《长方体的表面积》教学设计
《长方体的表面积》教学设计
作为一位无私奉献的人民教师,时常需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那要怎么写好教学设计呢?以下是小编帮大家整理的《长方体的表面积》教学设计,仅供参考,欢迎大家阅读。
《长方体的表面积》教学设计1
教学目标
1、使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法、
2、培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念、
教学重点
表面积的意义、
教学难点
长方体表面积的计算方法、
教学过程
一、复习准备、
1、说出长方形面积的计算公式、
2、看图回答、
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空、
这个长方体上、下两个面的长是( )宽是( )、
左、右两个面的长是( )宽是( )、
前、后两个面的长是( )宽是( )、
3、想一想、
长方体和正方体都有几个面?(6个面)
二、揭示课题、
今天这节课我们就来学习和研究有关这6个面的一些知识、
三、教学新课、
(一)长、正方体表面积的意义、
1、老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、
“左”、“右”、“前”、“后”标在6个面上、
2、沿着长方体和正方体的棱剪开并展平、(老师先示范,学生再做)
3、你知道长方体或者正方体6个面的总面积叫做它的什么吗?
教师明确:长方体或者正方体6个面的总面积,叫做它的表面积、
(板书:长方体和正方体的表面积、)
(二)长方体表面积的计算方法、
例1、做一个长6厘米,宽5厘米,高4厘米的长方体的`纸盒,至少要用多少平方厘米的硬纸板?
1、这题的问题,实际上就是要我们求什么?
2、长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?
3、学生分组讨论、
解法(一)
6×5×2+6×4×2+5×4×2
= 60+48+40
= 148(平方厘米)
解法(二)
(6×5+6×4+5×4)×2
=(30+24+20)×2
= 74×2
= 148(平方厘米)
4、比较上面两种解答方法有什么不同?它们之间有什么联系?
解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和、解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二)、
四、巩固练习、
1、一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?(用两种方法计算)
2、一个长方体铁盒,长18厘米,宽15厘米,高12厘米、做这个铁盒至少要用多少平方厘米的铁皮?
五、课堂小结、
通过解答例1和做一做,你发现长方体表面积的计算方法吗?
结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2
=(长×宽+长×高+宽×高)×2
六、课后作业、
1、一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?
2、一个长方体的形状大小如下图、
(1)它上、下两个面的面积分别是多少平方分米?
(2)它前、后两个面的面积分别是多少平方分米?
(3)它左、右两个面的面积分别是多少平方分米?
《长方体的表面积》教学设计2
教学内容:
人教版五年级下册长方体的表面积
教学目标:
1.通过操作观察,使学生知道长方体表面积的含义.
2.在理解概念的基础上初步学会求长方体表面积的计算方法。
3.培养学生的动手操作能力和空间观念.
教学重点:
长方体表面积计算的基本思路和方法。
教学难点:
正确建立表面积的概念.
教学过程:
一.创设情境,生成问题
师:同学们,我们刚学过了长方体,研究它我们从哪几个方面去研究 如何给长方体做一件精美的外套,是求长方体的什么 师:这就是我们这节课要学习的主要内容。板书课题,“长方体的表面积” (设计意图:在新课开始时,营造一个有利于学生学习的课堂环境,从生活实际引入,根据学生已有的知识和经验,还数学的原始本来面目,符合课程标准的要求;从学生所熟悉的事物中提炼出问题、根据题目设问,既能达到以问促学的目的,又激发了学生的求知欲。既提出了研究问题,又使学生学有方向、学有目标,创设良好的问题情景,充分激发起学生问题解决的欲望。) @
二.探索交流,解决问题
(1)感受长方体表面积的意义。
师:同学们想一想,我们刚才对长方体的哪些部分进行了包装 生:长方体的6个面。
师:那么,什么是长方体的表面积呢
在老师的引导下,将生活问题数学化,提出相关的数学问题,以待进行进一步的探索和解决问题。
师:我们先来研究什么是长方体的表面积。(教师出示长方体纸巾盒)请同学们仔细观察,你发现了什么(相对的面是完全相同的)
(2)认识长方体的表面积含义。
师:说得对。
问:通过观察和动手操作实物模型,谁知道什么叫做长方体的表面积?
生1:长方体的表面积,就是指长方体物体表面的面积。
生2:长方体的表面积,就是指长方体上下、前后、左右六个面的面积总和。
生3:简单地说就是把长方体六个面的总面积,叫做它的表面积。
(设计意图:通过实物展示的部分,降低了观察上的难度,同时动静结合的画面使观察的重点更突出,有利于提高学生的专注能力,有利于调动学生的学习兴趣。通过观看剪开、展开的实物操作剪一剪、标一标、贴一贴的实物模型,让学生真正动眼、动手、动脑,参与获取知识的过程。在看一看中,充分感知,建立表象,在动手操作中展开思维,发现并归纳出表面积的含义,从而明确概念。)
(3)探求表面积的计算方法。
1.师:出示一个长方体的盒子(长、宽、高不等),把它展开,并在黑板上画一个长方体和展开图。
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢请你用长方体实物模型学具,量一量、想一想、算一算,先独立完成,有困难的合作完成。
(设计意图:这样有实物,又有相应的图形,让学生根据刚才包装的`方法,讨论探求长方体表面积的计算方法,有利于学生从具体到抽象发展。)
生(1):分别求出长方体上、下、左、右、前、后的面积,再把它们的积加起来,就是它们的表面积。
S=S上+S下+S左+S右+S前+S后
生(2) :求上、下两个面的面积;求出前、后两个面的面积;求出左、右两个面的面积,然后把三次乘得的结果加起来,就是长方体的表面积。 S=2S上+2S左+2S前 >
生(3) :求出上面,求出前面,求出后面,然后用它们相加的和,再乘以2,就得出六个面的总面积。因为长方体六个面中,分别有三组相对面的面积相等。 S=2(S上+S左+S上)
生(4):侧面积加2个底面积. S=C底h+2S上
2.在上面的几种方法中,你会选择哪一种说说你的想法。
师:你们计算的很准确!长方体学具是一个长、宽、高不等的长方体,你们能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
(设计意图:当学生理解表面积的概念后,急于知道长方体表面积的计算方法,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,教师让学生通过看实物和平面展开图,量一量、想一想、算一算,让学生在观察、测量、计算、比较的探索过程中,运用多种感官,参与学习,大胆猜想,动手测量,探索尝试计算。关键和精彩之处,在于学生学习时,采用动手实践、自主探索、合作交流等多种学习方式,寻找到解决问题的方法,学习知识又能培养能力,学生主动参与,获取知识,培养学生创新能力。) (4)教学例1.
