电磁感应现象教学设计(通用10篇)
电磁感应现象教学设计(通用10篇)
作为一名人民教师,时常需要准备好教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么教学设计应该怎么写才合适呢?下面是小编精心整理的电磁感应现象教学设计,欢迎阅读与收藏。
电磁感应现象教学设计 1
一、教材分析
课本从4个层面介绍了电磁感应——定性了解定磁感应现象、掌握感应电动势方向的判定规则和定量计算感应电动势的大小、了解电磁感应的两类情况、了解电磁感应规律在自感涡流电磁阻尼电磁驱动中的应用。
教材对感应电流产生条件、感应电流方向的判定、感应电动势的大小等的处理,全部是从唯象的角度,而且全部是拿磁通量来说事;但实际上,电磁感应存在两种本质完全不同的情况,而且谈论磁通量必须有一个回路,可是一根导体棒切割磁感线却没有回路。这种处理,实际上给学生造成了许多理解和应用上的困难。
不过,教材利用第五节做了一个补充,那么,一轮复习,笔者认为就应该纠回正常思路,先分两种情况说明,然后总结出感应电流产生条件、感应电流方向的判定规则和感应电动势的大小计算的磁通量表述。
另外,一轮复习,第一讲承担着全章知识内容的引领作用,因此本讲可以将本章所涉及的大部分关键模型拿出来与学生见面。
二、学情分析
学生已经自主复习了教材,并自主完成了第一讲资料前后的填空、辨析和例题、练习,对本章、本讲所涉及的内容和题型都有了较为熟悉的了解。
但是,从练习的完成质量来看,学生对电磁感应的实质、磁通量的变化、楞次定律的综合应用都存在明显困难,这需要老师引导梳理和透彻理解本讲内容、并分类讲解楞次定律的应用思路和技巧。
三、教学目标
1、知识与技能:熟练掌握磁通量及其变化的计算方法,理解感应电流的`产生条件,深刻理解楞次定律并能够熟练、灵活应用。
2、过程与方法:通过教师的引导,一起重新整理知识脉络,从而加深对本章本节知识内容的理解;同时,通过对练习题的归类分析,从而加深对楞次定律的理解。
3、情感、态度与价值观:培养学生深入学习本章的兴趣和信心。
四、教学重难点
1、磁通量及其变化;
2、感应电流的产生条件;
3、楞次定律、右手定则的理解和应用。
五、教学媒体
PPT多媒体课件,《与名师对话》一轮复习资料
六、教学时间
略
七、教学反思
1、本讲第一部分内容——知识串讲部分,结合PPT课件讲快一些,因为特殊原因我的课件未能用成,导致知识串讲部分没有讲完。
2、有教师反映,感生电动势的讲解超纲——高考不考,一轮复习就不应该涉及。
3、楞次定律是电磁感应一章的难点,从后续几讲练习完成情况看,主要问题还是出在楞次定律这里。
电磁感应现象教学设计 2
知识目标
1、知道磁通量的定义,公式的适用条件,会用这一公式进行简单的计算。
2、知道什么是电磁感应现象。
3、理解“不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生”。
4、知道能量守恒定律依然适用于电磁感应现象.
能力目标
通过实验的观察和分析,培养学生运用所学知识,分析问题的能力。
情感目标
学生认识“从个性中发现共性,再从共性中理解个性,从现象认识本质以及事物有普遍联系的辨证唯物主义观点。
教学建议
关于电磁感应现象的教学分析
1.电磁感应现象
利用磁场产生电流的现象叫做电磁感应产生的电流叫做感应电流。
2.产生感应电流的条件
①当闭合电路的一部分导体在磁场里做切割磁感线的运动时,电路中产生了感应电流。
②当磁体相对静止的闭合电路运动时,电路中产生了感应电流。
③当磁体和闭合电路都保持静止,而使穿过闭合电路的磁通量发生改变时,电路中产生了感应电流。
其实上述①、②两种情况均可归结为穿过闭合电路的磁通量发生改变,所以,不论用什么方法,只要穿过闭合电路的'磁通量发生变化,闭合电路中就有电流产生。
3.电磁感应现象中的能量守恒
电磁感应现象中产生的电能不是凭空产生的,它们或者是其他形式的能转化为电能,或者是电能在不同电路中的转移,电磁感应现象遵循能量守恒定律.
