反比例教学设计(通用25篇)
反比例教学设计(通用25篇)
作为一无名无私奉献的教育工作者,就不得不需要编写教学设计,借助教学设计可以更好地组织教学活动。教学设计应该怎么写呢?以下是小编整理的反比例教学设计,仅供参考,希望能够帮助到大家。
反比例教学设计 1
教学内容:
《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
设计理念:
学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力
教学流程:
一、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?
(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)
师:从字面上看“反比例”与“正比例”会是怎样的关系?
生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的'愿望。
二、提供材料,组织研究
1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?
(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)
3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)
生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。
生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)
师:表2和表3中两个量的变化规律有哪些共性?(生答略。)
师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)
师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]
反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。
4.做一做(略)
5.学习例6
师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
三、巩固练习,拓展应用
1.基本练习。
2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)
交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”
反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
四、总结
反思:
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
反比例教学设计 2
教学目标
知识与技能:
1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点
教学难点
1) 重点:画反比例函数图象并认识图象的特点
2)难点:画反比例函数图象
教学关键 教师画图中要规范,为学生树立一个可以学习的模板
教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式
教学手段 教师画图,学生模仿
教具 三角板,小黑板
学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法
教学过程
(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)
内 容 设计意图
一、课前检测:
1.什么叫做反比例函数;
(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)
2.反比例函数的定义中需要注意什么?
(1)k为常数,k0
(2)从y= 中可知x作为分母,所以x不能为零
二、激发兴趣 导入新课
问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?
y=kx+b y=kx
K0 一、二、三 一、三
b0 一、三、四
K0 一、二、四 二、四
b0 二、三、四
问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?
可以
问题3:画图象的步骤有哪些呢?
(1)列表
(2)描点
(3)连线
(教学片断:
师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。
生:我知道反比例函数的解析式为 且k不等于0
生:我知道反比例函数的图象是曲线。
师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里,现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的'是函数图象,那么对于反比例函数我们接下来该研究什么呢?
生:该研究反比例函数图象和性质了。
师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?
三、探求新知
学生思考、交流、回答。
提问:你能画出 的图象吗?
学生动手画图,相互观摩。
(1) 列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
议一议
(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?
(4)曲线的发展趋势如何?
曲线无限接近坐标轴但不与坐标轴相交
学生先分四人小组进行讨论,而后小组汇报
做一做
作反比例函数 的图象。
学生动手画图,相互观摩。
想一想
观察 和 的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点
相同点:
(1)图象分别都是由两支曲线组成
(2)都不与坐标轴相交
(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)
不同点:第一个图象位于一、三象限;第二个图象位于二、四象限
四、归纳与概括
反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。
(1) 当 k0 时,两支曲线分别位于第___、___象限
(2) 当 k0 时,两支曲线分别位于第___、___象限
五、课堂练习
(1)
(2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限;
六、形成性检测
(1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________
(2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )
(A) (B) (C) (D)
(3)画 和 的图象
七、反馈拓展
在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标
八、作业布置
(1) 作反比例函数y=2/x,y=4/x,y=6/x的图象
(2) 习题5.2.1
(3)预习下一节 反比例函数的图象与性质II
复习上节主要内容
(3分钟)
(5分钟)
运用类比研究一次函数性质的方法,来研究反比例函数图象与性质
由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。
数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。
数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。
(12分钟)
引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.