做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板 》
教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积. 第一种解法:
长方体表面积=6个面积的和
6×4+6×4+4×5+4×5+6×5+6×5
=24+24+20+20+30+30
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
第二种解法:
长方体表面积=上下面面积+前后面面积+左右面面积
6×5×2+6×4×2+4×5×2
=60+48+40
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
第三解法:
长方体表面积=(下面面积+前面面积+右面面积)×2
(6×5+6×4+5×4)×2 …
=74×2
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
思考:你认为哪种解法简便
(根据乘法分配律可以把第一个式子和第二个式子改写成第三个式子;第三个算式更简便些)
(5)教师小结:
计算长方体表面积的关键是找出每个面的长和宽。
(设计意图:这一组练习的设计,层次分明,让学生在练习中巩固新知,让学生在一次次探索和解决问题的成功体验中,主动参与新知识的构建过程,学生找出计算长方体表面积的方法。在计算时根据具体情况,分析具体问题,让学生充分阐述他们解决问题的具体方案,并适时引导归纳。)
三.巩固应用,内化提高
1用多种方法计算。
做一个长方体形状的铁皮盒,长21厘米、宽和高都是13厘米,至少要用多少平方米的铁皮
2 根据要求,说解答方法。
(1)制作一个长方体的鱼缸所需的用料。
(2)求粉刷教室的面积。
(3)火柴盒的用料。(提供实物,火柴盒壁厚不计)这道题有点难,同学们可以共同研究一下解决的办法。
(4)游泳池贴瓷砖要贴哪些部分。
(5)铁皮通风管、烟囱的用料。
(设计意图:这道题只说方法,让学生从数学回到生活实际,具体问题具体解决,求火柴盒的外壳与内匣一题,让学生在新的情况下,通过观察,灵活应用长方体表面积的意义和计算方法解题,使学生在研究、讨论、探索的过程中发展智能。体会生活中长方体表面积是变化的,只有活学活用,才能真正解决生活中的实际问题,从而体会到生活中处处有数学。)
四.回顾整理,反思提升
通过这节课的学习,你想说什么
师:我们学习数学知识就是要服务生活,同学们回家后寻找周围需要计算表面积
《长方体的表面积》教学设计3
〔教学内容〕
教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。
〔教材简析〕
〔教学目标〕
1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。
2、让学生掌握并会运用所学知识解决实际问题。
3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。
〔教学重点〕
根据实际情况判断出应该求出长方体或正方体的哪几个面之和。
一、复习铺垫,导入新课:
1、谈话:上节课我们学习了表面积,谁还记得?
2、计算下面物体的表面积。
(1)一个长方体长5厘米、宽6厘米、高12厘米。
(2)一个正方体的棱长5分米。
指名板演,集体订正。
二、探索领悟,总结方法:
谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。
出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?
1、 谈话:请同学们说一说鱼缸的样子。
提问:求需要多少玻璃,就是求什么?
使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。
启发学生思考:
根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?
学生交流,指名口答。
明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。
2、列式解答:
请学生独立完成。
谈话:你能说说你列式的根据吗?让学生明确算式的含义。
相机出示:
5×3.5+5×3+3×3.5+3×3.5+5×3
(5×3+5×3.5+3×3.5)×2-5×3
3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。
4、练一练:
第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。
第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。
完成后,集体订正,指名说出列式根据。
三、巩固练习:
练习四第6 题,思考问题是要计算哪几个面的'面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。
四、课堂作业:
1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。
2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。
3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。
4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。
五、思考题:
提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。
《长方体的表面积》教学设计4
闫慧
一、教学构思
长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料,《长方体和正方体的表面积》教学设计及反思。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:
1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。
2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:
(一)引导学生学习正方体表面积的计算方法 :
1、回忆:上节课我们学习了长方体表面积的概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?
2、联想:拿起(一个正方体的.模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?
3、归纳引入新课:正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)
4、教学例2:提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?
(有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)
师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。
二、说明:
我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算,教学反思《《长方体和正方体的表面积》教学设计及反思》。如例3。
三、鱼缸的制作问题:
1、帮助学生回忆鱼缸的形状(长方体,但是没有上面)
2、如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)
3、教学例3
四、(出示长方体模型,把它看成鱼缸的模型)
1、鱼缸缺少哪个面的玻璃?(上面)
2、要求需要多少平方分米玻璃,要算几个面的面积和?哪几个面有相同的两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高底面=长*宽)
3、指名学生板演,集体订正。
4、改变题目要求,使得长方体的宽和高长度相等,观察模型,你发现了什么现象?怎样计算比较简便?
学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。
学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。
学生3:这个长方体没有上面,所以只要算5个面的面积,它的前面、后面、下面这三个面完全相同
说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。
五、练习
书P42页练习二的第一、二 题。
(要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)
课后反思:
一、积极参与,发现问题.
在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学生所学的知识,另一方面要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。在整个活动过程中,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力。在《长方体和正方体的表面积》一课的教学中,我首先帮助学生回忆上节课的内容,提出相应的问题进行复习巩固,同时提出新问题——正方体的表面积是如何求解的?然后让学生根据所学的内容进行合理的猜测,并且举例证明观点是否正确,最后由我来归纳总结。设计探究问题:1.你能根据表面积的概念说一下什么叫做正方体的表面积吗?2.如何计算正方体的表面积?还进行全班讨论,正方体表面积计算方法和长方体表面积计算方法的区别与联系。通过这种研究性的探讨以及对比的方式,教好地完成了教学任务。学生从本质上理解了表面积的概念而且学会了如何根据实际情况求解长方体某几个面的面积之和,使得学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。
二、以事实为依据,解决问题
在制作鱼缸的问题中,首先帮助学生回忆生活中的实物,然后出示简易模型进行教学。先问学生鱼缸有没有盖子,接着启发学生猜想如何计算制作鱼缸所需材料的面积数量,从而引出问题,将学生的注意力集中在如何求解长方体某几个面的面积之和的问题上来,这就激发了学生的求知、探索欲望。通过教学引导发现问题后,利用事实为依据,和学生一起解决问题。让学生经历一系列的探讨研究过程,从不同角度发现问题。同时提出新的问题,让学生带着问题离开教室,对数学的学习保持一种新鲜感和神秘感。
三、巩固知识,归纳要点
改变题目的要求,发现新问题,全班讨论。经过多位同学叙述,他们便发现某些同学的认识是片面的,所叙述的内容是不完整的,所以结论不完全正确。要想得到全面正确的结论,就要用充分的事实来说话,资料这样才能得到正确的结论。针对某些典型的错误观点可以进行讨论,推翻,说出问题的结果和原来预测的不同点(区别),然后和学生一起总结,加深印象。同时正确评估学生的观点,通过练习,巩固新旧知识,思考与讨论问题的答案,大胆的进行猜测,做好记录,最后归纳要点或者规律。新课程强调:教师是科学学习活动的组织者、引领者和亲密的伙伴。我遵循这些理念开展以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的科学探究能力有了一定提高。
四、教学需改进之处:
教师要进一步做好“六认真”工作,提高教学能力,培养学生的叙述能力和运用能力,使得教学工作能够让学生学以致用,全面发展,成为一个“十”字型人才。
《长方体的表面积》教学设计5
教学目标:
1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
教学重点难点:
长方体和正方体表面积的含义及其计算方法的推导过程。
教学准备:
长方体、正方体模型。
教学过程:
一、猜测导入
出示两个纸盒(一个长方体、一个正方体)。
提问:长方体和正方体有哪些特征?
谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?
有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)
二、探究新知
1、引导探究长方体表面积的计算方法。
(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?
追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?
教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的`面积合在一起就是表面积。
(2)学生独立列式,指名汇报,并根据学生回答进行板书。
解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)
解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)
答:至少要用148平方厘米的硬纸板。
(3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?
2、自主探究正方体表面积的计算方法。
(1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少平方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?
(2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。
(3)组织交流反馈。
3、揭示表面积的含义。
谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?
揭示:长方体或正方体6个面的总面积,叫做它的表面积。
(板书课题:长方体和正方体的表面积)
三、练习巩固
完成课本“练一练”以及练习四第一、二、五题。
四、全课小结
谈话:通过今天的学习你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?
五、布置作业
1、做练习四第三、四题。
《长方体的表面积》教学设计6
教学目标:
结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。
知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。
3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。
教学重点
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
教学难点
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
教学媒体
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
教学过程
一、复习准备。
(一)口答填空。
1、长方体有( )个面,一般都是( ),相对的面的( )相等;
2、正方体有( )个面,它们都是( ),正方形各面的( )相等;
3、这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;
4、这是一个( ),它的棱长是( )厘米,它的棱长之和是( )厘米。
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)
二、学习新课。
(一)长方体和正方体表面积的意义。
1、教师提问:什么叫做面积?
长方体有几个面?正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2、教师明确:这六个面的总面积叫做它的表面积。
3、学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。
4、教师板书:长方体或正方体6个面的`总面积,叫做它的表面积。
(二)长方体表面积的计算方法
1、学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的。
2、教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
3、练习解答。
做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
4、巩固练习。
一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面。
列式:4×3+4×2.5×2+3×2.5×2
(三)正方体表面积的计算方法
1、教师提问:正方体的表面积如何求吗?
学生:棱长×棱长×6
2、试解例2。
一个正方体纸盒,棱长3厘米,求它的表面积。
32×6
=9×6
=54(平方厘米)
答:它的表面积是54平方厘米。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5
教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
3、巩固练习:一个正方体的面积是1.2分米,求它的表面积。
三、巩固反馈。
1、一个长方体的长是6厘米,宽是4厘米,高是5厘米,这个长方体的表面积是多少平方厘米?
2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?
3、判断正误,并说明理由。
(1)长方体的三条棱分别叫它的长、宽、高。( )
(2)一个棱长4分米的正方体,它的表面积是:42×6=48(平方分米)( )
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小。( )
四、课堂总结。
什么是长、正方体的表面积?长、正方体的表面积如何计算?
《长方体的表面积》教学设计7
教学目标
1、通过操作观察,使学生知道长方体和正方体表面积的含义、
2、初步学会长方体和正方体表面积的计算方法、
3、培养学生的动手操作能力和空间观念、
教学重点
建立表面积概念,初步学会计算长方体和正方体的表面积、
教学难点
正确建立表面积的概念、
教学步骤
一、铺垫孕伏、
1、长方体的特征是什么?
2、正方体的特征是什么?
指出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?
二、探究新知、
导入:同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容、
教师节,笑笑为老师准备了一个小礼物,她想给它进行包装,到底要买多大的包装纸才够而且又最省纸呢?这实际上就是求什么?(就是求长方体6个面的面积一共是多少。)
师:那么怎样求这6个面的面积呢?
拿出你准备的纸盒,剪一剪,看一看,能发现什么?(可以分别求出每个面的`面积,再加起来;发现相对面的面积相等;发现6个面的总面积就是包装纸的面积。)学生操作,师巡视。
师:老师发现同学们观察的真仔细,老师这里有一个长方体,谁能说出它的长、宽、高是多少?
老师沿着棱把这个纸盒剪开,请大家帮老师算算,看你能算出它哪个免得面积?是多少?(指名汇报)
同学们说的真好。你能把下面表格填上吗?看谁又快又对。
师:长方体6个面的面积和又叫长方体的表面积。
那么怎样求长方体的表面积呢?小组内讨论以下。(师出示课件)
正方体的6个面都相等,请同学们继续观察:把一个正方体展开,怎么求它的表面积?(讨论)课件演示
什么叫表面积呢?
1、教师明确:长方体或正方体六个面的总面积叫做它的表面积、
2、学生两人一组相互说一说什么是长方体的表面积、
(二)长方体表面积的计算方法、【演示课件“长方体的表面积”】
1、学生归纳:
上下两个面大小相等,面积用长方体的长乘宽;
前后两个面大小相等,面积用长方体的长乘高;
左右两个面大小相等面积用长方体的高乘宽、
2、教学例1、
做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积、首先要找出每个面的长和宽、根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积、
《长方体的表面积》教学设计8
教学目标:
1、进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点,选择计算方法,解决一些简单实际问题。
2、进一步发展学生的空间观念和空间想象能力。
3、密切数学与生活的联系,提高学生学习数学的学习兴趣。
教学重、难点:
能根据所求问题的具体特点,选择计算方法解决一些简单的实际问题。
教学准备:
多媒体课件,抽纸,长方体通风管模型。学生自备长方体和正方体的模型。
教学过程:
一、复习长方体和正方体的特征
师:长方体有什么特征?
