《正比例》教学设计(15篇)

发布者:菜鸟五毛 时间:2023-2-13 00:19

《正比例》教学设计(15篇)

在教学工作者实际的教学活动中,就难以避免地要准备教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计要怎么写呢?下面是小编帮大家整理的《正比例》教学设计,仅供参考,大家一起来看看吧。

《正比例》教学设计(15篇)

《正比例》教学设计1

教学内容:教科书第62~63页的例1和“试一试”,“练一练”和练习十三的第1~3题。

教学目标:

1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。

教学重点:

结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。

教学难点:

能跟据正比例的意义判断两种相关联的量是否成正比例的量。

教学准备:

教学过程:

一、导入

谈话:同学们购物问题中有单价、数量、总价,你知道它们之间的关系吗?

学生讨论,反馈。

[设计意图:本环节结合生活中的实例,引导学生体会数量之间的关系。]

二、教学例1

1、出示例1的表格。

提问:表中列出了哪两种量?(板书:时间和路程)

观察表中的数据,哪一种量的变化引起了另一种量的变化?

指名回答。

谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)

为什么说路程和时间是两种相关联的量?

学生交流。(有的学生可能发现一种量扩大到原来的几倍,另一种量也随着扩大到原来的几倍;有的学生可能会发现一种量缩小到原来的几分之几,另一种量也随着缩小到原来的几分之几。)

2、谈话:观察表中的数据,这两种量在变化中有没有什么不变的规律呢?

学生交流,教师引导:请写出几组对应的路程和时间的比,并求出比值,根据学生回答板书:=80=80=80……

提问:你能用一个式子来表示上面的规律吗?

根据学生回答,板书:=速度(一定)

3、小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间成正比例的量。(板书:正比例的意义)

[设计意图:正比例的知识在日常生活中有着广泛的应用。通过学习这部分知识,可以帮助学生加深对学过的数量关系的认识,使学生学会从变量的角度来认识两个量之间的关系,把握正比例概念的内涵和本质。]

三、教学“试一试”

1、出示“试一试”,学生自由读题。

2、让学生根据已知条件把表格填写完整。

3、请学生根据表中数据,先尝试独立完成表格下面的四个问题,再和同桌交流。

4、学生交流中,明确:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。

[设计意图:让学生在认识成正比例的量的过程中,体会数量之间相依互变的.关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。]

四、归纳字母公式

1、比较例题和“试一试”的相同点。

提问:观察上面的两个例子,它们有什么相同的地方呢?

(1)都有两种相关联的量;

(2)两种相关联的量相对应的两个数的比值总是一定的;

(3)两种量都成正比例。

2、如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?

根据学生的回答,板书:=(一定)

交流:和表示两种相关联的量,比的比值一定,我们就说和成正比例。

[设计意图:文似看山,学如登高。结合实例认识成正比例的量的特点,加深对正比例意义的理解。]

五、巩固练习

1、完成第63页“练一练”。

学生独立思考并作出判断,要用完整的语言说出判断的理由。

2、完成练习十三第1题。

(1)让学生按题目要求先各自算一算、想一想。

(2)全班交流,让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。

3、完成练习十三第2题。

(1)让学生独立判断,并指名说说判断的理由。

(2)注意引导学生有条理地说明判断的思考过程。

4、完成练习十三第3题。

(1)先让学生说说题目中将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?

(2)再让学生在书上画出放大后的图形,并算出每个图形的周长和面积,并填在表中。

(3)讨论表格下面的两个问题。通过讨论使学生明确:只有当两种相关联的量的比值一定时,它们才成正比例。

[设计意图:按照新课改的理念,教学中创设开放的问题情境和宽松的学习氛围,给学生充分思考、交流的空间,进一步巩固对正比例意义的理解。]

六、全课总结

这节课你学会了什么?通过这节课的学习,你还有哪些收获?

