高中数学教育教学设计模板数学教案模板高中
高中数学教育教学设计模板数学教案模板高中
作为一名辛苦耕耘的教育工作者,就不得不需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么大家知道规范的教学设计是怎么写的吗?下面是小编帮大家整理的高中数学教育教学设计模板数学教案模板高中,欢迎阅读,希望大家能够喜欢。
高中数学教育教学设计模板数学教案模板高中1
一、教学目标
学生经历用集合间的关系及运算类比得出事件间的关系及运算的教学过程,正确理解事件的包含关系,并事件、交事件、相等事件以及互斥事件、对立事件的概念,掌握概率的几个基本性质,会运用它们处理教材中的例、习题,进一步体会类比思想,提升理解能力,激发学习兴趣。
二、教学重点和难点
重点:事件的关系及运算,概率的几个基本性质。
难点:事件的关系及概率运算,类比思想的渗透。
三、教学辅助
骰子、多媒体课件
四、教学过程
1、问题导入
前面我们学习了随机事件的频率与概率的意义,得知每天发生的事情具有随机性,难预测,比如今天我刚到数学组办公室,一位学生问了一题:已知集合是掷一颗骰子,出现向上的点数为,集合是掷一颗骰子,出现向上的点数为奇数,试判断它们间的关系。你们愿意解答吗?有什么启示呢?
学生解答后,把集合改为事件,事件出现向上的点数为,事件出现向上的点数为奇数并写出掷一颗骰子的其他事件。我们的启示:类比集合的关系及运算研究事件的关系及运算,引出课题。
2、引导探究,发现概念与性质
先让学生类比得出一些关系及运算并相互交流,再观看多媒体课件内容(教材的重点内容),加深对事件的关系及运算的理解,师生形成的共识如下:
2.1事件的关系及运算
2.1.1包含关系
一般地,对于事件与事件,如果事件发生,则事件一定发生,这时称事件包含事件(或事件包含于事件),记作(或)。不可能事件记为,任何事件都包含不可能事件,。
2.1.2相等关系
如果事件发生,那么事件一定发生,反过来也对,这时,我们说这两个事件相等,记作。
2.1.3并事件
若某事件发生当且仅当事件发生或事件发生,则称此事件为事件与事件的并事件(或和事件),记作(或)。
2.1.4交事件
若某事件发生当且仅当事件发生且事件发生,则称此事件为事件与事件的交事件(或积事件),记作(或)。
2.1.5互斥事件
若为不可能事件(),那么称事件与事件互斥。其含义是:事件与事件在任何一次试验中不会同时发生。
2.1.6对立事件
若为不可能事件,为必然事件,那么称事件与事件互为对立事件。其含义是:事件与事件在任何一次试验中有且仅有一个发生。
2.2概率的几个基本性质
2.2.1范围。必然事件的概率是,不可能事件的概率为。
2.2.2概率的加法法则
如果事件与事件互斥,则。互斥加法则。
2.2.3概率的减法法则
如果事件与事件对立,则,即,。对立减法则。
3、在应用中加深理解
例1从装有个红球和个白球的口袋任取个球,那么以下选项中的个事件是互斥但不对立事件的是()
“至少有一个红球”与“都是红球”“至少有一个白球”与“至少有一个红球”
“恰有一个白球”与“恰有两个红球”“至少有一个白球”与“都是红球”
例2如果从不包括大小王的张扑克牌中随机抽取一张,那么取到红心(事件)的概率是,取到方片(事件)的概率是,问:
(1)取到红色牌(事件)的概率是多少?
(2)取到黑色牌(事件)的概率是多少?
师生共同处理,重思路剖析及辐射。
练习
教材第面练习。
4、归纳小结,反思提升
介绍事件的关系与运算,概率的几个基本性质的理解及简单应用,渗透类比思想。
5、作业
教材第面练习。
五、板书设计
1、引例
2、事件的关系与运算例题练习
3、概率的基本性质
4、小结
六、教学反思
部分学生对“任何事件都包含不可能事件,”不理解,并举例掷一颗骰子,出现向上点数为,掷一枚硬币,出现正面向上。
高中数学教育教学设计模板数学教案模板高中2
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用定义解题,许多时候能以简驭繁、因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、
四、教学目标
1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2、通过对练习,强化对圆锥曲线定义的'理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3、借助多媒体辅助教学,激发学习数学的兴趣、
五、教学重点与难点:
教学重点
1、对圆锥曲线定义的理解
2、利用圆锥曲线的定义求“最值”
3、“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义解题
六、教学过程设计
【设计思路】
(一)开门见山,提出问题
一上课,我就直截了当地给出——
例题1:(1)已知A(—2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。
(A)椭圆(B)双曲线(C)线段(D)不存在
(2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。
(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线
【设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。