分式说课稿范文(精选6篇)
分式说课稿范文(精选6篇)
作为一名人民教师,时常需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。说课稿应该怎么写呢?下面是小编整理的分式说课稿范文,欢迎阅读与收藏。
分式说课稿 1
我们知道,分式是表示数量关系的工具,是刻画现实世界解决实际问题的一种模型。本节课的内容是分式的起始课。下面我将从教学背景、教法学法、教学过程、设计说明四个方面来具体阐述我对这节课的理解和设计。
一、教学背景
1.教学内容分析
(1)地位与作用:《分式》是北师大版新教材八年级下册第三章第一节,本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、意义和用分式表示数量关系。分式是继整式之后,又一代数学习的基本内容,是小学所学分数的延伸和扩展,学好本节课,是今后继续学习分式的性质、运算以及解分式方程的前提。
(2)重点:分式的定义
(3)难点:识别分式有无意义;用分式描述数量关系
分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分母中整式的值何时不为零、用分式表示数量关系是教学的难点。
2.教学目标
(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系,进一步发展符号感。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的`模型思想。
经过七年级一年的学习,学生初步养成了自主探究意识。一方面,在七年级下册中,学生已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,"分式"是"分数"的"代数化",学生可以通过类比进行分式的学习。所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以上3个方面为本节课的教学目标。
二、教法与学法
基于以上教材特点和学生情况的分析,我在本节课主要采用"引导—发现教学法",于计,通过"问题情境—建立模型—解释、应用与拓展"的模式展开教学。
三、教学过程
《数学课程标准》明确指出:"数学教学是数学活动的教学,学生是数学学习的主人。"为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。
(一)创设情景导入新课
问题情景1.在这儿我对教材进行了处理,课本引例是"土地沙化、固沙造林"问题,设问是"这一问题中有哪些等量关系?"我将引课方式改为通过学生自己构造代数式去发现分式,:
问题情景2.轮船在水上航行,静水速为每小时20千米,顺水航行100千米与逆水航行60千米所有时间相等。试表示顺水与逆水所用时间。
利用学生举实例列出相应的代数式。
这样从学生熟悉的整式及其运算入手,引导学生从旧知中发现新知,与学生的原有认知水平更相吻合,有利于探索活动的展开,培养学生的创新意识。
"好的教师不是在教数学而是激发学生自己去学数学"。通过学生对自己所构造的代数式进行观察,创设发现情境,学会把自己的活动作为思考的对象,更好地进行分式概念的建构活动。
(二)合作交流,解读探究
1、分式的概念
(1)议一议:你们所发现的这一类新代数式它们有什么共同特征?它们与整式有什么不同?
(2)类比分数,概括分式的概念及表达形式
两个数,相除可以用" "或" "来表示,如果两个代数式A,B相除我们也可以用"A÷B"或""来表示。
分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。如:分母中都含有字母,都是分式。
这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。
(3)小组内互举例子,判定是否分式
根据分式的概念,我们还可以看到分数线具有双重意义:(1)表示括号;(2)表示除号。所以为了让学生体会到这一点,
2、在掌握了分式的概念以后,教师通过"要分数有意义,只要使分母不为零"让学生很自然得过渡到"要分式有意义,也只要使分母不为零"即可的思想。
教师抓住这一契机,给出练习:
3、学生根据之前的结论解决问题,教师顺水推舟,再给出以下分式,让学生讨论,这时当x取什么值时,分式值为零,给出练习2。
通过三步的学习巩固学生对概念的强化理解。
(三)应用迁移巩固提高
根据学生基础差的特点,又设计了三个题组训练,让学生在巩固的基础上加以提高。
(四)总结反思,拓展升华
一节课已进入尾声,教师指导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?