[设计意图:引导学生进行课堂反思,进一步理解成正比例的量,为后面的学习打基础。]

七、作业

完成《练习与测试》相关作业。

板书设计

正比例的意义

时间和路程路程和时间是两种相关联的量。

=80=80=80……

=速度(一定)

=(一定)

《正比例》教学设计2

尊敬的各位评委:

你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。

一、教材分析

1、教学内容:人教版六年级下册P39正比例的意义。

2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

3、教学重点,难点、关键:

教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

4、教学目标:

根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

二、学况分析

六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

三、教法

遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

四、学法

引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

五、教学过程

本节课我安排了六个教学环节

第一个环节:游戏导入,激发兴趣

用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

第二环节:引导观察,启发思考

教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的'概念。

第三环节:创设情景,观察实验

用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

第四环节:探究成正比例的量

学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

第五环节:巩固练习,拓展提高

第六环节:全课小结

六、效果预测

在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

《正比例》教学设计3

教学内容:

教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重难点:

理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例

学情分析

1.学生在学习本单元之前已经学习了比和比例的.有关知识,会解决按比例分配的简单数学问题。

2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。

多媒体运用:ppt课件

教学过程:

一、教学例1

1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。

2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。

3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。

学生可能会从不同的角度去寻找规律。

教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

根据学生的回答,教师板书关系式:路程时间=速度(一定)

5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

(板书:路程和时间成正比例)

二、教学“试一试”

1、要求学生根据表中的已知条件先把表格填写完整。

2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

三、抽象表达正比例的意义

1、引导学生观察上面的两个例子,说说它们有什么共同点。

2、启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书关系式。

四、巩固练习

1、完成第63页的“练一练”。

先让学生独立思考并作出判断,再要求说明判断理由。

2、做练习十三第1~3题。

第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

第2题先让学生独立进行判断,再指名说判断的理由。

第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

五、全课小结

这节课你学会了什么?通过这节课的学习,你还有哪些收获?

《正比例》教学设计4

【教学内容】

正比例

【教学目标】

使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】

投影仪。

【复习导入】

1.复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书: =速度。

②已知总价和数量,怎样求单价?

板书: =单价。

③已知工作总量和工作时间,怎样求工作效率?

板书: =工作效率。

2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

【新课讲授】

1. 教学例1。

教师用投影仪出示例1的图和表格。

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2.教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3.归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素:

第一:两种相关联的.量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三:两个量的比值一定。

4.用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

5.教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

【课堂作业】

完成教材第46页的“做一做”(1)~(3)。

答案:

(1) 。

(2)比值表示每小时行驶多少km。

(3)成正比例。理由:路程随着时间的变化而变化。

①时间增加,路程也增加,时间减少,路程也随着减少;②路程和时间的比值(速度)一定。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

《正比例》教学设计5

教学目标:

1.初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。

2.使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。

教学重点:

会根据正比例的意义判断两种相关联的量是不是成正比例。

教学难点:

会根据正比例的意义判断两种相关联的量是不是成正比例。

预习指导:

一、自学教材。

阅读教材第62~63页。

二、检查学习。

1.怎样两个量成正比例?

2.完成"试一试"。

教学准备:

课件和口算题。

教学过程:

一、导入

谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

二、教学例1 1.课件出示例1的表

⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?

⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。

2.那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。

3.我们可以写出这么几组路程和对应时间的比。

⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?

⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律

⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

课件出示:路程和时间成正比例。

⑷现在你能完整地说一说表中路程和时间成什么关系吗?

4.刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目,教案《正比例意义教学设计》。

⑴课件出示"试一试"

⑵请大家先根据题目里的信息把表中的'数据填完整,然后说一说总价是随着哪个量的变化而变化的?

课件出示表中的数据。

⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。

集体交流:

⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?

⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。

小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。

⑹你能完整地这样说给你的同桌听一听吗?

⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?

课件出示课题。

⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?

指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。

5.完成"练一练"

⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?

⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。

小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?

三、练习

1.完成练习十三第1题。

请大家继续看课本66页第1题

2.完成练习十三第2题

⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?

⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。

3.完成练习十三第3题(课件出示题目)

⑴课件出示放大后的三个正方形、

⑵大家看一看,你是这样画的吗?

⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。

校对学生做的情况。

⑷请大家根据表中的数据讨论下面两个问题。

①正方形的周长与边长成正比例吗?为什么?

②正方形的面积与边长成正比例吗?为什么?

