同学和老师年龄的比是12:25)
2、那你能把这句话变一个说法吗?
男生人数是女生人数的几倍可以说成“男生人数与女生人数的比是5:2”(电脑演示)
那如果是2:5呢?应该是谁和谁的比呢?
(电脑出示2:5)(电脑演示:女生和男生人数的比)
所以我们在说比的时候要有顺序地说。
3、那么路程÷时间=速度可以怎么说呢?(指着算式90÷2问)
你来试试:(路程和时间的比是90比2)
也就是速度可以说成是――(电脑演示:路程和时间的比)
4、单价可以说成什么呢?
生:单价可以说成是总价与数量的比(电脑演示:总价与数量的`比)
5、那么从刚刚这些例子中我们可以看到,两个数相除,又可以说成这种比的形式。你能不能说说什么是比呢?
先在组里互相说说,开始。(学生说,教师巡视)
谁愿意来说说?(多说几个)
把他们的意见综合一下就是两个数相除又叫做两个数的比。
(板书:两个数相除又叫做两个数的比。)
一起读一下。这就是比的意义。比表示的就是两个数相除的关系。
7、那你们能不能自己举个用比表示两个数量关系的例子呢?同桌先相互说说。(学生说)
8、交流:学生回答,教师小结。这些都可以说成比。
9、刚才我们通过观察,研究,发现“两个数相除又叫做两个数的比”,并知道了比的写法,那你会写比了吗?一起来试试看,完成练习第1题。
(二)教学比的读写法,各部分的名称、求比值的方法
1、我们已经理解了比的意义而且学会了怎样来写比。那比是由哪几部分组成的?各部分名称又是什么呢?我想通过大家的自学,一定能很快解决。请大家对照要
(学生自学3分钟)
(电脑出示电脑自学提纲)
(1)什么叫比的前项?什么叫比的后项?什么叫比值?
(2)怎样求比值?
(3)“试一试”(完成练习第2题)
2、学生交流。
好,我们来交流一下你们的自学情况。
(1)指名学生回答问题1,教师板书
我们以5:3(板书5:3)为例,你能具体向大家介绍一下吗?
(比号前面的5叫做比的前项)
(比号后面的3叫做比的后项)
比的前项除以后项所得的商,叫做比值。
(2)那怎样来求比值呢?
(只要把前项除以后项)
以5:3为例呢?怎样求比值?(板书:=5÷3=5/3比值)
师:通过刚才的练习我们可以发现,比值可以用分数表示,也可以用小数表示,有时也可以是整数。当比值用分数表示时一定要是最简分数。
3、刚刚我们已经知道了比的写法,其实比还有另一种写法,同学们一起看。
例如5:2(教师指着5:2讲解)还可以写成分数形式。
我们一起来书空一下,注意:写的时候要从上往下写,它还是一个比,而不是分数,所以仍读作5比2。(板书:仍读作5比2),