(长方体有6个面,12条棱,8个顶点。长方体相对的两个面完全相同,相对的棱长度相等。)
正方体呢?
(正方体也有6个面,12条棱,8个顶点。正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。)
师最后根据学生的口答小结。
二、复习长方体和正方体的表面积的计算方法
1、复习长方体每个面的面积的计算方法。
提问:长方体上、下面的面积怎样计算?前、后面的面积怎样计算?左、右面的面积呢?
学生口答,课件及时反馈。
2、复习长方体和正方体表面积、底面积和侧面积的计算方法。
课件依次出示长方体和正方体,逐个提问。课件及时反馈。
3、求长方体和正方体的表面积(只列式不计算)。
第一个是长方体,6个面都是长方形;
第二个是长方体,有2个面是正方形,其余4个面是长方形;
第三个是正方体。
先分析已知条件和所求问题,再说说先求什么,再求什么,怎样列式。
三、复习长方体和正方体表面积的实际应用
1、长方体和正方体表面积的实际应用的基础练习。
(1)出示一组物体的图片。
师:请同学们想一想可能计算这些物体的什么,实际是求长方体哪几个面的面积?想好以后,与同座位的.同学互相说一说。
(2)计算无盖的长方体玻璃鱼缸的玻璃面积。
先审题:要求玻璃面积,实际是求长方体哪几个面的面积?
再口答算式,并计算。
(3)计算火柴盒内盒和外盒的面积。
先独立思考,再集体交流。
根据学生口答板书:
火柴盒内盒面积(5个面的面积)=前、后两个面的面积+左、右两个面的面积+下面一个面的面积=6×1×2+4×1×2+6×4=44(平方分米)
火柴盒外盒面积(4个面的面积)=前、后两个面的面积+左、右两个面的面积=6×1×2+4×1×2=20(平方分米)
(4)选择题
(1)1、一个通风管的横截面是边长0、2米的正方形,长2、5米,如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?()
A、0、2×2、5×50
B、0、2×0、2×2、5×50
C、0、2×2、5×4×50
还可以怎样计算?
展示长方体通风管展开成一个长方形的过程,帮助学生思考。
还可以列式为:0、2×4×2、5×50
(2)一个长方体游泳池,长20米,宽10米,深2米。在这个游泳池四壁及底面贴上瓷砖,要贴多少平方米?()
A、20×10+(20×2+10×2)×2
B、20×10+20×2+10×2
C、(20×10+20×2+10×2)×2
(3)一个棱长3分米的正方体,在它的顶点处切下一个棱长1分米的小正方体,表面积和原来相比()。
A、减少了
B、不变
C、增加了
(4)一个正方体的棱长之和是24厘米,它的表面积是()平方厘米。
A、6B、48C、24
(5)如果长方体的长、宽、高都扩大3倍,那么它的表面积扩大()倍。
A、3B、6C、9
(6)把两个正方体拼成一个长方体,它的表面积减少()面的面积。
A、1B、2C、3
2、拓展练习。
(1)学校大门前有6级台阶,每级台阶长6米,宽0、4米,高0、2米。6级台阶一共占地多少平方米?给这些台阶上铺地砖,至少需要铺多少平方米地砖?
(2)设计包装纸。
a、把两包抽纸拼在一起有几种拼法?哪种最省包装材料?
b、把四包抽纸拼在一起有几种拼法?哪种最省包装材料?省多少平方厘米?
3、思考题。
下图表示用棱长1厘米的正方体摆成的物体。(书第18页)
(1)从上面、正面和左侧面看到的分别是什么形状?试着画一画。
(2)这个物体的表面积是多少平方厘米?
(3)在这个物体上添加同样大的正方体,补成一个大正方体。这个大正方体的表面积至少是多少平方厘米?
四、课堂作业
1、小区大门前有8级台阶,每级台阶长5米,宽0、4米,高0、2米。
(1)8级台阶一共占地多少平方米?
(2)给这些台阶上铺地砖,至少需要铺多少平方米地砖?
2、一间教室长8米,宽70分米,高40分米,现在要粉刷顶面和四面墙壁,门窗和黑板面积一共是30平方米。
(1)粉刷的面积是多少平方米?
(2)如果每平方米需工料费1、5元,粉刷工料费共需多少元?
《长方体的表面积》教学设计9
【教学内容】西师版第十册第39页例1。
【教学目标】1结合具体情境,探索并掌握长方体和正方体的表面积的计算方法,从中获得解决问题的方法和成功的体验。
2培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3让学生感受知识的形成过程,从而激发学生学习数学的兴趣。
4让学生体会所学知识在实际中的应用价值。
【教学重点】
长方体、正方体表面积的计算方法。
【教学难点】
确定长方体每一个面的长和宽。
【教具学具】
教具:长方体、正方体纸盒(可展开)。
学具:长方体、正方体纸盒、剪刀。
【教学过程】
一、复习引入
师:前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表面积?
出示一个长方体,指名摸它的表面。
师:我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,今天就运用这些知识来计算它们的表面积。
二、探究学习
1探索长方体表面积的计算方法
出示例1:制作下面这样一个长方体的'纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?
4人小组合作完成这个长方体表面积的计算。
汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。
生1:我们组是这样算的:8×4×2+4×5×2+8×5×2=184cm2前后面左右面上下面
师:你能把这种求表面积的方法归纳一下吗?
生:长×宽×2+长×高×2+宽×高×2。
生2:我们组是把6个面的面积分别算出来后再相加。
生3:我们组是先算“前面+左面+上面”的面积,再乘2就可以了。即:(8×4+4×5+8×5)×2=184cm2。
师:为什么求出这3个面的面积和,再乘2就可以了?
生:长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。
师:你能把这种求表面积的方法归纳一下吗?
生:(长×宽+长×高+宽×高)×2。(师板书)
师:观察真仔细,归纳能力真强。
师:在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流吧。
2探索正方体表面积的计算方法
师:通过大家的积极思考,我们学会了计算长方体的表面积。想一想,正方体的表面积又怎样算呢?
出示一个正方体,让学生自主探索方法。
汇报交流。
生1:我是把6个面的面积加起来。
生2:我是用(长×宽+长×高+宽×高)×2的计算方法来做的。
生3:我觉得只要求出一个面的面积再乘6就可以了。
师:能给大家讲讲你的想法吗?
生:正方体6个面的面积都是相同的。
师:你能把这种求表面积的方法归纳一下吗?
