人教版平均数的教学设计

发布者:彭泽先生 时间:2022-11-17 05:25

人教版平均数的教学设计

作为一名无私奉献的老师,常常需要准备教学设计,教学设计是一个系统化规划教学系统的过程。教学设计要怎么写呢?以下是小编整理的人教版平均数的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

人教版平均数的教学设计

人教版平均数的教学设计 篇1

教学内容:《数学》三年级下册第58、59页

教学目标:

1.通过丰富的实例,经历进一步了解“平均数”意义的过程。

2.能够根据具体情境,利用“平均数”解决生活中的实际问题。

3.在解决实际问题的过程中,感受“平均数”在现实生活中的广泛应用。

教学准备:CAI课件。

教学过程:

教学环节

设计意图

教学预设

一、情境创设:

同学们,你们在电视里看过歌手大赛吗?你知道比赛的评分规则吗?

去年暑假,中中央电视台举办了全国少儿艺术大赛,瞧,这是红星小学的王璇参赛的照片,那她当时得了多少分呢?你们想知道吗?(课件出示参赛照片

二、探究与体验;

1.瞧,这是7个评委给她亮出的分数牌,(课件出示评分牌)

95分

95分

96分

85分

98分

93分

你能帮她算算她最后得了多少分吗?在练习本上试试吧。看谁算得又对又快。算完后和同桌说说你的想法。

2.全班交流:

刚才,同学们计算得的很认真,讨论的很热烈,下面谁来告诉大家你的答案,并说说你是怎样想的。

指名回答。

生评价谁算得对。

4.师小结过渡:

是的,在好多电视比寒中,为了体现公平公正的原则,往往采用去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分的规则评分。但是在体育比赛中还能用这样的评分规则吗?

5.议一议:

师:同学们,你们参加立定跳远比赛吗?老师是怎么给你计分的?下面是王平同学五次试跳的成绩:

第一次

第二次

第三次

第四次

第五次

167厘米

167厘米

167厘米

167厘米

167厘米

那么裁判员最后给出的成绩是多少呢?是怎么算的呢?告诉你吧,他的成绩是169厘米,而不是他的平均成绩:这是怎么回事呢?请同学们四人小组讨论讨论。

全班交流。

6.师小结:同学们说得都很有道理,是的在体育比赛中,为了给每个人更多的机会,鼓励大家超越自我,追求更快、更高、更强的奥运精神,往往用队员的最好成绩作为他的最后成绩,而不是用他几次试跳的平均成绩。

7.通过以上的学习你了解到了哪些知识?

三、实践与应用;

师过渡:是的,在日常生活中,我们经常要用到求平均数的情况,下面就请同学们开动你的小脑筋认真想一想,下面的问题你能自己解决吗?

1. 出示练一练第1小题。学生独立完成前两步,然后集体订正。

第(3)个问题请同学们同桌交流自己的看法,然后集体交流。

2.出示第2小题,生独立完成,然后集体订正.

3.出示第三小题,生独立完成第一步,然后集体订正。

第二步,首先让学生说说:第四组这几个同学,谁跑得最快,谁跑得最慢?搞清什么是达标。那么50米的达标成绩是10秒,比这个成绩慢的同学就没有达标。想一想是哪个同学呢?和同学说说你和想法。全班交流。

四、拓展与延伸:

出示“问题讨论”让学生读题弄清题意:小明不会游泳,如果水深超过他的身高,就可能有危险,那么这个游泳池的平均水深是1米20厘米,说明了什么?小明会不会有危险?

请同学认真思考,然后和同桌说说你的想法。

从学生生活入手,调动学习的积极性,激发学习兴趣。使学生一开始就进入兴奋的学习状态。

让学生经历观察、思考、计算、交流的过程,培养学生严谨的学习态度及善于与同学交流的好习惯,从而使解题思路更加清晰。

培养学生敢干发表自己不同见解的好品质以及耐心听取别人说话的好习惯。

让学生在讨论中充分发表自己的见解,在交流中增长知识,在交流中培养表达能力,

对本节课新知识进行整合,使学生对新知识通过回顾能牢固地掌握。

在本环节中学生能独立完成的尽量让学生独立完成,师行间巡视,对有困难的学生个别辅导。

对学生普遍感到有困难的题,稍作点拨,让学生通过独立思考、同桌或前后桌交流找到解决问题的方法。

让学生运用刚学过的平均数知识,对在日常生活中遇到的实际问题进行推理、判断,从而使数学知识与学生生活实际相结合。让学生感受到数学的的重要性。

在本环节中如果有同学能完整说出比赛的评分规则,就应该给予鼓励“×××,你懂得可真多。”如果学生回答不出,就由老师向学生详细说明比赛的评分规则:

为了体现公平公正的原则,在实际比赛中,选手的最后得分是这样计算的;在所有评委所打的分数中,去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分。

学生可能有以下几种答案

1.(96+95+95+96+85

+98+93)÷7=94(分)

想:我先把7个评委所的评分加起来,然后再除以他们的人数,也就是求出平均分。就是她的最后得分。

(2)(96+95+95+96+93)÷5=95(分)