教法建议
1、课本中得出结论后的思考与讨论,是一个进一步启发学生手脑并用、独立思考,全面认识电磁感应现象的题目,教师可根据学生实际情况引导学生思考和讨论。
2、本节课文的最后分析了两种情况下电磁感应现象中的能量转化,这不但能从能量的观点让学生对电磁感应有明确的认识,而且进一步强化了能量守恒定律的普遍意义.有条件的,可以由教师引导学生自行分析,以培养学生运用所学知识独立分析问题的能力。
教学重点和教学难点
教学重点:感应电流的产生条件是本节的教学重点,而正确理解感应电流的产生条件是本节教学的难点.由于学生在初中时已经接触过相关的电磁感应现象,因此在讲解电流的产生时可以让学生通过实验加深对现象的认识,如果条件允许可以让学生自己动手实验,并在教师引导下进行分组讨论,教师可以通过问题的设计来引导实验的进行,例如:对实验数据表格的设计以及相关问题的探讨,让学生明白感应电流产生的条件。正确理解感应电流产生的条件。
电磁感应现象教学设计 3
教学目的:
1、知道磁通量的定义,知道磁通量的国际单位,知道公式的适用条件,会用公式计算。
2、启发学生观察实验现象,从中分析归纳通过磁场产生电流的条件。
3、通过实验的观察和分析,培养学生运用所学知识,分析问题的能力。
教学重点:
感应电流的产生条件
教学难点:
正确理解感应电流的产生条件。
教学仪器:
电池组,电键,导线,大磁针,矩形线圈,碲形磁铁,条形磁铁,原副线圈,演示用电流表等。
教学过程:
一、教学引入:
在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系。为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时XX年,终于找到了这个条件,从而开辟了物理学又一崭新天地。
电磁感应现象:
二、教学内容
1、磁通量
复习:磁感应强度的概念
引入:教师:我们知道,磁场的强弱(即磁感应强度)可以用磁感线的疏密来表示。如果一个面积为
的面垂直一个磁感应强度为的匀强磁场放置,则穿过这个面的磁感线的条数就是确定的。我们把与的乘积叫做穿过这个面的磁通量。
(1)定义:面积为,垂直匀强磁场放置,则与乘积,叫做穿过这个面的磁通量,用φ表示。
(2)公式:
(3)单位:韦伯(wb)1wb=1t·m2
磁通量就是表示穿过这个面的磁感线条数。
注意强调:
①只要知道匀强磁场的磁感应强度和所讨论面的面积,在面与磁场方向垂直的条件下(不垂直可将面积做垂直磁场方向上的投影。)磁通量是表示穿过讨论面的磁感线条数的多少。在今后的应用中往往根据穿过面的净磁感线条数的多少定性判断穿过该面的磁通量的大小。如果用公式来计算磁通量,但是只适合于匀强磁场。
②磁通量是标量,但是有正负之分,磁感线穿过某一个平面,要注意是从哪一面穿入,哪一面穿出。
2、电磁感应现象:
内容引入:奥斯特实验架起了一座连通电和磁的桥梁,此后人们对电能生磁已深信不疑,但磁能否生电呢?
在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系。为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时XX年,终于找到了这个条件,从而开辟了物理学又一崭新天地。
3、实验演示
实验1:学生实验——导体在磁场中切割磁力线的运动
观察现象:ab做切割磁感线运动,可见电流表指针偏转。
学生得到初步结论:当闭合回路中的部分导体做切割磁感线的运动时,电路中有了电流。
现象分析:如图1导体不切割磁力线时,电路中没有电流;而切割磁力线时闭合电路中有电流。回忆磁通量定义
(师生讨论)对闭合回路而言,所处磁场未变,仅因为ab的运动使回路在磁场中部分面积变了,使穿过回路的'磁通变化,故回路中产生了电流。
设问:那么在其它情况下磁通变化是否也会产生感应电流呢?
实验2:演示实验——条形磁铁插入线圈
观察提问:
a、条形磁铁插入或取出时,可见电流表的指针偏转。
b、磁铁与线圈相对静止时,可见电流表指针不偏转。
现象分析:(师生讨论)对线圈回路,当线圈与磁铁有沿轴线的相对运动时,所处磁场因磁铁的远离和靠近而变化,而未变,故穿过线圈的磁通变化,产生感应电流,而当磁铁不动时,线圈处,不变,故无感应电流。
实验3:演示实验——关于原副线圈的实验演示
实验观察:移动变阻器滑片(或通断开关),电流表指针偏转。当a中电流稳定时,电流表指针不偏转。
现象分析:对线圈,滑片移动或开关通断,引起a中电流变,则磁场变,穿过b的磁通变,故b中产生感应电流。当a中电流稳定时,磁场不变,磁通不变,则b中无感应电流。
教师总结:不同的实验,其共同处在于:只要穿过闭合回路的磁通量的变化,不管引起磁通量变化的原因是什么,闭合电路中都有感应电流产生。
结论:
无论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路就有电流产生,这种利用磁场产生电流的现象叫电磁感应,产生的电流叫感应电流。
电磁感应现象中的能量转化:
引导学生讨论分析上述三个实验中能量的转化情况。
3、例题讲解
4、教师总结:
能量守恒定律是一个普遍定律,同样适合于电磁感应现象。电磁感应现象中产生的电能不是凭空产生的,它们或者是其它形式的能转化为电能,或者是电能在不同电路中的转移。
5、布置作业
电磁感应现象教学设计 4
一、教材分析
本节课是必修三第十三章《电磁感应与电磁波初步》第三节的内容,本节内容把电与磁彻底的联系在一起。从物理学的角度看,电磁感应在电磁学中的地位,正是由于电磁感受现象的发现,把人类社会带入了电气化时代,体现了“划时代的发现”。另外本课的实验部分是在于引导学生通过活动和思考来主动地获得知识。教科书所呈现的实验既为本节研究感应电流的产生条件提供了实验情景,又成为后续楞次定律教学的基础。
二、学情分析
学生对闭合电路的部分导线切割磁感线能产生电流,在初中已经有一定的认识,但在空间想象能力、问题本质的分析方面还较为薄弱。因此,在教学中国从学生的已有知识出发,通过学生自己的自主学习、探究实验、产生问题等学习方法,解决问题得出产生感应丁柳德条件的结论。
三、基于核心素养的教学目标设计
物理观念:知道感应电流的产生条件及相应实验方法;知道用感应电流的产生条件去判断回路中是否产生感应电流。
科学思维:通过物理学史的学习,体会电磁相互转化的思想。
科学探究:通过学生实验,进行实验观察、归纳分类,达到能够判断回路中磁通量如何变化和因为什么而变化的目的。
科学态度与责任:领会科学家对自然现象、自然规律的探究,以科学不怕困难、勇于面对挫折的坚强意志激励自己。体会物理与生产生活的紧密联系。
四、重、难点
重点:通过实验观察和实验探究,理解感应电流的产生条件。
难点:感应电流的产生条件。
五、教学方法
讲授法、探究实验法
六、教学过程
(一)新课引入
(二)划时代的发现
1.奥斯特:电生磁
(动图展示奥斯特实验)
奥斯特发现的电流的磁效应,震动了整个科学界,它证实电现象与磁现象是有联系的。
电能生磁,根据对称性,为什么不能用磁来生电呢?