生:正方体的表面积=棱长×棱长×6。(师板书)
三、巩固练习
1练习十第2题。练习长方体和正方体表面积计算方法。让学生独立列式计算,然后集体评析。
2练习十第3题。先独立完成,再与同桌交流自己的算法。
四、课堂小结
通过这节课的讨论学习,你有什么收获和体会?
《长方体的表面积》教学设计10
教材分析:例1教学长方体表面积的计算方法。例1先引导学生明确,要知道至少用多少平方米的硬纸板,实际上就是求这个长方体包装箱的表面积,然后根据所给出的微波炉包装箱的长、宽、高,确定每个面的长和宽各是多少,想出每个面的面积应该怎样算。然后,再列出计算表面积的式子,让学生计算。为了培养学生能够根据具体条件和要求,确定不同的面的面积怎样算,更好地发展空间观念,教材中没有总结长方体表面积的计算公式,而是让学生根据表面积的概念自己计算。 实际生活中,经常遇到不需要算出长方体6个面的'总面积的情况。例如,制作没有盖的鱼缸、木箱或铁桶,粉刷房间的墙壁等,就需要根据具体情况考虑应该计算哪几个面的面积。教材通过教科书第34、35页的“做一做”加以说明,并且在练习中也适当加强了这方面的练习。
由于根据长方体的长、宽、高来确定各个长方形面的长和宽,对小学生来说是个难点。教材在练习六中采取分步走的办法,逐步使学生掌握。第1题,先练习求一个指定面的面积,这样可以帮助学生根据直观图所给的条件,逐步弄清计算的是哪个面的面积,这个面的长和宽应该是多少,哪些面的面积相等,进而逐步掌握计算长方体、表面积的方法
教学目标:
1、知识目标:使学生获得长方体和正方体表面积的概念。初步掌握长方体表面积的计算方法,并能运用所学知识解决一些实际问题。
2、能力目标:发展学生的空间观念,培养学生的动手操作能力和共同研究问题的习惯。
3、情感目标:通过亲身参与探索实践活动,去获得成功的情感体验,激发学生学习数学的兴趣。
教学重点:建立表面积的概念,初步掌握长方体表面积的计算方法。 教学难点:根据长方体的长、宽、高,确定每个面的长、宽是多少。教具、学具准备:多媒体课件、长方体礼品盒、包装纸、小纸盒、剪刀、火柴盒、尺子等。
教学方法:加强动手操作,积极参与,发现问题借助于模型、多媒体课件,让学生观察、触摸、拼拆、展示,全方位感知,培养空间观念,寻找知识的结合点,让各种现代化教学手段在提高课堂教学效率与质量上发挥更好的媒介作用,实现信息技术与数学教学的整合。
《长方体的表面积》教学设计11
教材简析
本堂课的内容是在学生学习了长方体和正方体的认识之后呈现的,是学生所接触到的第一节立体图形相关数值的计算,同时也是教学其它立体图形数值计算的基础,其地位非常重要。
二、教学目标
1、知识目标:让学生在操作、观察活动中,自主探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。能结合具体情境,解决生活中一些简单的问题,体会数学与生活的联系。
2、能力目标:培养学生自主探索、合作交流的能力;丰富学生对现实空间的认识,发展初步的空间观念。培养学生的动手操作能力和共同研究问题的习惯。
3、情感目标:调动学生学习的积极性,培养学生积极自主探索、互助学习的精神,在评价中获取更多情感,同时学会欣赏他人;通过亲身参与探索实践活动,去获得积极的成功的情感体验;体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。
三、教学重、难点
重点:理解长方体表面积的含义;理解并掌握长方体表面积的计算方法。难点:根据给出的长方体的长、宽、高,迅速确定每个面的长和宽,这也是正确计算长方体的表面积的关键。
四、学情分析
目前五年级学生的思维能力主要是直观形象到逻辑思维的过渡阶段,学习的动机主要是直接动机为主,认知水平不是一次性完成的,是逻辑滚动的,并且在学这部分内容之前,学生已经直观认识了长方体、正方体,并已经学会长方形、正方形等平面图形的计算。只有充分了解自己学生的基础和实际情况,才能有效的进行合理的教学。
五、教学方法
1、我采用“看看、说说、练练、议议”轻松教学法直奔教科书练习六的第1和第2题,使学生初步理解长方体表面积的概念。我于课前制作练习六的第1题的三个长方体图形的课件。先通过动画演示,激发学生的学习兴趣,直观地看到这三个图形的长、宽、高,然后用动画效果使前面变红并不停地闪动,让学生依次说出每个面的长与宽是多少,并计算其面积,接着用同样办法让学生练习计算出其佘5个面的面积和另外两个长方体各个面的面积,最后让学生议论长方体表面积的概念和计算方法。
2、用动画效果,直观演示长方体和正方体展开前与展开后的样子,进一步理解长方体和正方体表面积的概念。我用三维立体动画制作长方体和正方体展开效果的课件,使学生分清长方体和正方体上下、左右、前后六个面的关系,弄懂前面和后面、上面和下面、左面和右面面积相等,掌握6个面的总面积就是长方体和正方体表面积。
3、通过具体的实物演示,使学生加深理解长方体和正方体表面积概念。让学生拿出课前准备好的长方体和正方体纸盒,跟着老师在外面标出上、下、前、后、左、右,再沿着棱剪开后展开,看看展开后的形状,再按照展开前标出相应的上、下、前、后、左、右。
4、在教学例1时,我用三维立体动画电脑课件,动画演示,直观形象。让学生说出上、下、前、后、左、右每个面的长和宽是多少,弄清它们与原来的长方体的长、宽、高的关系,从而找出求长方体表面积的规律。
六、教学用具:
长方体电脑课件
七、教学过程:
(一)、实物引入、提示课题、明确目标(创设问题情境)
1、出示课题,长方体的表面积
电脑课件展示长方体各个面之间的存在的关系。动态展示长方体上下两个面是完全相同的动态展示长方体左右两个面是完全相同的动态展示长方体前后两个面是完全相同的
二、自主探索、形成表象、建立概念(提出数学问题)
(1)感受长方体表面积的意义。
师:同学们说的非常好。刚才我们想对长方体的那些部分进行包装?
生:长方体的6个面。
师:那么,什么是长方体的表面积呢?师:老师手中有一个展开的长方体,你发现了什么?