想:我先去掉一个最高分,去掉一个最低分,再计算剩下5个评委的平均分。

还有可能出现计算错误的现象,让学生找出错误原因。

学生可能出现的回答有;

1.王平最远能跳169厘米,说明他有这样的潜力,应该把这个成绩算做他的最后成绩。

2.因为如果最后算王平的平均成绩的话,就不能反映出一个人的最好水平,所以用平均成绩做为他的最后成绩不公平。

第三个问题让学生说出自己的想法,如可以准备28×7=196(箱),这样可以保证货源充足,其他同学可以提出不同意见,但这样容易造成货物积压,过期饮料就卖不了了。

答案应该是下周应准备和本周售出总数同样多的饮料最合适。

什么叫“达标”;国家颁布了少年儿童各年龄段的体育锻炼标准,达到这个标准的就叫达标了,没有达到这个标准的当然就没有达标了。

“平均水深1米20厘米”,说明这个游泳池有的地方深,有的地方浅,浅的地方可能还不到1米20厘米,深的地方可能会超过1米40厘米,”所以小军在这个池中是有危险的。

人教版平均数的教学设计 篇2

教学内容:人教版四年级下第90—91页例1、例2及相关内容。

教学目标:

1、使学生理解平均数的含义,知道平均数的求法。

2、了解平均数在统计学上的意义。

3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。

教学重点:理解平均数的意义,掌握平均数的方法。

教学难点:理解平均数的意义。

教、学具准备:课件、题卡、磁扣等。

一、 导入

同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。

二、 讲授新知

1、探究平均数的方法

师:紧张的比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)

师:大家看,他们每人各运了几个球?

师:请同学们观察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?

生:男生成绩好。女生总数12,男生总数15。

师:对,我们比较总数,可以看出男生队成绩更好。

师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。

生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)

生:4.

师:用4表示可以吗?

生:可以。

师:男生队用几表示呢?

生:5.

师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的。想一想,为什么用这个4或5可以代表每组的水平?

生:小组合作。

师:哪个小组愿意派代表汇报一下?(只出示女生的)

生:女生队2号最多,给1号2个,给3号1个。

师:结果怎样呢?

生:让他们变得同样多。

师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。

师:大家听清楚了吗?谁愿意到黑板上摆一摆?

生:移多补少演示。

师:大家同意吗?

师小结:在总数不变的前提下,我们把多的匀给少的,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习平均数的知识。那么2、7、3这组数据的平均数就是4。

师:你们用移多补少的方法表示出男生队的平均成绩吗?

生:到前面来演示。

师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?

生:列算式。学生到黑板上演示。

(4+5+6)÷3

=15÷3

=5(个)

师:你是怎么想的?(写的同学说说自己的想法)

生:用男生队运球的总数除以3,就是每人平均运5个球。

师:听明白了吗?括号里的式子表示?除以三呢?结果5是?

师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。

师:你能用合并平分的方法,求出女生队的平均数吗?

生:汇报

师:现在我们来说一说哪一个队成绩更好呢?

生:男生队

师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。

2、平均数的作用

师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师 4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。

生:公平,再观察一下,他们为什么不同意。

不公平,人数不同。

师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?

生:4.

师:你们怎么这么快就知道了呢?

师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。

师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?(5)

师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?

生:12个。

师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。

3、平均数的性质

师:请大家观察女生队的成绩

我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)

平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?

生:4比7少3个,比2多2个,比3多1个。

师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。

师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的数量吗?

生:不是

师:平均数5和男生队每个人实际运球数比较一下。

生:平均数5和2号选手实际运球数一样多。

师:那么这个5和2号的成绩5表示的意义一样吗?

生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。

师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。

习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。1、请你估一估小强拍球的平均成绩,可能是多少下?2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。

师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。

师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?

生汇报:

师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:

1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。

2:计算统计平均数的作用,在于衡量事物要均等。

所以说平均数很重要,我们可以用平均数解决生活中的很多问题。

三、习题

1、课件出示“小小”冷饮店习题。

2、水深。

四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。

板书设计

平均数

合并平分 移

人教版平均数的教学设计 篇3

教学内容:P92~94

教学目标:

1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果使整数)。

2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

教学重点:理解平均数的意义,学会求简单数据的平均数。

教学过程:

一、创设情境,提出问题

1、谈话:同学们,昨天中午我们代伙的同学在教室里举行了一次套圈比赛,他们每人套10了次,想不想知道他们套中了几个?

2、指名汇报,回答问题

陈璇:5个;戴之淳:3个。问:陈璇套得准一些还是戴之淳套得准一些?

孟子又:3个;陆庭臻4个。问:是这两位女生套得准一些还是这两位男生套得准一些?你是怎么知道的?

3、谈话:(出示主题图)。看,图上的同学们也在套圈,他们每人套了15个。

4、指导学生看图,读图(纵、横轴表示的含义;每一格表示的数量)

5、问:你能从图上看出每人套中了多少个吗?(根据学生回答在图中标出数量,并根据回答要求学生说说自己是怎么看出数量的多少的)。

6、问:除了能从图中看每人套中的个数外,你还看出了什么?

二、自主探索,解决问题

1、问:你能不能从图中一眼看出是男生套得准一些还是女生套得准一些呢?