法拉第他就坚信磁也能生电。
2.法拉第:磁生电
于是从1822年开始进行了将近十年的实验。直到1830年8月他发现给一个线圈通电和断电的瞬间,另一个线圈中出现了电流。
于是,他又设计并动手做了几十个实验,发现了各种深藏不露的各种"磁生电"的现象。从实验现象中领悟到:“磁生电”是在一种变化、运动的过程中才能出现的效应。总结起来是这么五类:
①变化的电流
②变化的磁场
③运动的恒定电流
④运动的`磁铁
⑤在磁场中运动的导体
并且他把这些现象命名为电磁感应。在这种情况下产生的电流叫做感应电流。
小结:
法拉第的这一伟大发现完善了电与磁的内在联系,所以便有电磁学这一门学科的诞生。
(三)产生感应电流的条件
法拉第发现了电磁感应现象,那么具体产生感应电流的条件是什么呢?
1、实验探究:感应电流产生的条件
导体切割磁感线,会在闭合回路中产生感应电流
2、实验验证
(1)ab静止的时候,电路中没有感应电流;
(2)ab沿着磁感线运动的时候,电路中没有感应电流;
(3)仅有ab切割磁感线的时候,才会产生感应电流。
·分析:ab切割磁感线时,磁场的大小和方向没有变化,变化的只有电路abcd的面积。
那么,与磁场相关的哪个物理量发生了变化呢
我们学过磁通量的的表达式是φ=BS,闭合电路abcd的面积发生了变化,也就是说,穿过电路abcd的磁通量发生了变化。
那么,感应电流的产生是否与磁通量的变化有关呢
下面我们通过实验来研究这个问题。
3、实验探究1:
磁铁插入、抽出
实验操作:指针偏转情况
磁铁插入——指针偏转
磁铁静止在线圈中——指针静止
磁铁拔出——指针偏转
或停在线圈中时,电流表指针如何动作?
如图,线圈A通过变阻器和开关连接到电源上,线圈B的两端连接到电流表上,把线圈A装在线圈B的里面。观察下面几种情况下线圈 B中是否有电流产生。通过动图依次观察实验。
开关和变阻器的状态——指针偏转情况
开关闭合瞬间——指针偏转
开关断开瞬间——指针偏转
开关闭合时,滑动变阻器不动——指针静止
开关闭合时,迅速移动滑动变阻器的滑片——指针偏转
4、归纳总结
请你根据实验现象总结,什么情况下闭合导体回路中产生感应电流。
(动图展示线圈A中的磁感线条数变化的过程)
磁场强弱的变化我们可以通过磁感线的条数来观察,观察动图可以看到闭合开关穿过B的磁感线从无到有;滑动滑片,穿过B的磁感线的条数不断的变化;断开开关,穿过B的磁感线从有到无。这种情况下,根据公式φ=BS,B的面积没有改变,但是磁场感应强度B变化了,所以说穿过线圈 B的磁通量也发生了变化,线圈B中有感应电流。
5、得出结论
以上实验及其他事实表明∶
当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流。这就是产生感应电流的条件。
(四)电磁感应现象的应用
发电机
1831年圣诞节前夕的一次科学报告会上,向大众展示了人类历史上最早的发电机——法拉第圆盘发电机,开辟了人类社会的电气化时代。
电磁感应现象教学设计 5
一、教学任务分析
电磁感应现象是在初中学过的电磁现象和高中学过的电场、磁场的基础上,进一步学习电与磁的关系,也为后面学习电磁波打下基础。
以实验创设情景,通过对问题的讨论,引入学习电磁感应现象,通过学生实验探究,找出产生感应电流的条件。用现代技术手段“DIS实验”来测定微弱的地磁场磁通量变化产生的感应电流,使学生感受现代技术的重要作用。
通过“历史回眸”,介绍法拉第发现电磁感应现象的过程,领略科学家的献身精神,懂得学习、继承、创新是科学发展的动力。
在探究感应电流产生的条件时,使学生感受猜想、假设、实验、比较、归纳等科学方法,经历提出问题→猜想假设→设计方案→实验验证的科学探究过程;在学习法拉第发现电磁感应现象的过程时,体验科学家在探究真理过程中的献身精神。
二、教学目标
1.知识与技能
(1)知道电磁感应现象及其产生的条件。
(2)理解产生感应电流的条件。
(3)学会用感应电流产生的条件解释简单的实际问题。
2.过程与方法
通过有关电磁感应的探究实验,感受猜想、假设、实验、比较、归纳等科学方法在得出感应电流产生的条件中的重要作用。
3.情感、态度价值观
(1)通过观察和动手操作实验,体验乐于科学探究的情感。
(2)通过介绍法拉第发现电磁感应现象的过程,领略科学家在探究真理过程中的献身精神。
三、教学重点与难点
重点和难点:感应电流的产生条件。
四、教学资源
1、器材
(1)演示实验:
①电源、导线、小磁针、投影仪。
②10米左右长的电线、导线、小磁针、投影仪。
(2)学生实验:
①条形磁铁、灵敏电流计、线圈。
②灵敏电流计、原线圈、副线圈、电键、滑动变阻器、导线若干。
③DIS实验:微电流传感器、数据采集器、环形实验线圈。
2、课件:电磁感应现象flash课件。
五、教学设计思路
本设计内容包括三个方面:一是电磁感应现象;二是产生感应电流的条件;三是应用感应电流产生的条件解释简单的实际问题。
本设计的基本思路是:以实验创设情景,激发学生的好奇心。通过对问题的讨论,引入学习电磁感应现象和感应电流的概念。通过学生探究实验,得出产生感应电流的条件。通过“历史回眸”、“大家谈”,介绍法拉第发现电磁感应现象的过程,领略科学家在探究真理过程中的献身精神。
本设计要突出的重点和要突破难点是:感应电流的产生条件。方法是:以实验和分析为基础,根据学生在初中和前阶段学习时已经掌握的知识,应用实验和动画演示对实验进行分析,理解产生感应电流的条件,从而突出重点,并突破难点。
本设计强调问题讨论、交流讨论、实验研究、教师指导等多种教学策略的应用,重视概念、规律的形成过程以及伴随这一过程的科学方法的教育。通过学生主动参与,培养其分析推理、比较判断、归纳概括的能力,使之感受猜想、假设、实验、比较、归纳等科学方法的重要作用;感悟科学家的探究精神,提高学习的.兴趣。
完成本设计的内容约需1课时。
六、教学流程
1、教学流程图
2、流程图说明
情景 演示实验1 奥斯特实验。
演示实验2 摇绳发电
问题:为什么导线中有电流产生?