教师整理学生的发言,归纳小结:
(1)整式和分式统称为有理式
(2)分式的概念:两个整式A,B相除时,可以表示为 的形式,如果分母B中含有字母,那么叫做分式。
(3)要分式有意义,也只要使分母不为零
(4)当分母为零时,分式就无意义
(5)分式的值为零必须满足两个条件:
(1)分子的值为零;
(2)同时分母的值不等于零。
通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。同时,体现在学习策略的选择、实施、调整等方面,从整体上也提高了学生的认知水平。学生通过反思,不仅可以梳理在学习过程中对概念的理解程度,还可以评价自己在认知加工过程中所闪烁出的思维火花,领悟其中的数学思想和方法,对提高数学思维能力起到了积极的作用。
分式说课稿 2
下午好!我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材
1、教材内容:
我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
2、教材地位:
分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、教学目标
知识目标:
(1)、理解分式的`乘除运算法则
(2)、会进行简单的分式的乘除法运算
能力目标:
(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:
(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用。
5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
分式说课稿 3
一、 教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。班级学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展班级学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观: 激发班级学生爱国热情,让班级学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥班级学生的主体作用,通过班级学生动手实验,让班级学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析:
学情分析:七年级班级学生已经具备一定的`观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,班级学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。
教法分析:结合七年级班级学生和本节教材的特点,在教学中采用"问题情境----建立模型----解释应用---拓展巩固"的模式, 选择引导探索法。把教学过程转化为班级学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,班级学生采用自主探究合作交流的研讨式学习方式,使班级学生真正成为学习的主人。
三、 教学过程设计
1.创设情境,提出问题
2.实验操作,模型构建
3.回归生活,应用新知
4.知识拓展,巩固深化
5.感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树 2002年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
(2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个"数学化"的过程,从而引出下面的环节。
四、实验操作模型构建
1.等腰直角三角形(数格子)
2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于班级学生参与探索,利于培养班级学生的语言表达能力,体会数形结合的思想。
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织班级学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让班级学生的分析问题解决问题的能力在无形中得到提高。
通过以上实验归纳总结勾股定理。
设计意图:班级学生通过合作交流,归纳出勾股定理的雏形,培养班级学生抽象、概括的能力,同时发挥了班级学生的主体作用,体验了从特殊—— 一般的认知规律。
五。回归生活应用新知
让班级学生解决开头情景中的问题,前呼后应,增强班级学生学数学、用数学的意识,增加学以致用的乐趣和信心。
六、知识拓展巩固深化
基础题,情境题,探索题。
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾班级学生的个体差异,关注班级学生的个性发展。知识的运用得到升华。
基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基。通过班级学生自己创设情境 ,锻炼了发散思维。
情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?
设计意图:增加班级学生的生活常识,也体现了数学源于生活,并用于生活。
探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和班级学生合作交流的方式,拓展班级学生的思维、发展空间想象能力。
七、感悟收获布置作业:
这节课你的收获是什么?
作业: 1、课本习题2.1 2、搜集有关勾股定理证明的资料。
板书设计 探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明:1.探索定理采用面积法,为班级学生创设一个和谐、宽松的情境,让班级学生体会数形结合及从特殊到一般的思想方法。
2.让班级学生人人参与,注重对班级学生活动的评价,一是班级学生在活动中的投入程度;二是班级学生在活动中表现出来的思维水平、表达水平。
分式说课稿 4
一、教材分析
1.地位和作用
“从分数到分式” 是人教版九年制义务教育课本中八年级第一学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。
2.学情分析
我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。
3.教学目标
(1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的`值为零”,会推断分式的分母中所含字母的取值范围。
(3) 能力目标:学习观察类比和转化的思想方法,培养学生分析、归纳、概括的能力。
(4) 情感目标:通过类比学习分式的的意义,培养学生认识事物之间普遍联系的辩证唯物主义观点,并在探索学习的过程中体会成功的喜悦,从而提高学生学习数学的兴趣。
4.教学重点与难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
(1)重点:分式的意义;分式有意义的条件;
(2)难点:分式无意义、分式的值为零的条件。
二、教学方法与学法
本节课运用启发类比的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力以及类比归纳能力的培养,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。
三、教学过程
本节课的教学我主要分下面这样几个环节
1.复习回顾,以旧探新,类比联想,形成概念
教师先问学生一个问题,帮助学生回忆整式,并从中找出不是整式的式子备用。
复习:下列式子那些是整式?那些不是整式?
然后教师再请学生看以下两个问题。
填空:
(1)长方形的面积为10 cm2,长为7 cm,宽应为 cm;长方形的面积为S,长为a,宽应为 cm.
(2)把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为 cm;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 。
学生通过运算、比较,可以发现是一种新的代数式。教师介绍这种新的代数式,我们称它为“分式”,从而引出课题“从分数到分式”。
接着,教师在此基础上引导学生类比分数的相同点与不同点归纳概括出分式的概念。即两个数,相除可以用“”或“”来表示,如果两个代数式A,B相除我们也可以用“A÷B”或“”来表示。
分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。如:分母中都含有字母,都是分式。
(这样设计的意图是刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)
在教师与学生共同得到分式的概念后,紧接着教师给出:
练习:
下列式子中,哪些是分式?哪些是整式?
通过对分式的概念的理解,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。
2.观察感知,启发引导,指导运用,巩固概念
在掌握了分式的概念以后,教师通过“要分数有意义,只要使分母不为零”让学生很自然得过渡到“要分式有意义,也只要使分母不为零”即可的思想。
教师抓住这一契机,给出:
例1下列分式中的字母满足什么条件时分式有意义?
教师板演解题过程,再给学生机会练习
练习:下列分式中的字母满足什么条件时分式有意义?