四、总结。

通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。

板书设计:

正比例的意义

路程和时间是两种相关联的量,

时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,

我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

《正比例》教学设计6

教学内容:

苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

教材学情分析:

本节课是《正比例和反比例》复习的第二教时,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

“练习与实践”第7题让学生根据提供的两组数据判断相应的两种量分别成什么比例,有利于学生巩固对成正比例和反比例量的认识,掌握判断两种量是否成比例以及成什么比例的基本思考方法;“练习与实践”第8题让学生结合生活经验以及相关数量关系的理解,继续练习成正比例和反比例量的判断方法;“练习与实践”第9题的第一题让学生根据表示一辆汽车在高速公路上行驶的千米数和耗油量关系的图象,先判断这两种量是否成正比例,再根据其中一个量的数值估计另一个量的数值。第二题要求学生根据一辆汽车在市区行驶的千米数和耗油量关系的数据,在方格纸上画出表示它们关系的图象。通过上述活动,一方面可以使学生加深对正比例关系的认识,另一方面可以使进一步体会数学结合在解决问题方面的价值;“练习与实践”第10题是一个与比例尺有关的实际问题。教材先让学生量出一幅平面图上相关的图上距离,再让学生利用给出的比例尺求出相应的实际距离。教材这样的安排,主要让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。

教学目标:

⑴使学生进一步认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

⑵让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。

⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

教学重点:

进一步认识成正比例和反比例的量。

教学难点:

感受比的应用价值,在活动中获得一些新的'认识。

教学具准备:

教学流程:

一、教师谈话,揭示课题。

⑴教师谈话。

教师谈话:上一节课我们复习了“比和比例”的有关知识,本节课我们继续复习这方面的知识。板书:正比例和反比例。

⑵揭示课题。

揭示课题——正比例和反比例。

二、师生互动,合作交流。

⑴完成“练习与实践”第7题。

呈现“练习与实践”第7题,明确要交流的主题:表中的两种量分别成什么比例?为什么?

班级交流判断的方法:一是利用表中的数据进行判断,在次体会正比例和反比例量在变化中的不同规律。成正比例关系的两种量同时扩大或缩小,它们扩大或缩小的倍数是相同的;成反比例的两种量,一个量扩大,另一种量反而缩小,它们扩大或缩小的倍数也是相同的;二是利用数量关系式判断,表格一:因为钢材质量:钢材体积=比重(一定),所以钢材质量和钢材体积成正比例;表格二:圆柱底面积×圆柱高=圆柱的体积(一定),所以圆柱底面积和圆柱高成反比例;利用图象判断,用描点的方法画出图象,如果是直线,则成正比例。

⑵完成“练习与实践”第8题。

呈现完成“练习与实践”第8题,明确要思考的内容:先写出数量关系式,再判断是否成比例?成什么比例?为什么?独立写出数量关系式,同桌交流。

第一问:因为每块砖的面积×砖的块数=一间教室的面积(一定),所以每块砖的面积和砖的块数成反比例;

第二问:因为圆的周长÷半径=2π,所以圆的周长和半径成正比例。

⑶完成“练习与实践”第9题。

呈现完成“练习与实践”第9题,明确要交流的内容:判断行驶的路程和耗油量是否成正比例;根据图象用一种数据判断另一种数据是多少。

班级交流理解、完成题目的情况,进行“根据图象用一种数据判断另一种数据是多少”的练习;反馈学生形成的正比例图象的情况;比较汽车高速公路和市区耗油量的不同情况,体会比例知识在日常生活中的应用价值。

⑷完成“练习与实践”第10题。

呈现完成“练习与实践”第10题,理解题目的意思,分别量出学校到各个地方的图上距离,形成以下板书:

图上距离实际距离

学校-少年宫4厘米?米

学校-体育场3.5厘米?米

学校-市民广场2.5厘米?米

学校-火车站7厘米?米

多种角度理解比例尺的意思:图上距离1厘米表示实际距离600米;图上距离1厘米表示实际距离60000厘米;……

解答:在多种书写形式的基础上,体会用“图上距离1厘米表示实际距离600米”的优越性。沟通和正比例之间的联系。

⑸谈谈本节课的收获。

《正比例》教学设计7

赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节

课的个人看法:

一、注重数学和生活的联系,课堂灵活开放。

老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的.关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。

二、如花微笑,温暖学生。

这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。

三、用问题引领学生,突出学生的主体地位。

“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。

《正比例》教学设计8

教学内容:

九年义务教育六年制小学数学第十二册P62——63

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点:

认识正比例的意义

教学难点:

掌握成正比例量的变化规律及其特征

设计理念:

课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

一、复习铺垫激情促思

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

学生口答,相互补充

二、初步感知探究规律1、出示例1的.表格(略)