2、指名汇报,说明理由。

3、说明:有道理。他们两队的人数不同,所以我们不能一个人一个人地比较,只有分别求出“男生平均每人套多少个”和“女生平均每人套多少个”,用这样的数来体现他们套圈成绩的整体水平。

4、男生套圈成绩的平均数。

⑴观察男生成绩统计图,想一想,怎样使他们每人套中的个数相等?(根据学生回答归纳出“移多补少”并板书。)

⑵列式计算。理解算式含义。(归纳“先合再分”并板书。)

⑶说明:这里的“7”就是男生套圈成绩的平均数。(板书课题)它表示将原先几个大小不等的数,通过移多补少或者先合再分的方法,得到的一个相等的数。

4、女生套圈成绩的平均数。

⑴你会求女生套中的平均数吗?

⑵学生尝试练习并指名学生板演。

⑶评析:*算式每步的含义。

*这里为什么是用女生套中的总数除以5而不是除以4?

*得到的“6”在这里是什么数?表示什么?

*现在你知道是男生套得准一些还是女生套得准一些吗?

5、观察统计图,男生平均每人套中7个,这里的平均数“7”比哪个数大?比哪个数小?

再观察女生成绩统计图,平均数“6”是不是也有这样的特点呢?

6、小结:平均数的大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。

三、巩固练习,拓展应用

1、P94.2

出示题目,问:这三条彩带中最长的有多长?最短的呢?这道题要求什么?

想一想,你能不能估计出这三条丝带的平均长度在()cm——()cm之间?

学生尝试练习后评讲。

2、刚才我们一起认识了平均数,也知道如何求平均数,接下来我们要遇到生活中有关平均数的问题。一起来看一看。

出示下列辨析题。

⑴小强身高30厘米,一条小河平均水深100厘米,他下河玩耍肯定安全。

⑵在“书香校园”活动中,我校同学平均每人捐书3本。那么,全校每个同学一定都捐了3本书。⑶学校篮球队队员的平均身高是160cm。

①李强是学校篮球队队员,他的身高不可能是155m。

②学校篮球队中可能有身高超过160cm的队员。

3、出示本班级第一小组学生身高情况统计表。(如下)

⑴老师请一位同学帮着算了一下这个组同学的平均身高,得出的结果是“这个小组同学的平均身高是146m”。不用计算,你能不能知道他算得对不对呢?(后出示正确的计算结果)

⑵由此,你能不能猜测一下,三(3)班全班同学的平均身高大约是多少厘米吗?

⑶老师也在网上查找了一些资料:我国三年级小学生的平均身高大约是135cm。看到这个数据,结合你自己的身高,你有什么想法?

四、评价总结

1、刚才同学们都参与得很热烈,你们觉得田老师这节课上得怎么样?如果请你给这节课打个分,你会打多少分呢?每个小组商量一下得分情况,然后给出一个分数(10分制)。

问:这么多分数,以谁的分数为准呢?(计算平均分)

2、学了这节课,你有什么收获?

人教版平均数的教学设计 篇4

教学设计教学目标:

1、使学生理解平均数的含义,初步学会简单的求平均数的方法。

2、理解平均数在统计学上的意义,感受数学与生活的联系。

3、发展学生解决问题的能力。

重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。

教学过程:

一、理解平均数

1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?

2、老师(出示两个笔筒)分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。

3、引入平均数象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。

4、学生讨论:你们喜欢刚才谁的方法?导入板书课题。

二、探究体验

1、出示情景图:说说老师和同学们在干什么?

2、出示统计图:引导学生收集信息。

3、引导学生运用移多补少的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。

4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?

5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。

6、小结求平均数的方法。

三、实践应用

1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?请你算一算。

2、根据统计表算一算,三年段平均每班踢几下?

班级 三(1) 三(2) 三(3) 三(4)

踢的次数 632 654 668 646

3、生独立完成练习十一第2题。

四、全课总结

1、通过今天的学习,你学到了什么新的知识?

2、师总结。

平均数 教学设计

共4课时 总第23课时

教学目标:

1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

2、使学生认识统计与生活的联系,发展学生的实践能力。

3、巩固求平均数的计算方法。

教学过程:

一、情景导入

1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别倒入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?

2、学生动手解决,并交流解决的方法。

3、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?

(1)组织交流解决的方法。

(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。

二、探究体验

1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。

2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。

3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。

4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?

5、组织交流计算的方法与结果。

6、组织讨论:从刚才的这件事,你有什么发现?

7、小结:平均数能较好地反映一组数据的总体情况。

三、实践应用

1、说说生活中还有哪些事要通过求平均数来解决问题。

2、生独立完成练习十一第4、5题。

四、全课总结

1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

2、师总结。

人教版平均数的教学设计 篇5

教学目标:

1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

教学重难点:

理解平均数的意义,学会求简单数据的平均数。

教学过程:

一、创设情境,自主探究

1.呈现套圈情境。

多媒体演示“套圈比赛”场景。谈话:这是三(1)班第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈,比一比哪一队套得准。下面就请同学们给他们做裁判,好不好?