讲到这里,教师又乘胜追击,问学生:
那么以上各分式,当取什么值时,分式无意义?
3、变式训练,讨论辨析,揭示内涵,深化概念
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,教师将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。
教师问学生:
若使分式的值为0,则对分式的分子和分母有什么要求?
由于学生对新概念的理解在本质方面还是肤浅的,很多学生只会考虑满足分子为零即可,教师对此先不做评价,出示例题:
例2下列分式中,当字母为何值时,分式的值为0?
教师给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(2)(3)两个题发现问题并不是那么简单,找出了症结。这样教师就能及时得对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)分子的值为零;(2)同时分母的值不等于零。
练习:
4.反思小结,自主评价,培养能力,激励奋进
一节课已进入尾声,教师指导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?类比分数与分式的学习你认为本章将研究的内容有哪些?
教师整理学生的发言,归纳小结:
(1)分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。
(2)要分式有意义,也只要使分母不为零
(3)分式的值为零必须满足两个条件:(1)分子的值为零;(2)同时分母的值不等于零。
5.分层作业
(1)课本133页1、2、3.
(2)取何值时,分式的值为负数?
分式说课稿 5
一、说教材
1、本课在在教材中的地位和作用《分式的加减》这节课是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。学生已掌握了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础,而掌握好本节课的`知识,将为《分式的加减》第二课时以及《分式方程》的学习做好必备的知识储备。
2、教学目标
①知识与技能:会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;
②过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;
3、情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。
(3)重点、难点
①重点:掌握分式的加减运算
②难点:异分母的分式加减运算及简单的分式混合运算
二、说教法
本课我主要以“创设情景——引导探究——类比归纳——拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。
三、说学法
根据学生的认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法。
四、说教学过程
(一)创设情境,导入新知
第一环节:提出问题
问题1:甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?
问题2:20__年,20__年,20__年某地的森林面积(单位:公顷)分别是S1,S2,S3,20__年与20__年相比,森林面积增长率提高了多少?
老师活动:组织学生分组讨论,再共同研究学生活动:小组讨论、探究、发言设计意图:通过创设这两个问题情境,引入分式的加减运算,既体现了分式加减运算的意义,又让学生经历从实际问题建立分式模型的过程,并在此基础上激发学生寻求解决问题的方法。
第二环节:同分母分式相加减
想一想:
(1)同分母的分数如何加减?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3;
(2)思考:类比分数的加减法则,你能归纳出分式的加减法则吗?
老师活动:鼓励学生通过类比、探究并大胆猜想分式的加减运算法则学生活动:分组进行讨论、交流,并多举类似例子进行类比,而后,小组发表意见,说明自己的推测。
在学生通过交流得到猜想的基础上出示做一做:做一做:
(1)1/a+2/a=_____________
(2)x /(x—2)– 4/(x—2)=___________
(3)(x+2)/(x+1)–(x—1)/(x+1)+(x—3)/(x+1)=___________
教师通过让学生练习“做一做”的题目,加以验证和领悟,法则的形成打下基础,并导出分式加减运算法则:同分母的分式相加减,分母不变,把分子相加减老师活动:引入习题“做一做”,适当纠正学生的语言,并板书法则学生活动:通过个体练习,领悟规律,再小组交流,形成法则设计意图:引导学生通过类比分数运算方法,大胆猜想分式的加减法则
(二)主动探究,拓展延伸
第三环节:异分母的分式相加减想一想:
(1)异分母的分数如何相加减?如:1/2+2/3=___________:1/2—2/3=___________。
(2)你认为异分母的分式应该如何加减?如:1/a+2/b=___________
老师活动:提出问题,引导、启发学生通过异分母分数相加减的方法类比得到异分母分式相加减的方法学生活动:参与交流、讨论、归纳异分母分式加减的方法设计意图:进一步锻炼学生的类比思想;同时通过讨论解决分式的通分,使学生掌握异分母分式转化为同分母分式的方法,培养学生的转化思想,为下节课做好准备
(三)例题教学
第四环节:解决问题
(1)例题1:计算(课本P81页)老师活动:出示习题,巡视、引导、纠正学生活动:自主完成
设计意图:进一步提高学生对异分母分式的加减运算能力
(四)随堂练习
第五环节:巩固深化
老师活动:巡视、引导学生活动:个体练习、板演设计意图:检验学生是否掌握分式的加减运算方法
(五)课堂小结第六环节:
提高认识老师活动:本节课我们学了哪些知识?在运用过程中需要注意些什么?你有什么收获?
学生活动归纳总结
(1)同分母分式加减法则
(2)简单异分母分式的加减设计意图:锻炼学生及时总结的良好习惯和归纳能力
(六)作业布置第七环节:
反思提炼课本P27第1、2题