说说表中列出了哪两种量。

(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

(2)引导学生观察表中数据,寻找两种量的变化规律。

根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

根据学生的回答,板书关系式:路程/时间=速度(一定)

(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,(板书:路程和时间成正比例)

2、教学“试一试”

学生填表后观察表中数据,依次讨论表下的4个问题。

根据学生的讨论发言,作适当的板书

3、抽象表达正比例的意义

引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书:=k(一定)

揭示板书课题。

先观察思考,再同桌说说

大组讨论、交流

学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

学生根据板书完整地说一说表中路程和时间成什么关系

学生独立填表

完整说说铅笔的总价和数量成什么关系

学生概括

三、巩固应用深化规律

1、练一练

生产零件的数量和时间成正比例吗?为什么?

2、练习十三第1题

先算一算、想一想,再组织讨论和交流。

要求学生完整地说出判断的思考过程。

3、练习十三第2题

先独立判断,再有条理地说明判断的理由。

4、练习十三第3题

先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

讨论、交流

独立完成,集体评讲

说明判断的理由

说一说,画一画

填一填,议一议

讨论

四、总结回顾评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

《正比例》教学设计9

教材分析:

正比例这个资料是学生在学习了比的好处、比的化简与比的应用等资料的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的好处,决定两个量是否成正比例。教材带给了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生透过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的好处,会决定两个量是否成正比例。

学情分析:

学生在学习乘法时,已经明白一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个资料是有个初步的接触。在这个资料的学习中,学生最容易掌握的是根据表格中的具体数据决定两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述决定两个量是否成正比例,个性是学生对学过的数量关系不熟悉时就更难了。

教学目标:

1、结合丰富的事例,认识正比例,理解正比例的好处,并初步感受生活中存在很多成正比例的量。

2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

教学重点:

1、结合丰富的事例,认识正比例,理解正比例的好处。

2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

教学难点:

能根据正比例的好处,决定两个相关联的量是不是成正比例。

教学用具:

课件

教学过程:

一、在情境中感受两种相关联的量之间的变化规律。

(一)情境一

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(二)情境二

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

(三)情境三

1、观察图,分别把正方形的周长与边长,面积与边长的变化状况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:这两个表格中的变化状况与上两题的变化规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值必须都是4。正方形的面积一边长的比是边长,是一个不确定的值。

(四)归纳正比例的好处

1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

2、购买苹果应付的钱数与质量有什么关系?

3、正方形的周长与边长有什么关系?

4、观察思考成正比例的量有什么特征?

一个量变化,另一个量也随着变化,并且这两个量的比值相同。

5、小结

两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的'比值(也就是商)必须,这两种量就是成正比例的量,它们的关系就是正比例关系。

二、巩固练习

1、想一想

正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化状况如下

小明的年龄/岁

爸爸的年龄/岁3233

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再群众汇报

三、全课总结:

说说你在这节课中学到了什么知识?有什么不明白的地方?

板书设计:

正比例

路程÷时间=速度(必须)

总价÷数量=单价(必须)

正方形的周长÷边长=4(必须)

两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)必须,这两种量就成正比例。

《正比例》教学设计10

教学内容:

教科书第59页例5以及相关练习题。

教学目标:

1、使学生能正确判断题中涉及的量是否成正比例关系。

2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

4、在成功解决生活中的实际问题中体会数学的价值。

教学重点:

利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

教学难点:

正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

教具准备:

小黑板

教学过程:

一、复习铺垫,激发兴趣。

1、填空并说明理由。

(1)速度一定,路程和时间成( )比例。

(2)单价一定,总价与数量成( )比例。

(3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

3、提出问题:老师请你用一把米尺去测量学校旗杆的`高度,你能行吗?

生1:把旗杆放下量。

生2:爬上去量。

生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

师:相信通过这一节课的学习,你一定会找到解决的方法的。

【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

二、揭示课题、探索新知。

1、小黑板出示例5

张大妈:我们家上个月用了8吨水,水费是12.8元。

李奶奶:我们家用了10吨水,上个月的水费是多少钱?

思考:题中告诉了我们哪些信息?要解决什么问题?

师:你能利用数学知识帮李奶奶算出上个月的水费吗?