生1:我发现原来的立体图形变成了平面图形。
生2:我发现长方体的外表展开后是由6个长方形组成的。
师:说得对!请你把你刚才涂色的长方体,展开,看看展开后的形状,然后在展开后的图形中,分别用“上面”、“下面”、“前面”、“后面”、“左面”、“右面”标明6个面。
(2)、认识长方体表面积的含义。
师:从学生手中选一个长方体展开图,贴在黑板上。
问:通过观察课件和动手操作实物模型,谁知道什么叫做长方体的表面积?
生1:长方体的表面积,就是指长方体物体表面的面积。
生2:长方体的表面积,就是指长方体上下、前后、左右六个面的面积总和。
生3:简单地说就是把长方体六个面的总面积,叫做它的表面积。
师:既然长方体六个面的总面积叫做它的`表面积,那么怎样求长方体的表面积呢?
(3)探求表面积的计算方法
各小组先把手中长方体包装好。独立思考如何求它的表面积?然后小组交流。一人执笔三人汇报看哪个组的方法最多。各小组学生交流汇报结果。可能有以下几种:
生(1):分别求出长方体上、下、左、右、前、后的面积,再把它们的积加起来,就是它们的表面积。S=S上+S下+S左+S右+S前+S后
生(2) :求上、下两个面的面积;求出前、后两个面的面积;求出左、右两个面的面积,然后把三次乘得的结果加起来,就是长方体的表面积。S=2S上+2S左+2S前
生(3):求出上面,求出前面,求出左面,然后用它们相加的和,再乘以2,就得出六个面的总面积。因为长方体六个面中,分别有三组相对面的面积相等。S=2(S上+S左+S前)
生(4):侧面积加2个底面积.S=C底xh+2S上
师:你们计算的很准确!长方体学具是一个长、宽、高不等的长方体,你们能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
师:长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。
三、迁移类推、自己发现、总结方法
师:关于长方体表面积怎样计算大家还有问题吗?请仔细阅读教材,有问题提出来。
师:出示长方体牙膏盒,能计算出它的表面积吗?
生:齐声回答“能!”过了一会说:不能。
师:为什么?
生;因为不知道每个面的长和宽各是多少?
师:对!要想求出牙膏盒的表面积需要量出几个数据?分别是长方体的什么?
生:需要量出3个数据,分别是长方体的长、宽、高。
师:请看老师手中的长方体与刚才的长方体有什么不同?你能用最简便的方法求出它的表面积吗?
生:我发现这个长方体的宽和高是相等的,所以是一个特殊的长方体。生:列式(略)。
师:同学们不仅能仔细观察而且能根据实际求出长方体的表面积.真不错.现在老师还想请你帮个忙.我想给(出示正方形盒子或积木)涂上油漆,你能帮我算出它的面积吗?
生:能.但它的棱长为多少?
师:棱长为0.8米.生:列式.评价.总结正方体表面积公式.
四、应用与反思
1.知识运用。
(1例
1、做一个微波炉的包装箱,(如右图),至少要用多少平方米的硬纸板?独立计算,说说你是怎么计算的?
2、一个教室的长是8米,宽是6米,高是4米。要粉刷教室的屋顶和四面的墙壁。除去门窗和黑板面积22.4平方米,粉刷的面积是多少平方米?
五、归纳知识、总结学法、促进提高
小组说说:这节课学到了什么?学会了哪些知识?谁的方法最好?你喜欢哪种方法?你会解决哪些生活中实际问题?板书设计:长方体的表面积
长方体的表面积:用字母表示: =长×宽×2+长×高×2 +宽×高×2 S=a×b×2+b×c×2+a×c×2 =(长×宽+长×高+宽×高)×2 =( a×b+b×c+a×c)×2
《长方体的表面积》教学设计12
教学目标:
1、结合长方体和正方体的展开与折叠的情景,探究长方体和正方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算。
2、在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能运用所学知识解决一些实际问题。
3、通过亲身参与探索实践活动,去获得积极的成功的情感体验,并从中体验数学活动充满着探索与创造。
教学重点:在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。
教学难点:探索并理解长方体、正方体的表面积及其计算方法。教学过程:
一、复习旧知、有效铺垫
图形的世界中我们认识了很多好朋友,一起看大屏幕(出示长方形),认识吗?你知道长方形面积怎么计算吗?
再来看(出示长方体),这是新认识的长方体,你还记得长方体的面、顶点、棱的特征吗?(重点板书:长方体6个面)(前—后,左—右,上—下)
二、寻找联系、引入新知
1、审题读取数据(出示相关数据)关于这个长方体,你能获取哪些信息?(引导学生读出长方体的长、宽、高,并发现相对的面,颜色相同。)
同学们手中也有一个相同的长方体,你能像老师这样摆放,并标出上下左右前后六个面吗?(试一试,并指名指一指)
2、动手填写数据
上节课,我们学习了展开与折叠,谁能说一说将这样一个长方体纸盒展开后,将得到一个什么样的图形?(将得到一个六个面相连接的平面图形,即长方体展开图)
在上节课的学习中,我们还知道由于剪的方法不同,得到的长方体的展开图也是不一样的。下面,老师就将这个长方体展开,得到的一个像这样的展开图(出示展开图)。现在,请同学们仔细观察这个长方体以及它的展开图,你能分辨得出这个长方体的六个面分别对应于展开后图形中的哪个部分吗?
同学们观看16页的展开图,请同学们一起来做个活动,先看要求:
(1)判断长方体的六个面分别对应于展开图的哪个部分,将上下左右前后标在展开图的各个面上。
(2)根据长方体各条棱的长度,将合适的数据填在展开图的方框中。明白了吗?动手试试看。
指名试一试,这个同学完成的如何,和你标的一样吗?反馈:谁能来说说,你是怎么填的?
三、情境引入、探索新知
1、揭示长方体表面积概念同学们很善于观察,找出了长方体与其展开图之间的联系,那么你想不想通过自己的本领知道我们做这样一个纸盒需要多少纸板吗?
适时引导学生思考,求至少需要多少面积的纸板其实就是求什么?(所有面的面积之和)长方体6个面的面积之和就是长方体的表面积。(补充板书)
拿出手中的长方体,摸一摸它的6个面,体验一下它的表面之和。
2、估计长方体纸盒表面积谁能先来估计一下这个长方体纸盒的表面积是多少?(引导学生说出估计的过程与方法,并适时的渗透一些估计的方法与技巧。)
3、小组交流并计算结合这个长方体及它的展开图,想一想,你准备如何计算它的表面积?四人小组内介绍一下你的`方法。用你喜欢的方法计算。
4、全班交流与汇报学生板书汇报自己的方法,并让其他同学给予相应的评价。
5、概括计算长方体表面积的方法
方法一:6个面面积相加
方法二:计算3个面的面积×2,依据相对的面的面积相等的特点。
方法三:计算三对面的面积再相加,请同学们仔细观察这三种方法,谁能说一说,这三种方法之间有什么联系?有什么相同之处?请同学们开动脑筋,灵活的计算长方体的表面积。
总结求表面积的方法:要想求长方体的表面积,需要知道什么?知道了长宽高,应该怎样计算呢?