在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。
注:(1)x取绝对值相等符号相反的数值
(2) x取值要尽可能多,而且有代表性
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。
(3分钟)
此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。
(5分钟)
活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线
(4分钟)
培养学生归纳,语言表达能力
此中注意分类讨论思想的应用
巩固反比例函数图象性质
(2分钟)
与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。
(5分钟)
这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。
(4分钟)
此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。
(1分钟)
巩固作反比例函数图象的步骤,预习下一节课内容
(2) 当 k0 时,两支曲线分别位于第二、四象限
反比例教学设计 3
教学内容:
北师大版数学第十二册第二单元教材第24页反比例的教学内容 。
教学目标:
1、结合丰富的实际,认识反比例,能根据反比例的意义,判断两个相关的量是不是成反比例,利用反比例解决一些简单的生活问题,感受反比例在生活中的广泛应用。
2 、培养学生的逻辑思维能力。
3、渗透数学源于生活的观点。
重点难点
1、通过具体问题认识成反比例的量。
2、掌握成反比例的量得变化规律及其特征。
教具准备: 课件
教学过程
一、复习铺垫
师:上一节我们学习了正比例,请同学们回忆怎样判断两个相关联的量是否成正比例?(指名答)
师:简单概括两个相关联的量成正比例的关键是什么?生答,强调:他们的比值(商)一定。
二、谈话引题
师:看来大家对正比例知识理解掌握得非常好,学完正比例接下来我们就该学习什么了?(生答)是啊,有正就有反,的确这节课我们就来探究反比例的有关知识(板书:反比例)
三、猜想激趣
师:既然正与反意义是相反的,请同学们猜想成反比例的两个量的关系是怎样的呢?(生猜想)到底同学们的猜想是否正确?我们要用事实来验证。
四、验证归纳
师:1.研究情境(一)
让学生把汽车行驶的速度和时间的表填完整。
观察上表,思考下面的问题:
(1)表中有哪两种量?
(2)时间是怎样随着速度的变化而变化的?
(3)表中那个量没有变?
(4)写出三者的关系式
2.研究情境(二)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?哪一个没变?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
3.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系(板书)
4.情境(三)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
五、课堂练习
1、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)圆柱体的体积一定,底面积和高。
(2)小林做10道数学题,已做的题和没有做的.题。
(3)长方形的长一定,面积和宽。
(4)平行四边形面积一定,底和高。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
五、全课小结
今天同学们学到了什么知识?觉得还有什么地方感到困惑的吗?
六、作业:找一找生活中有哪些例子成反比例。
板书设计
反比例
速度×时间=路程(一定)
每杯的果汁量×分的杯数=果汁总量(一定)
两种相关联的量,一种量变化,另一种量也随着变化,变化时两种量中相对应的两个数的积一定,这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。
反比例教学设计 4
教学内容:教材14~16页例4、例5、例6,24页做一做,练习三4、5、6、7题。
素质教育目标
(一)知识教学点
1.理解反比例的意义。
2.能根据反比例的意义,正确判断两种量是否成反比例。
(二)能力训练点
1.培养学生的抽象概括能力。
2.培养学生的判断推理能力。
(三)德育渗透点
通过反比例意义的教学,使学生受到辩证唯物主义观点的启蒙教育。
教具学具准备:投影仪、投影片。
教学重点:引导学生总结概括出成反比例的量,是相关联的两种量中相对应的两个数的积一定,进而抽象、概括出成反比例关系式:X×Y=K(一定)
教学难点:利用反比例的意义,正确判断两种量是否成反比例。
教学步骤
一、铺垫孕伏
1.下表中的两种量是不是成正比例?为什么?
2.回忆:成正比例的量有什么特征?
二、探究新知
1.引入新课。我们已经学习了常见数量关系中成正比例关系的量的特征。这节课我们继续研究常见的数量关系中的另外一种特征——成反比例的量。(板书:成反比例的量)
2.教学例4
(1)出示例4,提出观察思考要求:(投影出示)
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(2)学生讨论交流。
(3)引导学生回答:
①表中的两种量是每小时加工的数量和所需的加工时间。
(板书:每小时加工数加工时间)
②每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
③每两个相对应的数的乘积都是600)。
教师适时点拨:
①想一想:每小时加工的数量和所需的加工时间是两种相关联的量吗?为什么?