(1) 学生自己解答。

(2) 交流解答方法,并说说自己想法。

算式是:12.8÷8×10

=1.6×10

=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

(也可以先求出用水量的倍数关系再求总价。)

10÷8×12.8

=1.25×12.8

=16(元)

【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】

师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

(3)小黑板出示以下问题让学生思考和讨论:

1)题目中相关联的两种量是( )和( ) ,说说变化情况。

2)( )一定,( )和( )成( )比例关系。

3)用关系式表示是( )

(4)集体交流、反馈

板书: 水费 用水吨数

12.8元 8吨

?元 10吨

水费:用水吨数 = 每吨水的价钱(一定)

师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(5)根据正比例的意义列出比例式(方程):

学生独立完成,教师巡视。

反馈学生解题情况。

8

12.8

10

χ

解:设李奶奶家上个月的水费是χ元。

12.8 :8 =χ:10 或 =

8χ=12.8×10 8χ= 12.8×10

χ=128÷8 χ=128÷8

χ= 16 χ= 16

答:李奶奶家上个月的水费是16元。

【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】

(6)将答案代入到比例式中进行检验。

你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

生交流,汇报。

2、变式练习。

刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

(1)比较一下改编后的题和例5有什么联系和区别?

(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

(3)集体订正,学生说一说你是怎么想的?

3、概括总结

师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?

学生讨论交流,汇报。

师总结:

1、分析找出题目中相关联的两种量。

2、判断他们是否是正比例关系。

3、根据正比例的意义列出比例。

4、最后解比例。

5、检验作答。

【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】

三、巩固练习,形成技能。

1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

师提醒:同一时间、同一地点的身高和影长成正比例。

学生读题后,先思考以下三个问题。

① 题中已知哪两种相关联的量?

②它们成什么比例关系?你是根据什么判断的?

② 你能列出等式吗?

生独立完成,并汇报解答过程。

2、教科书P60“做一做”。

生独立解答。

【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】

四、全课总结

通过今天的学习,你有什么收获?

五、布置作业

练习九第3、5题。

板书设计:

用比例解决问题

水费 用水吨数 解:设李奶奶家上个月的水费是χ元。

12.8元 8吨

?元 10吨 12.8 :8 =χ:10

8χ= 12.8×10

水费:用水吨数 = 每吨水的价钱(一定)

χ=128÷8

χ= 16

答:李奶奶家上个月的水费是16元

《正比例》教学设计11

教学内容:

本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。

教材分析:

本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。

教学目标:

1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。

2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。

教学重点:

认识正、反比例的意义

教学难点:

根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。

课时安排:

正比例和反比例(4课时)

第1课时

教学内容

成正比例的量

教材第62—63页的例1和试一试,练一练和练习十三的第1—3题

课型

新授

本单元教时数:4本教时为第1教时备课日期月日

教学目标

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。

3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。

教学重点

使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

教学难点

根据正比例的意义正确判断两种相关联的量是不是成正比例。

教学准备

光盘课件

教学过程设计

教学内容

教师活动

学生活动

二次备课

一、教学例1

1、谈话引出例1的表格

2、这两种量的数据是怎样变化的?

时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。

小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。

3、但是,你能发现什么呢?

如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。

这个比值是什么呢?

谁能用一句话来概括例1中的变化与不变

4、介绍成正比例的量

指名说说,表中有哪两种量

引导学生观察,

指名说一说。

启发学生从“变化”中寻找“不变”。

学生试着回答,教师帮助完成。

学生完整的说说路程和时间成正比例的量

二、教学试一试

1、出示教材试一试

教师指导学生完成

学试着完成,并交流回答四个问题。

三、概括意义

1、引导学生观察例1和试一试,它们有什么共同点。

2、概括正比例的意义,揭示课题(板书)

3、用字母怎样表示成正比例关系的两种量呢?

y:x=k(一定)

观察,说说自己的发现。

学生完整的说一说例1和试一试成正比例关系。

四、巩固练习

1、完成练一练

2、练习十三第1题

重点让学生说出判断的理由

3、做练习十三第2题

4、做练习十三第3题

引导学生根据计算的结果来判断。完成书上的问题

重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。

独立判断,交流时说出判断的`理由。

学生先各自算一算,交流,说出思考过程。

指名判断,交流时说出思考过程,其它同学进行补充或纠正。

学生理解题意,然后在书上画一画,算一算,填在书上。

五、全课总结

学习了什么?你有什么收获?