活动I 自主活动 学生实验1
设问:如何使闭合线圈中产生感应电流?
活动II 学生实验2 探究感应电流产生的条件。
活动III 历史回眸 法拉第发现电磁感应现象的过程。
课件演示 电磁感应现象。
活动Ⅳ DIS学生实验 微弱磁通量变化时的感应电流。
大家谈
3、教学主要环节 本设计可分为三个主要的教学环节。
第一环节,通过实验观察与讨论,得出电磁感应现象与感应电流。
第二环节,通过学生探究实验,得出感应电流产生的条件;通过 “历史回眸”、“大家谈”,了解法拉第的研究过程,领略科学家的探究精神。
第三环节,通过DIS实验,了解电磁感应现象在实际生活中的应用。
七、教案示例
(一)情景引入:
1、观察演示实验,提出问题
1820年,丹麦物理学家奥斯特发现通电直导线能使小磁针发生偏转,从而揭示了电与磁之间的内在联系。
演示实验1 奥斯特实验。
那么,磁能生电吗?
演示实验2 摇绳发电
把一根长10米左右的电线与一导线的两端连接起来,形成一闭合回路,两个学生迅速摇动电线,另一学生将导线放到小磁针上方,观察小磁针是否偏转。
问题1:为什么导线中有电流产生?
2、导入新课
我们可以用这节课学习的知识来回答上面的问题。
(二)电磁感应现象
自奥斯特发现电能生磁之后,历史上许多科学家都在研究“磁生电”这个课题。
介绍瑞士物理学家科拉顿的研究。
自主活动:如何使闭合线圈中产生电流?
学生实验1:把条形磁铁放在线圈中,将灵敏电流计、线圈连成闭合回路,观察灵敏电流计指针是否偏转。
1、电磁感应现象
闭合回路中产生感应电流的现象,叫电磁感应现象。
2、感应电流
由电磁感应现象产生的电流,叫感应电流。
介绍英国物理学家、化学家法拉第的研究。
问题2:法拉第发现的使磁场产生电流的条件究竟是什么?
(三)产生感应电流的条件
学生实验2:探究感应电流产生的条件。
根据所给的器材:灵敏电流计、原线圈、副线圈、电键、滑动变阻器、导线等,设计实验方案,使线圈中产生感应电流。
小组交流方案,师生共同讨论产生感应电流的原因。
感应电流产生的条件:闭合回路、磁通量发生变化。
播放flash课件,进一步理解感应电流产生的条件。
介绍“历史回眸”栏目中法拉第发现电磁感应现象的过程。
(四)应用
讨论、解释:
1、书上的示例
2、摇绳发电的原理。
DIS学生实验:微弱磁通量变化时的感应电流。
大家谈
(五)总结(略)
(六)作业布置(略)
电磁感应现象教学设计 6
【教学目标】
1、知识与技能:
(1)、知道感应电动势,及决定感应电动势大小的因素。
(2)、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ 。
(3)、理解法拉第电磁感应定律的内容、数学表达式。
(4)、知道E=BLvsinθ如何推得。
(5)、会用 解决问题。
2、过程与方法
(1)、通过学生实验,培养学生的动手能力和探究能力。
(2)、通过推导闭合电路,部分导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。
3、情感态度与价值观
(1)、从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想。
(2)、通过比较感应电流、感应电动势的特点,引导学生忽略次要矛盾、把握主要矛盾。
【教学重点】
法拉第电磁感应定律。
【教学难点】
感应电流与感应电动势的产生条件的区别。
【教学方法】
实验法、归纳法、类比法
【教具准备】
多媒体课件、多媒体电脑、投影仪、检流计、螺线管、磁铁。
【教学过程】
一、复习提问:
1、在电磁感应现象中,产生感应电流的条件是什么?
答:穿过闭合回路的磁通量发生变化,就会在回路中产生感应电流。
2、恒定电流中学过,电路中存在持续电流的条件是什么?
答:电路闭合,且这个电路中一定有电源。
3、在发生电磁感应现象的情况下,用什么方法可以判定感应电流的方向?
答:由楞次定律或右手定则判断感应电流的方向。
二、引入新课
1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢?
答:既然有感应电流,那么就一定存在感应电动势.只要能确定感应电动势的大小,根据闭合电路欧姆定律就可以确定感应电流大小了.
2、问题2:如图所示,在螺线管中插入一个条形磁铁,问
①、在条形磁铁向下插入螺线管的过程中,该电路中是否都有电流?为什么?