(引导学生回答:是两种相关联的量,每小时加工的数量变化,加工时间也随着变化。同时板书。)
②议一议:这两种量的变化有什么规律吗?
(教师可以操作:一个竹筒内放30根筷子,每次拿3根,10次拿完;每次拿5根,6次拿完;每次拿6根,5次拿完;每次拿10根,3次拿完。想想:什么变了?什么没变?有什么规律吗?)
(订正时,随学生回答,板书:积一定)
③教师问:这个600实际上就是什么?(板书:零件总数(一定))
师指板书问:每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?(板书:×=)
(4)小结:通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
3.教学例5
(1)投影出示例5,根据题意,学生口述填表。
(2)观察上表,你发现了什么?引导学生回答下列问题:
①表中有哪两种量?(板书:每本页数装订本数)是相关联的量吗?
②装订的本数是怎样随着每本的页数变化的?
③表中的两种量有什么变化规律?
(3)订正时板书:在原板书“每小时加工数变化,加工时间也随着变化”的“每小时加工数”下板书“每本页数”,在“加工时间”下板书“装订本数”。
(4)教师问:这个积600实际上是什么?(板书:纸的总页数(一定))指板书问:每本页数、装订本数和纸的总页数之间有什么关系?(板书:×=)
4.比较例4和例5,概括反比例的意义
(1)请你比较例4和例5,它们有什么相同点?(学生互相议论一下)
(2)学生回答:
①都有两种相关联的量。
②都是一种量变化,另一种量也随着变化。
(板书:用“一种量”盖住“每小时加工数”和“每本页数”;用“另一种量”盖住“加工时间”和“装订本数”。)
③都是两种量中相对应的两个数的积一定。
(3)师小结:像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
(4)通过观察比较,谁能说说什么样的两种量叫做成反比例的量?
(找2~3名学生说,教师随时把板书补充完整)
5.教师引导学生明确:在例4中,所需的加工时间随着每小时加工数量的变化而变化,并且,每小时加工的数量和所需的加工时间的积,也就是零件总数是一定的。我们就说每小时加工的数量和所需的加工时间是成反比例的量。
议一议:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?
6.教师:如果用字母x和y表示两种相关联的量,用k表示它们的积一定,(随时板书:xyk(一定))反比例关系可以用一个什么样的式子表示?(板书:×=)
7.教学例6
(1)出示例6
(2)学生交流。
(3)学生汇报,教师点拨。
①每天播种的公顷数和要用的天数是不是相关联的量?
②每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?(板书:每天播种的'公顷数×天数=播种的总公顷数(一定))
③播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么?(板书:每天播种的公顷数和要用的天数成反比例。随着问为什么,板书:因为,所以)
想一想,播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?(组织学生讨论)
8.完成做一做
三、巩固发展
1.想一想:成反比例的量应具备什么条件?
2.练习三第4题
3.判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
4.你能举一个反比例的例子吗?
四、全课小结
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
五、布置作业练习三5题、6题。
反比例教学设计 5
教学内容:
本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
教材分析:
本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
教学目标:
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
教学重点:
认识正、反比例的意义
教学难点:
根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
课时安排:
正比例和反比例(4课时)
第1课时
教学内容
成正比例的量
教材第62—63页的例1和试一试,练一练和练习十三的第1—3题
课型
新授
本单元教时数:4本教时为第1教时备课日期月日
教学目标
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。
教学重点
使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点
根据正比例的意义正确判断两种相关联的量是不是成正比例。
教学准备
光盘课件
教学过程设计
教学内容
教师活动
学生活动
二次备课
一、教学例1
1、谈话引出例1的.表格
2、这两种量的数据是怎样变化的?
时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。
小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。
3、但是,你能发现什么呢?
如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。
这个比值是什么呢?