2.收集整理数据。

多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果“定格”组合成一个画面。要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。

【设计意图:运用多媒体对教材例题进行动态处理,能有效地激发学生的学习兴趣。通过“摆”小方块制作统计图,目的是让学生亲历数据收集整理的过程,同时也为后面用“移多补少”的方法求平均数作准备。】

3.引入平均数。

出示男、女生套圈成绩统计图。提问:看了这里的统计图,你发现了什么?要比较哪一队套得准,你准备从哪个方面去比较?结合学生的想法,适时进行引导。想法一:因为吴焱套中的个数最多,所以女生队套得准(比最多)。追问:用一个人的成绩代表整个队的成绩,这样合适吗?想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?可以怎么办呢?想法三:先要求出两个队平均每人套中了多少个,再比较哪个队套得准(比平均数)。追问:这样比公平吗?(公平)我们就用这种方法试一试。(板书:平均)

【设计意图:富有启发性的“追问’’,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

4.理解平均数。操作:男生平均每人套中多少个呢?女生平均每人套中多少个呢?下面请同学们仔细观察自己面前的统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。提问:怎样求男生平均每人套中的个数?学生可能出现两种方法:一是移多补少;二是先合后分。反馈时,先让学生在实物投影上边操作,边讲解移多补少的过程,教师利用课件动态演示。再让学生说一说怎样用先合后分的方法求平均数(课件动态演示:将统计图中的涂色方块合并起来,再平均分成4份),并引导列式:6+9+7+6=28(个),28÷4=7(个)。

【设计意图:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

谈话:请大家看男生套圈成绩统计图(用红色线条标出平均数,并不断闪烁),图中闪烁的红色线条表示什么?根据学生回答,在前面板书的“平均”后面添上“数“。

观察:图中的平均数与实际每人套中的个数相比,你发现了什么?(平均数比最大的数小,比最小的数大??)多媒体闪烁平均数的取值范围。

提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?可以通过哪些方法来验证?谈话:女生平均每人套中多少个圈呢?你是怎样知道的?先和小组内的同学一起说一说。反馈时,引导学生交流求女生队平均数的方法及所求平均数的意义。列式计算时注意让学生说说为什么要除以5而不除以4?提问:现在你能判断男生套得准还是女生套得准吗?小结:通过刚才的活动,我们认识了什么?你能结合刚才的例子,说一说平均数表示的意义吗?

【设计意图:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。同时,将平均数学习嵌入一个完整的统计活动中,较好地突出了平均数的统计意义。】

二、联系实际,拓展应用

我们一起玩闯关游戏好吗?

1、挑战第一关“走进生活”平均数能为我们解决生活中的问题。

(1)想想做做第1题。移动笔筒里的铅笔,看看平均每个笔筒里有多少枝?还可以用其他的方法求出来吗?

(2)想想做做第2题。小丽有这样的3条丝带,这3条丝带的平均长度是多少?请你先估计一下这3条丝带的平均长度是多少?在哪两个数之间?然后学生独立练习,集体校对。

2、挑战第二关“明辨是非”

(1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。()

(2)大泗学校全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()

(3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。()

(4)学校篮球队可能有身高超过160厘米的队员。()

3、挑战第三关:“合情推测”四(2)班第一小组同学身高情况统计表

学号1 2 3 4 5

身高(厘米)132 134 136 140 142

(1)明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

(2)星星公园规定:购买团体票时平均身高不足140厘米的学生可享受七折优惠。如果第一小组同学集体去玩能享受优惠吗?不计算你能知道结果吗?说出你的想法。

【设计意图:练习设计既重视平均数的求法,更重视对平均数意义的深刻理解。通过估计、预测、判断等一系列数学活动,沟通了数学与现实生活的联系,强化了学生对平均数意义的理解,较好地发展了学生的统计观念和应用意识,闯关游戏更能激发学生的学习兴趣。】

三、总结评价,感情升华

今天我们认识了新朋友“平均数”,你想对它说些什么赞美之词呢?

教后反思:

本节课我从学生的现实生活出发,极力选取学生身边的事例,使生活素材贯串于整个教学的始终,注意将数学与学生生活紧密相连,遵循了数学源于生活、寓于生活、用于生活的理念。通过数学教学,实现了数学的应用价值。

具体地说有以下几个特点:

1.紧密联系学生生活实际,使数学问题生活化。心理学研究表明:当学习的内容与学生熟悉的生活背景越贴近,学生自觉接纳的程度就越高。课一开始,就设计了一个情境,出示学生熟悉的套圈游戏以此来切入主题。这样做使学生感到所学内容不再是简单枯燥的数学,而是非常有趣、富有亲近感,他们被浓厚的生活气息所感动,兴致勃勃地投入到新课的学习之中。

2.充分保障学生自主探索的时间与空间,把学习的自主权与选择权交给学生。《数学课程标准》指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”,数学教学要努力改变单一的、被动的学习方式,建立和形成有利于发挥学生主体性的多样化的学习方式,促进学生在教师指导下主动地富有个性地学习。要让学生自主探索,在教学中教师要结合教学内容设计出具有开放性的、探索性的数学问题,给学生创设自主探索学习的情境,使之在开放问题的情境下积极主动地进行探索,使数学教学更加丰富多彩,学生学得更加生动、活泼,实现促进学生全面发展的目的。掌握求平均数的方法是本课的重点,学生只有掌握了求平均数的方法,才会解决生活中的求平均数的问题。因此,在这一环节的教学中,让学生自主动手操作学具,在小组合作、探索的过程中,找出求平均数的方法。这样,学生有了学习的自主权和选择权,他们的积极性与创造性得到了充分的发挥。