答:有,因为磁通量有变化
②、有感应电流,是谁充当电源?
答:由恒定电流中学习可知,对比可知左图中的虚线框内线圈部分相当于电源。
③、上图中若电路是断开的,有无感应电流电流?有无感应电动势?
答:电路断开,肯定无电流,但仍有电动势。
3、产生感应电动势的条件是什么?
答:回路(不一定是闭合电路)中的磁通量发生变化.
4、比较产生感应电动势的条件和产生感应电流的条件,你有什么发现?
答:在电磁感应现象中,不论电路是否闭合,只要穿过回路的磁通量发生变化,电路中就有感应电动势,但产生感应电流还需要电路闭合,因此研究感应电动势比感应电流更有意义。(情感目标)
本节课我们就来一起探究感应电动势
三、进行新课
(一)、探究影响感应电动势大小的因素
(1)探究目的:感应电动势大小跟什么因素有关?(学生猜测)
(2)探究要求:
①、将条形磁铁迅速和缓慢的插入拔出螺线管,记录表针的最大摆幅。
②、迅速和缓慢移动导体棒,记录表针的最大摆幅。
③、迅速和缓慢移动滑动变阻器滑片,迅速和缓慢的插入拔出螺线管,分别记录表针的最大摆幅;
(3)、探究问题:
问题1、在实验中,电流表指针偏转原因是什么?
问题2:电流表指针偏转程度跟感应电动势的大小有什么关系?
问题3:在实验中,快速和慢速效果有什么相同和不同?
(4)、探究过程
安排学生实验。(能力培养)
教师引导学生分析实验,(课件展示)回答以上问题
学生甲:穿过电路的Φ变化 产生E感 产生I感.
学生乙:由全电路欧姆定律知I= ,当电路中的总电阻一定时,E感越大,I越大,指针偏转越大。
学生丙:磁通量变化相同,但磁通量变化的快慢不同。
可见,感应电动势的大小跟磁通量变化和所用时间都有关,即与磁通量的变化率有关.
把 定义为磁通量的变化率。
上面的实验,我们可用磁通量的变化率来解释:
学生甲:实验中,将条形磁铁快插入(或拔出)比慢插入或(拔出)时, 大,I感大,E感大。
实验结论:电动势的大小与磁通量的变化快慢有关,磁通量的变化越快电动势越大。磁通量的变化率越大,电动势越大。
(二)、法拉第电磁感应定律
从上面的实验我们可以发现, 越大,E感越大,即感应电动势的大小完全由磁通量的变化率决定。精确的实验表明:电路中感应电动势的大小,跟穿过这一电路磁通量的变化率成正比,即E∝ 。这就是法拉第电磁感应定律。
(师生共同活动,推导法拉第电磁感应定律的表达式)(课件展示)
E=k
在国际单位制中,电动势单位是伏(V),磁通量单位是韦伯(Wb),时间单位是秒(s),可以证明式中比例系数k=1,(同学们可以课下自己证明),则上式可写成
E=
设闭合电路是一个N匝线圈,且穿过每匝线圈的磁通量变化率都相同,这时相当于n个单匝线圈串联而成,因此感应电动势变为
E=n
1.内容:电动势的大小与磁通量的变化率成正比
2.公式:ε=n
3.定律的理解:
⑴磁通量、磁通量的变化量、磁通量的变化量率的区别Φ、ΔΦ、ΔΦ/Δt
⑵感应电动势的大小与磁通量的变化率成正比
⑶感应电动势的方向由楞次定律来判断
⑷感应电动势的不同表达式由磁通量的的因素决定:
当ΔΦ=ΔBScosθ则ε=ΔB/ΔtScosθ
当ΔΦ=BΔScosθ则ε=BΔS/Δtcosθ
当ΔΦ=BSΔ(cosθ)则ε=BSΔ(cosθ)/Δt
注意: 为B.S之间的夹角。
4、特例——导线切割磁感线时的感应电动势
用课件展示电路,闭合电路一部分导体ab处于匀强磁场中,磁感应强度为B,ab的长度为L,以速度v匀速切割磁感线,求产生的感应电动势?(课件展示)
解析:设在Δt时间内导体棒由原来的位置运动到a1b1,这时线框面积的变化量为ΔS=LvΔt
穿过闭合电路磁通量的变化量为ΔΦ=BΔS=BLvΔt
据法拉第电磁感应定律,得E= =BLv
这是导线切割磁感线时的感应电动势计算更简捷公式,需要理解
(1)B,L,V两两垂直
(2)导线的长度L应为有效切割长度
(3)导线运动方向和磁感线平行时,E=0
(4)速度V为平均值(瞬时值),E就为平均值(瞬时值)
问题:当导体的运动方向跟磁感线方向有一个夹角θ,感应电动势可用上面的公式计算吗?