谁能用一句话来概括例1中的变化与不变
4、介绍成正比例的量
指名说说,表中有哪两种量
引导学生观察,
指名说一说。
启发学生从“变化”中寻找“不变”。
学生试着回答,教师帮助完成。
学生完整的说说路程和时间成正比例的量
二、教学试一试
1、出示教材试一试
2、教师指导学生完成
3、学试着完成,并交流回答四个问题。
三、概括意义
1、引导学生观察例1和试一试,它们有什么共同点。
2、概括正比例的意义,揭示课题(板书)
3、用字母怎样表示成正比例关系的两种量呢?
y:x=k(一定)
观察,说说自己的发现。
学生完整的说一说例1和试一试成正比例关系。
四、巩固练习
1、完成练一练
2、练习十三第1题
重点让学生说出判断的理由
3、做练习十三第2题
4、做练习十三第3题
引导学生根据计算的结果来判断。完成书上的问题
重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。
独立判断,交流时说出判断的理由。
学生先各自算一算,交流,说出思考过程。
指名判断,交流时说出思考过程,其它同学进行补充或纠正。
学生理解题意,然后在书上画一画,算一算,填在书上。
五、全课总结
学习了什么?你有什么收获?
说一说
板书
正比例的意义
两种相关联的量=k(一定)y和x就成正比例的量
课后感受
第2课时
教学内容
正比例的意义及其图像
教材第63页例2,随后的练一练和练习十三的第4、5题
课型
新授
本单元教时数:4本教时为第2教时备课日期月日
教学目标
1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学重点
使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
教学难点
使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学准备
光盘课件
教学过程设计
教学内容
教师活动
学生活动
二次备课
一、教学例2
1、先出示例1的表格
谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。
出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?
引导学生观察这些点的排布规律,并用直线连起来。
提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)
(2)图中所描的点在一条直线上吗?
(3)根据图象判断一下,这辆汽车2.5小时行驶多少千米?行驶440千米需要多少小时?
学生描点。
学生按要求操作完成。
指名回答
如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。
二、巩固练习
1、练一练
学生做好后展示学生画的图象,共同评议
问:你们画出的表示打字时间和打字个数关系的图象有什么特点?
指名回答第(3)个问题
追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10.5分钟呢?打450个字、625个字各用几分钟?
2、练习十三第4题
既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。
第二题要求估计,答案出入是允许的
3、第5题
先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。
学生独立完成
指名回答第(2)个问题
学生相互间说一说
学生回答,要说明理由
讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。
三、全课总结
今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?
说说,议论议论。
板书
正比例的意义及其图像
例2(图像)
课后感受
反比例教学设计 6
【教学内容】
反比例。(教材第47页例2)。
【教学目标】
1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】
投影仪。
【复习导入】
1.让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】
1.教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的`关系,高度和底面积叫做成反比例的量。
2.归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3.用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?
学生探讨后得出结果。
x×y=k(一定)
4.师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5.组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6.你还有什么疑问
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
【课堂作业】
1.教材第48页的“做一做”。
2.教材第51页第9、10题。
答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:50 100 12