6、知识推广思考:求正方体表面积,需要知道什么?出示课本第18页试一试,引导学生完成。
四、巩固练习
1、基本练习17页1题,3题,独立完成,集体纠正。
2、拓展练习(1)17页4题。
(2)想一想,一个长方体的饮料盒,它的长、宽、高分别是6cm、3cm、10cm。如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少是多少?分析题意,独立完成,集体纠正。
五.通过本节课学习你有什么收获?
《长方体的表面积》教学设计13
教学目标:
1、知识与技能:学生建立表面积概念,会求长方体与正方体的表面积。
2、过程与方法:小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。
3、情感、态度与价值观:运用公式实际应用,并提升学生的数学思维能力。
教学重点:
1、长方体表面积公式的求法探究。
2、公式的实际应用。
教学难点:
长方体、正方体的表面积公式探究方法。
教具、学具的准备:长方体盒、正方体盒、长方体展开图、课件
教学过程
一、创设情境 导出新课
师:同学们,告诉大家一个好消息,今天是我们学习的好伙伴淘气的十岁生日,他的好朋友笑笑要送给他一份生日礼物。这个礼物准备好了,可是老师对这个包装盒却不太满意,你能帮助笑笑出一个好主意吗?
生:可以在包装盒外面包一层彩纸。
师:老师也是这么想的。看,老师用彩纸将这个包装盒包装了一下,请看(出示课件)。
师:漂亮吗?
生:漂亮。
师:现在新问题又出现了。要把这个包装盒包装好,需要多大的彩纸呢?要求多大的彩纸就是求什么呢?
生:求六个面的面积之和。
师:对,求六个面的面积之和就是求长方体的表面积。今天,我们就来研究长方体的表面积.(板书课题)
二、引导探索 初步感知
1、长方体表面积的意义
师:同学们,刚刚我们对长方体礼盒的哪些部分进行了包装?
生:它的六个面。
师:而且,刚刚我们知道的长方体六个面的面积之和就是长方体的表面积,那么,你是如何理解长方体的表面积的'呢?(师提问)
生:就是求六个面的总面积。(出示课件)
师:下面,就请同学们拿出自己准备的长方体,仔细地观察,长方体的六个面的面积之和包括哪些?(同学之间互相交流)
师对照长方体讲解表面积的含义。(出示课件,学生齐读长方体表面积的意义)
师:那么正方体呢?(请同学对照正方体说一说)
师:他说得对不对呢?
生:对。
师:正方体的表面积也就是六个面的面积,它包括前面、后面、上面、下面、左面和右面。那么,下面请同学们对照着手中的长方体和正方体,标出它的六个面。
(同位之间互相指着模型说一说。)
师:好。请同学们观察手中的长方体,你从任意一个角度,对多能看到长方体的几个面?
生:三个面。
师:那么如果老师想看到六个面,应该怎么办呢?
生:把它拆开。
师:那么把它展开,是不是就能看到六个面了呢?
生:是的。
师:下面请同学们想象一下把长方体展开是什么图形?(出示课件)
请同学们上讲台介绍自己展开后的图形,并分别指出它们所对应的面。对于不同的方法加以表扬。
师:介绍长方体的展开图有多种。希望同学们课下动动脑筋想一想,想象展开后的图形。
(师用课件展示长方体的展开图形,并质疑:观察展开图你发现了什么?)
同学交流并回答问题。
2、探究长方体表面积的计算方法
师:正如大家所说所看到的长方体展开后的图形,相对的面完全隔开了,展开后每个长方体都有六个面。而且,我们知道长方体的对面面积相等,那么,求长方体的表面积就更加形象和直观了。由长方体变成了我们很熟悉的长方形。那么,你能求出它的表面积吗?
(出示课件,生相互交流并展示)
生介绍自己的方法,对好的方法加以肯定。
师:你是怎么想的?
生1:我是想先求出长方体六个面的面积,把它们的结果相加起来,就是长方体的表面积。
S表=S上+S下+S前+S后+S左+S右
师:说得很好。同学们应该表扬一下。谁还有不同的方法呢?
生2:由于长方体的对面相等,所以我只要求出一个面乘以2就可以了。我得出的公式是:
长方体的表面积=长×宽×2+长×高×2+宽×高×2
(师板书)
师:这个方法很好,还有不同的方法吗?
生3:我是先求出上面、前面、左面的面积之和,再乘以2,就可以求出长方体的表面积了。
我得到的公式是:长方体的表面积=(长×宽+高×宽+高×长)×2
(师板书)
师:你真聪明,大家表扬一下。(大家鼓掌表扬)
师出示课件,介绍长方体表面积的求法。
3、应用长方体表面积计算公式
师:请大家算一算,做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,需要多少平方厘米的硬纸板?(学生独立解答,指明学生回答)
4、渗透正方体表面积计算方法
(出示课件,学生独立思考并回答)
师:这个是一个棱长为8厘米的正方体,求它的表面积。
(学生独立思考并解答)
三、应用所学知识 解决问题
1、出示长方体礼盒的包装袋,并质疑,求几个面的面积。
学生独立解答,集体订正,要求学生说出理由和依据。
2、出示教材P18“试一试”,要求学生独立解答。
让学生理解题意后,鼓励学生独立解答,小组交流,全班集体订正。
3、师:做一个长方体的鱼缸需要求几个面的面积?(学生思考,指名回答)
(出示课件)
四、课堂小结
师:同学们当遇到具体问题,要具体对待。数学知识与我们密不可分,我们要学会利用数学知识解决实际问题。这一节课,你学到了什么?和同学们交流一下。
附:板书设计
长方体与正方体的表面积
长方体的表面积=长×宽×2+长×高×2+宽×高×2
长方体的表面积=(长×宽+高×宽+高×长)×2
正方体的表面积=棱长×棱长×6
《长方体的表面积》教学设计14
教学目标:
1.知识技能:
(1)掌握长方体和正方体表面积的基本计算方法。
(2)能够根据给出的长方体的长宽高,确定与所求面对应的棱。
(3)通过练习学会灵活地解决一些实际问题。
2.过程与方法:通过独立完成、小组学习等多种形式进行有效的练习。
3.情感、态度与价值观:结合练习培养分析、解决问题的能力,以及良好的思维品质。
教学重点和难点:
教学重点:根据给出的长方体的长宽高,确定与所求面对应的'棱。
教学难点:运用长方体和正方体表面积的基本计算方法,灵活地解决实际问题。
教学过程:
一、基本练习回顾旧知
课件出示长方体和正方体
要求长方体或正方体的表面积必须知道什么?