用课件展示如图所示电路,闭合电路的一部分导体处于匀强磁场中,导体棒以v斜向切割磁感线,求产生的感应电动势。
解析:可以把速度v分解为两个分量:垂直于磁感线的分量v1=vsinθ和平行于磁感线的分量v2=vcosθ。后者不切割磁感线,不产生感应电动势。前者切割磁感线,产生的感应电动势为
E=BLv1=BLvsinθ
强调:在国际单位制中,上式中B、L、v的单位分别是特斯拉(T)、米(m)、米每秒(m/s),θ指v与B的夹角。
5、公式比较
与功率的'两个公式比较得出E=ΔΦ/Δt:求平均电动势
E=BLV : v为瞬时值时求瞬时电动势,v为平均值时求平均电动势
课堂练习:
例题1:下列说法正确的是( D )
A、线圈中磁通量变化越大,线圈中产生的感应电动势一定越大
B、线圈中的磁通量越大,线圈中产生的感应电动势一定越大
C、线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大
D、线圈中磁通量变化得越快,线圈中产生的感应电动势越大
例题2:一个匝数为100、面积为10cm2的线圈垂直磁场放置,在0. 5s内穿过它的磁场从1T增加到9T。求线圈中的感应电动势。
解:由电磁感应定律可得E=nΔΦ/Δt①
ΔΦ= ΔB×S②
由① ②联立可得E=n ΔB×S/Δt
代如数值可得E=1.6V
例题3、在磁感强度为0.1T的匀强磁场中有一个与之垂直的金属框ABCD,框电阻不计,上面接一个长0.1m的可滑动的金属丝ab,已知金属丝质量为0.2g,电阻R=0.2Ω,不计阻力,求金属丝ab匀速下落时的速度。(4m/s)
问1:将上题的框架竖直倒放,使框平面放成与水平成30°角,不计阻力,B垂直于框平面,求v ?
答案:(2m/s)
问2:上题中若ab框间有摩擦阻力,且μ=0.2,求v ?
答案:(1.3m/s)
问3:若不计摩擦,而将B方向改为竖直向上,求v ?
答案:(2.67m/s)
问4:若此时再加摩擦μ=0.2,求v ?
答案:(1.6m/s)
【课堂小结】
1、让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。
2、认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。
3、让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。
【布置作业】选修3-2课本第16页“思考与讨论”
课后作业:第17页1、2、3、5题
【课后反思】
让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架,把书本知识转化为自己的知识,让学生有收获成功感。
本节课,重点是理解法拉第电磁感应定律,不要过多的进行训练,不能急于求成,应该循序渐进。
电磁感应现象教学设计 7
教学目标:
一、知识与技能。
1、理解感应电动势的含义,能区分磁通量、磁通量的变化量和磁通量的变化率。知道感应电动势与感应电流的区别与联系。
2、理解电磁感应定律的内容和数学表达式。
3、会用电磁感应定律解决有关问题。
二、过程与方法。
1、通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力;
2、通过法拉第电磁感应定律的建立,进一步定量揭示电与磁的关系,培养学生类比推理能力和通过观察、实验寻找物理规律的能力;
3、使学生明确电磁感应现象中的电路结构通过公式E=nΔ/Δt的理解,并学会初步的应用,提高推理能力和综合分析能力。
三、情感、态度与价值观。
通过介绍法拉第电磁感应定律的建立过程培养学生形成正确的科学态度,学会科学研究方法。
教学重点:
1、感应电动势的定义。
2、电磁感应定律的内容和数学表达式。
3、用电磁感应定律解决有关问题。
教学难点:
1、通过法拉第电磁感应定律的建立。
2、通过公式E=nΔ/Δt的理解。
教具:
投影仪,电子笔,学生电源1台,滑动变阻器1个,线圈15套,条形磁铁14条,U形磁铁1块,灵敏电流计15台,开关1个,导线40条。
教学方法:
探究法。
教学过程:
一、复习。
1、电源:能将其他形式能量转化为电能的装置
2、电动势:电源将其他形式能量转化为电能的本领的大小。
3、闭合电路欧姆定律:内外电阻之和不变时,E越大,I也越大。
4、电磁感应现象:
实验一:导体在磁场中做切割磁感线运动。
实验二:条形磁铁插入或拔出线圈。
实验三:移动滑动变阻器滑片。
感应电流的产生条件:
①闭合回路。
②磁通量发生变化。
二、感应电动势。
1、在电磁感应现象中产生的电动势叫感应电动势。
2、在电磁感应现象也伴随着能量的转化。
3、当磁通量变化而电路没有闭合,感应电流就没有,但仍有感应电动势。
三、电磁感应定律。
1、区别磁通量、磁通量的变化量Δ和磁通量的变化率Δ/Δt。
2、(1)把导体AB和电流计连接起来组成闭合回路,当导体在磁场中做切割磁感线运动。
①导体AB缓慢地切割磁感线。
②导体AB快速地切割磁感线。
现象:缓慢切割时产生的感应电流很小,快速切割时产生的感应电流较大
分析:总电阻一定时,如果I越大,则E越大。
猜想与假设:影响感应电动势的大小的因素可能有哪些? 答:速度V、磁通量的变化Δ或匝数?