3、较好的渗透了数学思想和方法。如:在计算平均数前让学生利用平均数的意义进行估计,渗透估算的思想,即培养学生的估算能力又加深了对平均数的理解。总之,本节课较好地体现了教师主导和学生主体作用的和谐统一,实现了数学思想与数学方法的有机结合,符合素质教育要求,较好地达到了创新教育的目的。

人教版平均数的教学设计 篇6

第一课时

一、教学目标:

1、使学生理解数据的权和加权平均数的概念

2、使学生掌握加权平均数的计算方法

3、通过本节课的学习,还应使学生理解平均数在数据统计中的`意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:

1、重点:会求加权平均数

2、难点:对“权”的理解

3、难点的突破方法:

首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。

在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?

通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。 要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。能否由99?61100?62?得出第二小组平均成绩这样的结论?为什么?这个例子22

简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。

在讨论栏目过后,引出加权平均数。最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。

三、例习题意图分析

1、教材P136的问题及讨论栏目在教学中起到的作用。

(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。

(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。

(3)、客观上,教材P136的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。

(4)、P137的云朵其实是复习平均数定义,小方块则强调了权意义。

2、教材P137例1的作用如下:

(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。

(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。

(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。

3、教材P138例2的作用如下:

(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。

(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。

(3)、它也充分体现了统计知识在实际生活中的广泛应用。

四、课堂引入

1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。

求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?

x=1(79+80+81+82)=80.5 4

五、例习题分析:

例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。

六、随堂练习:

1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占

2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果求这些灯泡的平均使用寿命?

答案:1.x小关 =79.05 x小兵 =80 2. x =597.5小时

七、课后练习:

1、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为 .

2、某人打靶,有a次打中x环,b次打中y环,

则这个人平均每次中靶

3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占

试判断谁会被公司录取,为什么?

4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人? 答案:1.2x1?3x2?4x3?5x4ax?by2.3.x甲=86.9 a?bx1?x2?x3?x4

x2 =96.5

乙被录取

板书设计:

教学小记:

4. 39人

人教版平均数的教学设计 篇7

教学要求:

1、通过练习,进一步巩固求平均数的方法。

2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

教学重点:

解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

教具学具准备:

课件、统计。

教学过程:

一、理解平均数意义

“1”:说一说题目说的是一件什么事情?

平均水深140厘米是什么意思?是不是处处水深140厘米?

(不是,是有的地方比140厘米深,有的地方比140厘米浅)

“2”:自己看题,同桌讨论。

全班交流:

你认为哪些平均数是合理的,哪些是不合理的,为什么?

(1、3合理,2不合理)

二、求平均数的练习:

1、“3、4、6、7”题。

“3”:从表格里你了解到哪些信息?

独立解答(1)、(2),全班交流。

看了这张表格,你还想到了什么?你还能向大家说说哪些(1)和(2)题没能介绍的情况?

“4”:

(1)先算一算三年级平均每组植树的棵数。

假如今天算出的平均数是11棵,不计算,你能不能判断它是错的?为什么?

假如是6棵呢?为什么?

看着这张统计图,你能不能给出平均数的范围?

(2)哪些小组植树棵数比平均棵数多?哪些比平均棵数少?

“6”:(1)同桌讨论,可以怎么估计?

介绍自己是怎么估计的。

(选取6个数据中处于较中间位置的一个,再看看其他的移多补少后是否和它较接近,进行调整,学生有合理的方法也应给予肯定)

(2)你还能说出这个小组同学身高的哪些情况?

“7”:独立练习。

“你还发现什么?”尽量让学生从多角度说一说。

2、“5、8”题。

“8”:先说一说这一题的解决过程。

学生以小组为单位,调查、记录、解答问题。

“5”:课堂上老师指导说清要求,课后学生完成。

三、“你知道吗?”

举例:歌唱比赛,评委给一位歌手打分:47、78、80、81、82、82,如果不去掉一个最低分和一个最高分,那么这位选手的最后得分为?

学生计算:(47+78+80+81+82+82)÷6=75

去掉以后,是多少呢?