【课堂小结】
说一说成反比例关系的量的变化特征。
【课后作业】
1.完成练习册中本课时的练习。
2.教材51~52页第8、14题。
答案:
2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
(3)斑马跑得快。
第3课时 反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
反比例教学设计 7
教学内容:
苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。
教材学情分析:
本节课是《正比例和反比例》复习的第二教时,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。
“练习与实践”第7题让学生根据提供的两组数据判断相应的两种量分别成什么比例,有利于学生巩固对成正比例和反比例量的认识,掌握判断两种量是否成比例以及成什么比例的基本思考方法;“练习与实践”第8题让学生结合生活经验以及相关数量关系的理解,继续练习成正比例和反比例量的判断方法;“练习与实践”第9题的第一题让学生根据表示一辆汽车在高速公路上行驶的千米数和耗油量关系的图象,先判断这两种量是否成正比例,再根据其中一个量的数值估计另一个量的数值。第二题要求学生根据一辆汽车在市区行驶的千米数和耗油量关系的数据,在方格纸上画出表示它们关系的图象。通过上述活动,一方面可以使学生加深对正比例关系的认识,另一方面可以使进一步体会数学结合在解决问题方面的价值;“练习与实践”第10题是一个与比例尺有关的实际问题。教材先让学生量出一幅平面图上相关的图上距离,再让学生利用给出的比例尺求出相应的实际距离。教材这样的安排,主要让学生进一步体会比和比例知识的.应用价值,感受不同领域的数学内容有着密切联系的。
教学目标:
⑴使学生进一步认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。
⑵让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。
⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。
教学重点:
进一步认识成正比例和反比例的量。
教学难点:
感受比的应用价值,在活动中获得一些新的认识。
教学具准备:
教学流程:
一、教师谈话,揭示课题。
⑴教师谈话。
教师谈话:上一节课我们复习了“比和比例”的有关知识,本节课我们继续复习这方面的知识。板书:正比例和反比例。
⑵揭示课题。
揭示课题——正比例和反比例。
二、师生互动,合作交流。
⑴完成“练习与实践”第7题。
呈现“练习与实践”第7题,明确要交流的主题:表中的两种量分别成什么比例?为什么?
班级交流判断的方法:一是利用表中的数据进行判断,在次体会正比例和反比例量在变化中的不同规律。成正比例关系的两种量同时扩大或缩小,它们扩大或缩小的倍数是相同的;成反比例的两种量,一个量扩大,另一种量反而缩小,它们扩大或缩小的倍数也是相同的;二是利用数量关系式判断,表格一:因为钢材质量:钢材体积=比重(一定),所以钢材质量和钢材体积成正比例;表格二:圆柱底面积×圆柱高=圆柱的体积(一定),所以圆柱底面积和圆柱高成反比例;利用图象判断,用描点的方法画出图象,如果是直线,则成正比例。
⑵完成“练习与实践”第8题。
呈现完成“练习与实践”第8题,明确要思考的内容:先写出数量关系式,再判断是否成比例?成什么比例?为什么?独立写出数量关系式,同桌交流。
第一问:因为每块砖的面积×砖的块数=一间教室的面积(一定),所以每块砖的面积和砖的块数成反比例;
第二问:因为圆的周长÷半径=2π,所以圆的周长和半径成正比例。
⑶完成“练习与实践”第9题。
呈现完成“练习与实践”第9题,明确要交流的内容:判断行驶的路程和耗油量是否成正比例;根据图象用一种数据判断另一种数据是多少。
班级交流理解、完成题目的情况,进行“根据图象用一种数据判断另一种数据是多少”的练习;反馈学生形成的正比例图象的情况;比较汽车高速公路和市区耗油量的不同情况,体会比例知识在日常生活中的应用价值。
⑷完成“练习与实践”第10题。
呈现完成“练习与实践”第10题,理解题目的意思,分别量出学校到各个地方的图上距离,形成以下板书:
图上距离实际距离
学校-少年宫4厘米?米
学校-体育场3.5厘米?米
学校-市民广场2.5厘米?米
学校-火车站7厘米?米
多种角度理解比例尺的意思:图上距离1厘米表示实际距离600米;图上距离1厘米表示实际距离60000厘米;……
解答:在多种书写形式的基础上,体会用“图上距离1厘米表示实际距离600米”的优越性。沟通和正比例之间的联系。
⑸谈谈本节课的收获。
反比例教学设计 8
教学目标:
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:
20支铅笔、一个笔筒;相关课件;学生分小组(每组各一份观察记录单及讨论表格)
讨论填表 观察记录单
教学过程:
一、情境导入 揭示内容
1、课前谈话:同学们,有谁去过北京?你知道南昌到北京需要多长时间吗?我们来看一组信息:(媒体显示:1、火车图片及火车启动的声音,2、文字信息是:两年前,小红乘坐由南昌开往北京西的T168次列车,需要花19时11分到达,现在火车提速了,小红再次乘坐这趟列车,还需这么多时间吗?为什么?)