(2)①强磁铁和弱磁铁插入后不动。
②将磁铁以较快和较慢速度“同程度”插入线圈。
③将磁铁以较快和较慢速度“同程度”拔出线圈。
现象:磁铁不动时没有电流;磁铁快速插入(或拔出)时电流大; 磁铁较慢插入(或拔出)时电流小。
分析得出结论:
①磁通量不变化时没有感应电动势。
②磁通量变化量Δ相同,所用时间Δt越少,即磁通量变化得越快,感应电动势越大。
推断:感应电动势与磁通和磁通量变化量无直接关系。
(3)①缓慢改变变阻器的电阻。
②较快改变变阻器的`电阻。
现象:
①缓慢改变变阻器的电阻时电流计指针偏转较小。
②较快改变变阻器的电阻时电流计指针偏转较大。
分析得出结论:滑动得越快,感应电流越大,电动势越大。
分析得出结论:导线切割的快、磁铁插入的快、滑动变阻器滑片滑得快的实质是磁通量量变化得快。感应电动势的大小是磁通量变化快慢有关,即E与Δ/Δt有关。
4、法拉第电磁感应定律。
精确的实验表明:
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。即:E=kΔ/Δt
说明:
①、上式中各物理量都用国际制单位时,k=1;E的单位是伏特(V),的单位是韦伯(W b),t的单位是秒(s)。
②、产生感应电动势的那部分导体相当于电源。
③、感应电动势E的大小决定于穿过电路的磁通量的变化率Δ/Δt,而与磁通量和磁通量的变化量Δ的大小没有必然的关系,与电路的电阻R无关;但感应电流的大小与E和回路的总电阻R有关。
④、若闭合电路是一个n匝线圈,穿过每匝线圈的磁通量变化率都相同,由于n匝线圈可以看作是由n匝线圈串联而成,因此整个线圈中的感应电动势是单匝的n倍,即E=nΔ/Δt。
四、练习。
1、关于电磁感应,下述说法中正确的是(C)
A、穿过线圈的磁通量越大,感应电动势越大。
B、穿过线圈的磁通量为零,感应电动势一定为零。
C、穿过线圈的磁通量的变化越大,感应电动势越大。
D、穿过线圈的磁通量的变化越快,感应电动势越大。
2、有一个1000匝的线圈,在0.4S内穿过它的磁通量从0.01Wb均匀增加到0.09Wb,求线圈中的感应电动势。
解:由 E,n 得:t
E=1000×(0.09wb—0。01wb)/0.4s =200V
答:线圈中的感应电动势为200V。
五、作业:
P14 3 5 6。
电磁感应现象教学设计 8
教学目标
1、知道电磁感应现象,知道产生感应电流的条件。
2、会运用楞次定律和左手定则判断感应电流的方向。
3、会计算感应电动势的大小(切割法、磁通量变化法)。
4、通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力。
教学重点、难点分析
1、楞次定律、法拉第电磁感应定律是电磁感应一章的重点。另外,电磁感应的规律也是自感、交流电、变压器等知识的基础,因而在电磁学中占据了举足轻重的地位。
2、在高考考试大纲中,楞次定律、法拉第电磁感应定律都属II级要求,每年的高考试题中都会出现相应考题,题型也多种多样,在历年高考中,以选择、填空、实验、计算各种题型都出现过,属高考必考内容。同时,由电磁感应与力学、电学知识相结合的题目更是高考中的热点内容,题目内容变化多端,需要学生有扎实的知识基础,又有一定的解题技巧,因此在复习中要重视这方面的训练。
3、电磁感应现象及规律在复习中并不难,但是能熟练应用则需要适量的训练。关于楞次定律的推广含义、法拉第电磁感应定律在应用中何时用其计算平均值、何时要考虑瞬时值等问题都需通过训练来达到深刻理解、熟练掌握的要求,因此要根据具体的学情精心选择一些针对性强、有代表性的题目组织学生分析讨论达到提高能力的目的。
4、电磁感应的综合问题中,往往运用牛顿第二定律、动量守恒定律、功能关系、闭合电路计算等物理规律及基本方法,而这些规律及方法又都是中学物理学中的重点知识,因此进行与此相关的训练,有助于学生对这些知识的回顾和应用,建立各部分知识的联系。但是另一方面,也因其综合性强,要求学生有更强的处理问题的能力,也就成为学生学习中的难点。
5、楞次定律、法拉第电磁感应定律也是能量守恒定律在电磁感应中的体现,因此,在研究电磁感应问题时,从能量的观点去认识问题,往往更能深入问题的本质,处理方法也更简捷,物理的'思维更突出,对学生提高理解能力有较大帮助,因而应成为复习的重点。
教学过程设计
1、产生感应电流的条件
感应电流产生的条件是:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。
2、感应电动势产生的条件。
感应电动势产生的条件是:穿过电路的磁通量发生变化。
这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。
3、关于磁通量变化
(1)在匀强磁场中,磁通量=B S sin(是B与S的夹角),磁通量的变化=1有多种形式,主要有:
①S、不变,B改变,这时=B Ssin
②B、不变,S改变,这时=S Bsin
③B、S不变,改变,这时=BS(sin2-sin1)
当B、S、中有两个或三个一起变化时,就要分别计算1、2,再求1了。
电磁感应现象教学设计 9
(一)教学目的
1.知道电磁感应现象及其产生的条件。
2.知道感应电流的方向与哪些因素有关。
3.培养学生观察实验的能力和从实验事实中归纳、概括物理概念与规律的能力。
(二)教具
蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。
(三)教学过程
1.由实验引入新课
重做奥斯特实验,请同学们观察后回答:
此实验称为什么实验?它揭示了一个什么现象?
(奥斯特实验。说明电流周围能产生磁场)
进一步启发引入新课:
奥斯特实验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不可以反过来进行逆向思索:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计实验,进行探索研究。
2.进行新课
(1)通过实验研究电磁感应现象
板书:〈一、实验目的:探索磁能否生电,怎样使磁生电。〉
提问:根据实验目的,本实验应选择哪些实验器材?为什么?
师生讨论认同:根据研究的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;控制电路必须有开关。
教师展示以上实验器材,注意让学生弄清蹄形磁铁的N、s极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。
进一步提问:如何做实验?其步骤又怎样呢?
我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观察是否产生电流。那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对实验有没有影响?下面我们依次对这几种情况逐一进行实验,探索在什么条件下导体在磁场中产生电流。
用小黑板或幻灯出示观察演示实验的记录表格。
教师按实验步骤进行演示,学生仔细观察,每完成一个实验步骤后,请学生将观察结果填写在上面表格里。
实验完毕,提出下列问题让学生思考:
上述实验说明磁能生电吗?(能)
在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时)
为什么导体在磁场中左右、斜着运动时能产生感应电流呢?
(师生讨论分析:左右、斜着运动时切割磁感线。上下运动或静止时不切割磁感线,所以不产生感应电流。)
通过此实验可以得出什么结论?