根据给出的数据可以求出哪些面的面积?
要求表面积怎样列式计算?
学生在练习本中列式计算→小组内互相检查→个别汇报
二、变式练习探索本质
课件出示图片
在实际生活中,物体的表面并不总有6个面,老师带来了一幅图,请看,这些物体的表面各有几个面,缺少了哪个面?
学生看图判断,口头回答
同学们的判断真准确,也就是在解决有关长方体和正方体表面积有关问题时,我们首先要判断要求物体哪些面的面积,而不能盲目地列式。
下面老师这里有2道题,请同学们先判断是求物体地哪些面,然后再列出算式。
课件出示题目
杂货店售米用的木箱(上面没有盖),长1.2米、宽0.6米、高0.8米,
1.制作这样一个木箱至少要用木板多少平方米?
2.如果把木箱放在地上,占地多少平方米?
当我们求长方体的表面积的时候,首先要判断要求哪几个面的面积,缺少了哪个面;再确定所求的面对应的棱的数据,这样才不至于在计算中出现错误。
3.如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?
抓审题,引导学生想出利用木箱的侧面展开图进行计算更简便。
学生独立列式→同位互相检查→集体讲评
下面这道题,你们又能不能找准求哪些面,对应哪些棱呢?能准确判断地同学请列出算式。
4.在木箱的四周贴上商标纸,宽度是0.2米,贴这个木箱要用商标纸多少平方米?
学生尝试列式→提出审题困惑的地方→了解商标纸的“宽”实际上就是长方体的“高”发生了变化,长和宽都没有变
我们刚才围绕售米用地木箱,解决了4道题,这4道题有的是求5个面的面积、有的是求1个面的面积,有的是求4个面地面积,所以我们再解决有关题目地关键在于判断要求哪些面,找准与面所对应的棱。
三、检测练习巩固强化
这是同学们在解决问题是出现的5种列式方法,请同学们当当小老师,判断对还是错,然后在小组中交流意见,说说理由。
课件出示题目
一个橡皮擦的外包装长3厘米、宽2厘米、高0.5厘米,做这样一个外包装至少要用硬纸多少平方厘米?
(1)3×2×2+2×0.5×2()
(2)(2×0.5+3×0.5)×2+5×2()
(3)3×2×2+3×0.5()
(4)(3×2+3×0.5)×2()
(5)(2+0.5)×2×3()
学生独立思考作出判断→进行小组交流→汇报
三、综合练习发展提高
同学们真不错,不仅能自己准确找到求哪些面的面积,还会对同学的错误进行判断说理,那你能够用你地本领解决下面地问题吗?
课件出示题目
学校要给美术室重新装修,美术室长8米,宽6米,高4米。
1.工人叔叔给美术室的地面铺上地砖,铺地砖的面积是多少平方米?
2.如果每平方米用4块地砖,至少需要准备多少块地砖?
3.粉刷教室屋顶和四壁,除去门窗和黑板的面积20平方米,粉刷的面积是多少平方米?
4.如果每平方米用涂料0.25千克,至少需要涂料多少千克?
独立完成→小组中进行互评、说理→选取代表说说小组中出现的解决问题的方法有哪些。
在解决实际问题的过程中,我们除了要准确地运用方法列式计算以外,还要考虑生活地实际情况,才能够合理地解决问题。
四、全课小结
同学们,我们今天学习了什么?你有什么收获?
《长方体的表面积》教学设计15
教学目标
1.通过操作观察,使学生知道长方体和正方体表面积的含义.
2.初步学会长方体和正方体表面积的计算方法.
3.培养学生的动手操作能力和空间观念.
教学重点
建立表面积概念,初步学会计算长方体和正方体的表面积.
教学难点
正确建立表面积的概念.
教学步骤
一、铺垫孕伏.
1.长方体的特征是什么?
2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?
二、探究新知.
导入 :同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容.
(一)建立长方体表面积的概念.
1、教师提问:什么叫做面积?
长方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2、教师明确:这六个面的总面积叫做它的表面积.
3、学生两人一组相互说一说什么是.
4、教师板书:长方体6个面的总面积,叫做它的表面积.
(二)长方体表面积的计算方法.【演示课件】
1.学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的.
2.教学例1.
做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
教师启发:做这样一个长方体纸盒要用多少平方厘米的硬纸板就是要计算这个.首先要找出每个面的`长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积.
第一种解法:
长方体表面积=6个面积的和
64+64+45+45+65+65
=24+24+20+20+30+30
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
第二种解法:
长方体表面积=上下面面积+前后面面积+左右面面积
652+642+452
=60+48+40
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
副标题#e#
第三解法:
长方体表面积=(下面面积+前面面积+右面面积)2
(65+64+54)2
=742
=148(平方厘米)
答:至少要用148平方厘米硬纸板.
3.思考:你认为哪种解法简便?
(根据乘法分配律可以把第一个式子和第二个式子改写成第三个式子;第三个算式更简便些)
4.教师小结:
计算长方体表面积的关键是找出每个面的长和宽.
5.练习:
一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?
三、全课小结.
这节课我们学习了什么知识?我们学习了有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)
四、随堂练习.
1.用两种方法计算自带.
2.计算下图的表面积.
①计算.
②有几种计算方法?
③哪种方法比较简便?
五、课后作业 .
一个长方体的形状大小如下图:
它上、下两个面的面积分别是多少平方分米?
它前、后两个面的面积分别是多少平方分米?
它左、右两个面的面积分别是多少平方分米?
这个是多少平方分米?
六、板书设计 .
长方体6个面的总面积叫做它的表面积.
例1.做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
64+64+45+45+65+65
=24+24+20+20+30+30
=148(平方厘米)
=60+48+40
=148(平方厘米)
652+642+452
=60+48+40
=148(平方厘米)
(65+64+54)2
=742
=148(平方厘米)
答:至少需要148平方厘米硬纸板.