学生计算(78+80+81+82)÷4 约为80分

看一下评委给的打分,大部分是在80分左右,75分不能真正反映这个情况,怎么会出现这种情况呢,是有一位评委打分过低,所以为了保证最后的结果更客观、公平、合理,一般在评比打分时,会去掉一个最低分和一个最高分。

教学后记:第一题学生讨论十分激烈,最后还是得出了结论,下水是会有危险的,因为深水区可能会超过145厘米。由此强调,平均数在最大数和最小数的中间。

人教版平均数的教学设计 篇8

教学内容:

平均数

教材分析:

平均数是一个重要的刻画数据集中趋势的统计量。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。我们既可以用它来反映一组数据的一般情况,也可以用它来进行不同数据组的比较,从而看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均身高、平均成绩等等。平均数是在第一学段已经理解了平均分以及除法运算的意义基础上教学的。与实验教材相比,修订教材对平均数的处理,更加突出其统计意义。通过“两队人数不同不能用总数比较”这一思维的矛盾,促进学生进一步理解平均数的意义,进而发现运用平均数作比较的必要性。

教学目标:

1、体会平均数的作用,掌握计算平均数的方法。

1、经历求平均数的过程,尝试用自己的语言解释其实际意义。

2、感受数学与生活的密切联系,激发学生学习数学的兴趣。

教学重点难点

重点:体会平均数的作用,掌握计算平均数的方法

难点:初步理解平均数的实际意义。

教具准备:

桃心卡片课件

教学过程

一、创设情境,初步感知

1、猴妈妈有三个孩子,这天猴妈妈在山上摘了很多新鲜的桃子,于是给大儿子6个,给了二儿子7个,给了小儿子2个,小儿子不高兴了。

(边讲边贴桃形纸片,贴三行,为下面的移多补少做铺垫)

师:小儿子没什么不高兴了?你们觉得这样分公平吗?

学生讨论,指名汇报。

2、你能帮猴妈妈重新分一分吗?怎样分的公平?指名学生演示。

3、小结:这种方法叫“移多补少”(板书)

谁还有其他的办法解决这个问题?

(先把三个人的桃子合起来有15个,再平均分给这3个小猴子,这样每个小猴子都分到5个桃子。)

这种方法也很好!我们也给它取个名字。“先合再分”

(板书)。

4、刚才我们用移多补少和先合后分的方法,都能使这三个小猴的桃子个数从不同变成相同,都是5个。这里的“5”就是“6、7、2”这三个数的平均数。像这样,几个大小不等的数,通过移多补少或者先合再分的方法,使它们变成一个相同的数,这个相同的数就是这几个数的平均数。(课件出示)

板书课题平均数

二、自主探索,解决问题。

1、出示大家在操场踢毽子的情景(PPT)

出示男女各3人一组

姓名

个数

小军

15

小强

15

小明

15

姓名

个数

小雨

18

小涵

17

小敏

16

女看哪组成绩好?怎么比?

可以比总数,可以比平均数,指名学生汇报,并说明计算方法。

2、人数不同

男生组有一个同学不服气,真正的高手没上,小飞同学每分钟踢了19个

男生队女生队

姓名

个数

小雨

18

小涵

17

小敏

16

姓名

个数

小军

15

小强

15

小明

15

小飞

19(一)现在比总数的话公平吗?

(二)怎么比?比平均数比较公平。

(三)先不计算,观察这组数据的特点,猜测一下,小飞的加入,男生队的成绩会发生什么变化?平均数会超过15个吗?会超过19个吗?平均数会在什么范围?

(四)请计算出新的男生队的平均成绩。

1、学生汇报并板书算式

(19+15+15+15)÷4=16(个)

2、对比观察,小飞的加入平均数有什么样的变化?平均数变大了。

3、为了公平起见,女生队也加入了一个队员,想一想,如果要保持领先,至少要踢多少个?

姓名

个数

小军

15

小强

15

小明

15

小飞

19

姓名

个数

小雨

18

小涵

17

小敏

16

小云

9你能计算出现在女生队的平均成绩吗?

随着小云同学的加入,平均数有什么变化?

师小结:平均数会受到较大数据或较小数据的影响。

4、质疑:平均数是16个男生队是每个人都踢了16个吗?女生队是每个人都提了17个吗?

5、小结:16这个平均数表示男生队的一般水平,17这个平均数表示女生队的一般水平。

6、结合平均成绩、平均身高、平均工资等素材理解平均数的意义。

如通过平均身高可以了解身体生长状况,平均成绩可以找到差距。

7、生活中的平均数,你还知道哪些?

8、小结:平均数可以表示一组数据的一般水平,也可以用来个数不同数据的比较。

三、巩固练习。

接下来老师看看你们能不能运用所学平均数的知识解决实际问题。

1、纸条,师估计平均长度是30厘米,你们同意吗?

2、我从体育老师哪里了解到咱们班孩子的平均身高是136厘米,有没有可能有孩子的身高是145厘米?125厘米?是不是咱们班每一个孩子的身高都是136厘米?为了让大家理解更透彻,老师带来了一张珍贵的照片。

3、讲一个平均数的小故事,一个老爷爷,70岁了,在看到报纸上说中国男性的平均寿命是71岁时,伤心地哭了,你们知道老爷爷为什么哭了吗?请你用学到的平均数的知识安慰安慰老爷爷。

4、平均水深是110厘米,小华身高140厘米学游泳,有危险吗?

四、全课总结,说说你都学到了什么,你有什么收获?