学生归纳、概括后,教师板书:
〈实验表明:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流。这种现象叫做电磁感应,产生的电流叫做感应电流。〉
教师指出:这就是我们本节课要研究的主要内容—电磁感应现象。
板书课题:〈第一节电磁感应〉
讲述:电磁感应现象是英国的物理学家法拉第发现的。他经过十年坚持不懈的努力,才发现了这一现象。这种热爱科学。坚持探索真理的可贵精神,值得我们学习。这一现象的发现进一步揭示了电和磁之间的联系,导致了发电机的发明,开辟了电的时代,所以电磁感应现象的发现具有划时代的意义。
(2)研究感应电流的方向
提问:我们知道,电流是有方向的,那么感应电流的方向是怎样的呢?它的方向与哪些因素有关呢?请同学们观察下面的实验。
演示实验:保持上述实验装置不变,反复改变磁场方向或改变导体在磁场中的运动方向,请同学们仔细观察电流表的.偏转方向。
提问:同学们观察到了什么现象?
(磁场方向、导体运动方向变化时,指针偏转的方向也发生变化,即电流的方向也随着变化)。
通过这一现象我们可以得出什么样的结论呢?
学生归纳、概括后,老师板书:
〈二、导体中感应电流的方向跟导体运动方向和磁感线方向有关。〉
(3)研究电磁感应现象中能的转化
教师提出下列问题,引导学生讨论回答:
在电磁感应现象中,导体作切割磁感线运动,是什么力做了功呢?(外力)
它消耗了什么能?(机械能)
得到了什么能?(电能)
在电磁感应现象中实现了什么能与什么能之间的转化?(机械能与电能的转化)
板书:〈三、在电磁感应现象中,机械能转化为电能〉
3.小结
在这节课中,我们采用了什么方法,探索研究了哪几个问题?
4.布置作业课本上的练习1、2题。
(四)说明
1.这节课的关键是设计并做好演示实验,实验的可见度要大。有条件的学校可改做学生实验或用幻灯演示。
2.要在学生观察实验的基础上,提出明确的问题,让学生积极思考、讨论,并对实验现象加以归纳、概括,培养学生从实验事实中归纳、概括出物理概念和规律的能力。
电磁感应现象教学设计 10
一、说教材
1、教材分析
奥斯特的发现说明了电能产生磁,而法拉第的发现说明了磁能产生电,从另一角度揭示了磁和电之间的联系,为发电机的制造和应用奠定了基础,因此这一章是本章的教学重点之一。学生学好这一节知识是非常必要的,同时也是为升入高中学习电磁感应定律奠定了基础。
教学重点:对科学探究过程的体验和科学研究方法的领会。
教学难点:引导学生通过科学探究自己分析感应电流的条件,分析实验现象、得出结论。
2、教学目标
(一) 知识目标
1. 知道电磁感应现象,知道产生感应电流的条件。
2. 知道感应电流的方向跟哪些因素有关。
3. 知道发电机的原理。
(二) 能力目标
1. 通过多媒体画面培养学生观察问题、思考问题的能力。
2. 通过探究磁生电的条件进一步了解电和磁之间的相互联系。
(三) 情感目标
1. 培养学生实事求是的科学态度及探索的.科学精神及高尚的道德品质。
2. 认识自然现象之间是相互联系的,进一步了解探索自然奥秘的科学方法。
二、说教法
1.采用实验教学及多媒体辅助教学,采用启发式教学方法,让学生多思考总结规律;
2.介绍科学家的事迹,调动学生学习物理的积极性。
三、说学法
通过猜想、讨论、答疑、设计试验方案,培养学生积极思维,激发学习兴趣,提高自信心,培养顽强意志,建立良好的学习习惯
四、说教学过程
1、设疑引学
前面我们学习了“奥斯特的发现”它揭示了电和磁之间的联系,说明电能生磁,电流和磁场是不可分割的,那么我们可不可以反过来进行逆向思索:磁能否生电呢?让学生猜想。在学生猜想的基础上,教师进一步提问:怎样才能使磁生电呢?
2、讲授新课
电磁感应现象
【活动一 】 观察“磁生电”现象
由微型电风扇的插头处接一个发光二极管,用手旋转叶片,学生观察实验现象得出电磁感应现象,并且激发了学生的学习兴趣。
感应电流产生的条件
【活动二】 探究感应电流产生的条件
引导学生设计实验并观察实验并利用多媒体帮助学生分析导体切割磁感线的情况,最后引导学生通过实验事实,归纳概括出结论:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生感应电流,这种现象叫电磁感应现象,产生的电流叫感应电流。
感应电流的方向
学生猜想并进行实验得出实验结论: 改变磁场方向和改变切割磁感线的方向,感应电流的方向就会改变,即感应电流的方向与磁场的方向和切割磁感线的方向有关。
发电机
1.发电机的原理:电磁感应
【活动三】观察手摇发电机发电
学生观察分析发电机的工作原理,再结合多媒体教学演示发电机的工作原理。
2.能量转化
3.小结
4.巩固练习(见课件)
5.布置作业
五、说课后反思
本节课在教学过程中能注重知识的衔接,让学生深刻体会到了电和磁之间的紧密结合,注重学生逆向思维的培养,教学中能运用大量的图片和教学视频激发学生的求知欲,并且突破教学难点,以便于学生理解,课堂中以实验为基础,注重培养了学生在实验过程中科学素养的养成,在整个实验过程中,学生能够小组合作探究进行归纳总结感应电流产生的条件及感应电流的方向,进一步在学到电磁感应的应用——发电机,学生在实验过程中将物理学活学透,深刻理解知识的生成,不断培养学生的物理核心素养。