说一说

板书

正比例的意义

两种相关联的量=k(一定)y和x就成正比例的量

课后感受

第2课时

教学内容

正比例的意义及其图像

教材第63页例2,随后的练一练和练习十三的第4、5题

课型

新授

本单元教时数:4本教时为第2教时备课日期月日

教学目标

1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

教学重点

使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

教学难点

使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

教学准备

光盘课件

教学过程设计

教学内容

教师活动

学生活动

二次备课

一、教学例2

1、先出示例1的表格

谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。

出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?

引导学生观察这些点的排布规律,并用直线连起来。

提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)

(2)图中所描的点在一条直线上吗?

(3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?

学生描点。

学生按要求操作完成。

指名回答

如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。

二、巩固练习

1、练一练

学生做好后展示学生画的图象,共同评议

问:你们画出的表示打字时间和打字个数关系的图象有什么特点?

指名回答第(3)个问题

追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?

2、练习十三第4题

既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。

第二题要求估计,答案出入是允许的

3、第5题

先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。

学生独立完成

指名回答第(2)个问题

学生相互间说一说

学生回答,要说明理由

讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。

三、全课总结

今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?

说说,议论议论。

板书

正比例的意义及其图像

例2(图像)

课后感受

《正比例》教学设计12

教学内容:

成正比例的量

知识与技能:

使学生理解正比例的意义,会正确判断成正比例的量。

过程与方法:

使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

情感态度与价值观:在计算的过程中,使学生逐步养成验算的良好学习习惯。

教学重点:

正比例的意义。

教学难点:

正确判断两个量是否成正比例的关系。

教学过程:

一、揭示课题

1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的此导下,学生会举出一些简单的例子,如:

1、班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

2、送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

3、上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

4、排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

5、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

二、探索新知

1、教学例1

(1)、出示小黑板。问:你看到了什么?

生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

(2)、出示表格。

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25立方厘米。

板书:50100150200 ?......?252468

教师:体积与高度的比值一定。

(3)、说明正比例的意义。

在这一基础上,教师明确说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的'两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

学生读一读,说一说你是怎么理解正比例关系的。

要求学生把握三个要素:

第一、两种相关联的量。

第二、其中一个量增加,另一个量也增加; 一个量减少,另一个量也减少。

第三、两个量的比值一定。

(1)、用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

Y?K(一定) X

(2)、想一想:

师:生活中还有哪些成正比例的量?

学生举例说明。如:

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

《正比例》教学设计13

教学目的:

1、使学生透过具体问题认识成正比例的量,理解正比例的好处,能决定两种量是否成正比例关系,能找出生活中成正比例量的实例,并进行交流。

2、引导学生透过观察、交流、归纳、推断等数学活动,感受数学思维过程的合理性,培养学生的观察潜力、推理潜力、归纳潜力和灵活运用知识的潜力。

教具、学具准备:

教师准备视频展示台,多媒体课件;学生在布店里自己选取一种布,调查买1米布要多少钱,买2米布要多少钱…,将调查结果记录好。

教学过程:

一、复习准备

1、什么是比例?

2、下面是一列火车行驶的时间和所行的路程,用这个表中的数能写成多少个有好处的比?哪些比能组成比例?把能组成的比例都写出来。

时间(时)27

路程(千米)180630

二、导入新课

教师:在上面的`表中,有哪两种数量?(时间和路程)我们还要遇到许多数量,如单价等。

三、进行新课

用多媒体课件在刚才准备题的表格中增加列和数据,变成例1。

时间(时)

路程(千米)

教师:先独立思考后再讨论、交流、回答以下问题

(1)表中有哪两种量?

(2)这两种量是怎样变化的?

(3)还能够从表中发现哪些规律?

教师:同学们发现表中有时间和路程这两种量,并且时间在扩大,路程也在扩大,路程总是随着时间的变化而变化,我们就说时间和路程这两种量是相关联的。

板书:相关联。

教师:你们还发现哪些规律呢?