板书设计:

平均数

移多补少先合后分

(15+15+19+15)÷4

=64÷4

=16(个)

一般水平

人教版平均数的教学设计 篇9

《平均数》是人教版课标版小学数学三年级下册第三单元的内容。我在教学这节课时,刚好看到《小学教学》杂志上刊登了“数学王子”张齐华老师的关于《平均数》一课的课堂实录与报告,我非常兴奋,并尝试运用张老师的思路上了这节课,效果非常好。因此,今天的说课,我就选择了这节内容来和大家交流。

我直接从教学过程说起,并顺便结合教学中的各个环节来阐述我的教学方法和其蕴含的教学思想,以及所达到的教学目标。

一、创设情境,初步感知。

师:你们喜欢打篮球吗?老师很喜欢篮球,这不,昨天下午还与五年级的几个学生玩了一次“1分钟投篮挑战赛”。怎么样,想不想了解现场的比赛情况?

1、出示李强3次投篮的成绩:5个、5个、5个。

问:可以用哪个数表示小强一分钟投篮的水平?

2、出示万林3次投篮的成绩:3个、5个、4个。

问:可以用哪个数表示小林一分钟的投篮水平?为什么?(在学生回答的基础上,多媒体演示“移多补少”的过程。)

3、出示王鹏3次投篮的成绩;3个、7个、2个。

问:可以用哪个数表示王鹏一分钟投篮的水平?还可以怎么求出这个数来?

4、讨论思考:“4”是3、7、2这三个数的平均数,它能代表王鹏第一次投中的个数吗?能代表第二次的吗?能代表第三次的吗?它究竟代表什么?

这里,我把李强的成绩设定为3个“5”,让学生很自然地想到用“5”表示小强一分钟的投篮水平,然后让第二个出场的万林设出3个不一样的成绩,制造认识冲突,引发学生想出“移多补少”求平均数的想法,并通过多媒体动画演示,给学生比较直观的表象,强化学生的认知。最后再给出一组不同的数据,巩固“移多补少”求平均数的想法,并追问“还可以怎么想”,逼学生想出求平均数一般方法来,即“先合并再均分”,并板书在黑板上。

完成板书后,教师适时进行点评总结,告诉学生:“这种通过‘移多补少’或‘先合并再均分’得到的同样多的这个数,就叫做原来几个数的平均数。”并连续几个追问:“4”能代表王鹏第一次、第二次、第三次投中的个数吗?它究竟代表什么?最终,让学生体会到,平均数不能代表其中的每一个数据,它只是表示一组数据的总体水平(板书)。

至此,在直观演示、板书算式、连续追问,课前设定的知识与技能目标:让学生理解平均数的含义,掌握求平均数的一般方法,已经基本达成。

二、深化理解,建构新知

1、三个学生完成比赛后,该老师出场了,我故意卖个关子说:

正式比赛时,老师要求投4次,他们同意了,下面是我前三次投中的结果。(多媒体展示)4个、6个、5个。猜一猜,老师投了第4个后,结果会怎么样呢?

2、在学生多次猜测后,老师出示第4次投篮成绩:1个,然后问:

请估计一下老师最后的平均成绩是几个?你为什么不估计为6个或1个?

3、试想一下,如果老师最后一次投5个、投9个的话,平均成绩会是多少?可以动手算一算。

4、多媒体出示3个统计图:问:认真观察,你发现了什么?

这个环节的设计,旨在让学生明白“每一个数据的变化都会牵动平均数发生变化,但不管怎么变化,平均数总是在最大数和最小数之间(板书)。当然,学生还可能有其它的发现,那自然美不胜收了?

三、综合运用、拓展延伸

“学以致用”是教学的一个重要目标。因此,每学一点新知识,我们都应该安排一些恰当的问题情境,让学生运用学习到的新知识去尝试解决问题,达到“学以致用”目的。我设计的练习以下几项:

1、三张纸条:7cm、12cm、8cm,老师估计它们的平均长度是10cm,大家认为对吗?

2、以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米?

3、《xxxx年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁。30年前,也就在张老师出生那会儿,中国男性的平均寿命大约只有68岁。你发现了什么?可有位老爷爷今年70了,他看到这则消息后不但不高兴,还很难过,这是为什么?你怎样来劝劝他?

4、生活中,哪些地方还用到了平均数?它们各代表什么?

数学来源于生活,最终还要运用到生活当中去,我设计的这几个问题,旨在让学生学会用数学的眼光去观察、思考、进而解决生活的问题,让学生感受到数学是和我们的生活密切相关的,而且我们学习的数学是生动的,有价值的。

人教版平均数的教学设计 篇10

第一课时

教学内容:

教科书第43页例1及相关练习

教学目标:

1、体悟“平均数”的实际意义。

2、探索求“平均数”的多种方法,并能根据具体情况灵活解答。

3、培养学生估算的能力,能对数据分析结果作出简单的推断和预测。

4、体会“平均数”在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。

教学重点、难点:

灵活选用求平均数的方法解决实际问题。理解平均数的意义

教具、学具准备:

PPT等

教学流程:

一、谈话引入、初步感知平均数

1、学生交流课前收集到的有关平均数的信息。

2、师提问:为什么你们认为平均年龄、平均工资、人均住房面积这些都是平均数呢?能解释一下它是什么意思吗?

3、师:看来大家对“平均数”或多或少都有些了解。这节课,我们就去数学王国探索一下有关“平均数”的奥秘。 板书:平均数 你想了解平均数的哪些知识呢?