引导学生归纳出:

(1)时间和路程是相关联的两种量,路程随着时间的变化而变化;

(2)时间扩大,路程随着扩大;时间缩小,路程也随着缩小;

(3)路程和时间的比值都是90;时间和路程的比值都是1/90。

路程和时间的比值是什么?(速度)

在这个表里,作为比值的速度即每小时所走的路程都是一个固定的数,我们就说比值必须。也就是:(板书)路程/时间=速度(必须)

数量(米)1234567…

总价(元)8.216.424.632.841.049.257.4…

先观察表中有哪两种量?这两种量是怎样变化的?再观察这两种量中相对应的两个数的比值是否必须。

学生分析后引导学生归纳:

(1)表中买布的数量和买布的总价是相关联的两种量,总价随着数量的变化而变化;

(2)数量扩大,总价随着扩大;数量缩小,总价也随着缩小;

(3)总价和数量的比值是必须的,每米布的单价都是8.2元,它们之间的关系能够写成总价/数量=单价(必须)。

教师:引导学生归纳出这两个问题中都有两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值必须。凡是贴合以上规律的两种量,我们就把它叫做正比例的量,它们之间的关系就是正比例关系,如果用字母X和Y表示两种相关联的量,用K表示它们的比值,正比例关系能够用式子表示为X/Y=K(必须)。

教师:请同学们相互说一说生活中还有哪些是成正比例的量?

指导学生完成第56页“做一做”。

四、巩固练习

指导学生完成练习十六第1~3题。

五、课堂小结

教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

学生小结后教师对全课所学的知识进行归纳。

创意作业

小组四人分别出题,正比例的例子,一人回答,3人决定对错不会的可请教老师。

《正比例》教学设计14

导学目标

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

导学重点:成正比例的量的特征及其判断方法。

导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

预习学案

填空

1、如果路程时间=()(一定),那么()和()成正比例。

2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。

3、如果yx=k(一定),那么()和()成正比例。

导学案

学习例1

在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。

高度24681012

体积50100150200250300

底面积

体积和高度有什么变化?观察他们的比值,你发现了什么?

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:

yx=k(一定)

想一想,生活中还有哪些成正比例的量?

小组讨论交流。

看书P40例2。

(1)题中有几种量?哪两种量是相关联的.量?

(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?

(3)它们的数量关系式是什么?

(4)从图中你发现了什么?

(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?

三、课堂小结:

什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

课堂检测

下列各题中的两种相关联的量是否成正比例关系,并说明理由。

1、正方体的棱长和体积

2、汽车每千米的耗油量一定,耗油总量和所行千米数。

3、圆的周长和直径。

4、生产800个零件,已生产个数和剩余个数。

5、全班的人数一定,一、二组的人数和与其他组的人数和。

6、和一定,加数与另一个加数。

7、小苗牌2B铅笔的总价和购买枝数。

8、出油率一定,所榨出的油的重量和大豆的重量。

课后拓展

从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得12,二儿子分得13,小儿子分得19,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么分也分不好。后来一位邻居顺利地把17头牛分完了,你知道三个儿子各分得多少头牛吗?

板书设计

成正比例的量

高度/cm24681012

体积/cm350100150200250300

底面积/cm2

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例表达式:yx=y(一定)

《正比例》教学设计15

教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。

教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

教学目标

1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

教学重、难点重点:正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。

难点:运用比例的知识解决一些简单的实际问题。

课前准备课件。

教学流程设计意图

一、比的知识:

1.举例说说什么是比?什么是比的基本性质?

2.说一说用比的知识可以解决哪些实际问题。

3.完成教科书第83页“练习与实践”。

(1)完成第一题:学生独立数出班上男女生人数,再完成此题。

(2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

二、比和分数、除法的.联系

出示:a∶b=()÷()=(b≠0)

1.先填空,再说说这样填的根据是什么?

2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

3.练一练:

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

(2)填空:

=()÷()=()∶()

(填好后展示学生不同的结果。)

三、比例的知识

1.什么是比例?

2.比和比例有什么关系?(小组讨论后交流)

3.比例的基本性质是什么?

4.比例的基本性质有什么作用?怎样解比例?

5.练一练:完成教材第83页的“练习与实践”。

(1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

估计后再算一算,来验证估计。

(2)完成第3题:解比例,做好后选两题验算一下。

四、完成教材第84页“练习与实践”。

(1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

(2)完成第5题:

第一小题让学生独立得出:深色与浅色地砖铺地面积的

比是20∶40,化简得1∶2。

第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

(3)完成第6题。

五、评价小结:

学了本课你对所学知识有什么新认识?还有什么问题?

通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

对比和比例进行比较,强化理解,进一步优化知识结构。

复习解比例。

应用比例分配知识解决实际问题。

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。