4、师:看来同学们对平均数充满了好奇,一起进入迷宫探秘。

二、构建新知

1.理解含义,探求方法。

观察棋子,提出问题。(多媒体显示)

师提问:看着你面前的棋子,你获得了哪些信息?你还想提出什么数学问题?

2、感悟“平均数”的实际意义。

动手操作:以小组为单位研究怎样才能使三排棋子同样多。

师提问:现在每排棋子都是几个?这个数,你能给他取个名字吗?

这个平均数4与原来每排棋子的个数有什么关系呢?

3、探索求平均数的不同方法。

师:四人小组合作,想一想还有没有别的方法可以求出平均数,并且把你们小组独特的方法取个名字!等一下我们来评选最佳创意奖和最佳命名奖。比一比,哪个小组最爱动脑筋!

①小组活动讨论。

②汇报交流。(生说方法多媒体显示棋子移动过程)

移多补少! 先假设后均分。先求和再均分。

三、初步应用,内化拓展。

师:刚才同学们通过讨论、尝试不但知道了什么是平均数,而且探索出了许多求平均数的方法。那么你们能解决有关平均数的实际问题吗?

四、课堂总结

1、你现在所认识的平均数是什么?

2、理解平均数是个虚的数。

五、随堂作业

人教版平均数的教学设计 篇11

教学目标:

1.使学生掌握平均数的意义和求平均数的方法。

2.使学生能根据数据列出算式求平均数。

3.在教学活动中提高学生的发散思维能力。

教学重、难点:

1.重点:掌握平均数的意义和求平均数的方法。

2.难点:能根据数据列出算式求平均数。

教具、学具准备:练习本、自制统计图、米尺

教学过程:

一.谈话导入

老师准备了8个练习本,想奖给4个上课认真、作业完成得好的同学。(指名学生上台)

引导问:老师有8个练习本,奖给4个都很听话的同学,应该怎么奖呢?

8个本子,奖给了4个同学,每人得到了2个,谁能帮老师把这个算式列出来?(指名学生回答,教师板书:8÷4=2)

在这个算式里8称为什么数?(总数)4称为什么数?(份数)得到的2称为什么数?(每份数,也叫平均数)

今天这节课我们继续来学习求平均数,大家看看今天学习的与以前学的又有什么不同。

揭示课题:平均数

二.探求新知

1.导入新课

同学们,你们都是爱卫生、保护环境的小朋友吗?大家看到黑板上,这里是小红、小兰、小亮、小明利用课余时间收集到的废瓶子的统计图。

(1)出示统计图。

(2)观察:从统计图中,你能了解到哪些信息?

(3)问:他们收集到的废瓶子是一样多吗?在统计图上怎样才能使4个人收集的废瓶子一样多呢?大家来想想办法。

组织学生交流、讨论,然后指名回答。

一种:“移多补少”,在统计图上引导学生把多的移到少的地方去。

二种:列算式,假如没有统计图的情况下,应该怎么办?(先求出他们的总数,平均分给了4个人,再除以4)

教师根据学生的回答,并板书:

(14+12+11+13)÷4

=52÷4

=13(个)

“13”在这里也叫什么数?

(4)巩固提问:这里为什么要除以4?

(5)教师小结:像这样的题目,首先要求出他们的总数,再看他们是平均分成几份,就除以几,这样就求出了他们的平均数。

三.巩固提高

1.活动“数小棒,求平均数”

早自习,老师分了不同数量的小棒给每位同学,现在大家拿出小棒,四人一组。

(1)组织学生活动,数一数、算一算,然后求出你们这组平均每人分得多少根小棒。

(2)指名学生汇报,并说一说你们是怎么求平均数的。教师板书。

(3)根据学生的完成情况,教师小结。

2.活动:求平均身高

在小组内测出每个同学的身高,小组长作好记录,然后根据记录要求学生独立求出本小组同学的平均身高。

四.全堂小结

今天我们学习了什么?你们觉得自己学的怎么样,学懂了没有?

人教版平均数的教学设计 篇12

【教学内容】

苏教版《义务教育课程标准实验教科书数学》三年级(下册)第92~94页。

【教学目标】

1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。

2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。

3.进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。

【教具、学具准备】

教具:课件、男女生套圈成绩图。

学具:每四位学生一副男女生套圈成绩学具板。

【教学过程】

一、创设情境,激趣导入。

谈话:很多同学都知道套圈游戏,一起来看。(媒体出示:三年级一班的男女生进行套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。)想请大家来当裁判,愿意吗?可要比比哪个裁判最公正哦!

二、合作探索,解决问题。

(一)两队人数相同,每人套中的个数不同。

屏幕出示第一小组男、女生套圈成绩统计图。提问:要知道男生套得准一些还是女生套得准一些,你认为可以比什么呢?

学生回答后教师相机引导并小结。

(二)两队人数不同,每队中每人套中的个数相同。

屏幕出示第二小组男、女生套圈情况统计图。请学生一起回答是哪个队套得准一些。提问:有同学认为可以比比他们套中的总个数,你们觉得公平吗?

结合媒体演示小结。

(三)两队人数不同,每人套中的个数

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。