2、学生对上述问题发表意见。
3、教师揭示:下面,我们就带着这个问题进行今天的学习。
[反比例的量与日常生活中常见的数量关系联系得非常紧密,利用身边的例子引出学习内容,使学生深刻感受到数学就在我们身边,我们身边处处有数学,也能体会到数学知识能够解决实际问题,学到有价值的数学。]
二、小组协作 概括意义
(一) 活动一:(例4)
1、 教师出示一个笔筒,里面装着许多笔,请同学们仔细观察,记录老师每次拿笔的支数和拿的次数。
教师操作:每次拿10支 拿了2次;
每次拿5支, 拿了4次;
2、学生进行小组活动,观察后,以小组为单位,填写观察记录单。
3、 如果每次拿的支数分别是4、2、1时,你们能推算出相对应的拿的次数吗?(继续讨论填表)
4、 学生汇报观察记录单的填写结果。并且说一说你是怎样知道相对应的拿的次数?
5、 引导观察:在填、拿的过程中,你发现什么变了?怎样变的?什么没变?
6、 让学生说出几组相对应的乘积。
7、 小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
[数学教学是数学活动的教学,将学生熟悉的事情或操作性强的事例作为学生学习的内容,学生感觉亲切、贴近生活,易于理解,在观察中思考,在操作中体验,学生学得主动、学得积极,在填一填、拿一拿、猜一猜的活动中,自然而然地体会
了反比例的变化规律,为抽象概括反比例的意义奠定基础。]
(二) 活动二:(例5)
1、 教师谈话:与五(3)班的同学合作,老师感觉棒极了。下面我们来轻松轻松,参观一下邮政路小学的操场,看看他们在干些什么?(出示同学们在操场上做操的情景图)
2、 师:我们学校将举行“雏鹰起飞”广播操表演,需要挑选24名同学参加,请大家讨论一下,应该怎样站队,可以使每一行站的人数同样多。
3、 学生小组讨论,共同完成讨论表。
4、 学生小组汇报站队情况,电脑演示站队结果。(先演示每行站的人数,再出示站的行数;同时电脑上填出相对应的表格数据。)
5、 教师引导学生观察所填的表格,说一说,你又发现了什么?
6、 小结:在站队的过程中,每行站的人数变化了,站的行数也随着变化,但每行站的人数和站的行数的积即总人数总是一定的'。
[利用信息技术这个平台,将学习内容形象再现,学生经过讨论,再通过电脑媒
体直观地看到24人站队的具体情况,深刻感受到站队的总人数不变,每队站的人数变化了,站的行数也随着变化。]
(三) 比较概括 巩固应用
1、 让学生比较两张表,说一说它们有什么共同的地方?
使学生明确:表中的两种量都是一种量变化,另一种量也随着变化,像这样的两种量成它为两种相关联的量;它们的变化规律是:两种量中相对应的两个数的乘积总是一定的。
2、 揭示反比例的意义(阅读课本,明确反比例关系)
3、 如果用x、y 表示两种相关联的量,用k表示积,反比例关系式怎样表示?
4、 完成第59页的“做一做”。
5、 表中的两种相关联的量,容易看出其变化规律,如果不给出表中的数据,让你直接判断两种相关联的量是否成反比例,你行吗?
6、 自己解决第59页的例题6,重点地说一说:播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?
7、 小结:虽然已经播种的公顷数和剩下的公顷数是两种相关联的量,但是它们的乘积是不一定的,所以不成反比例。
三、强化练习 发展提高
1、 先想一想,再在小组内说一说:
(1
(2
(3
和 的积总是一定的;
所以, 和 是成反比例的量。
2、 判断下面每题中的两种量是不是成反比例的,为什么?
(1)植树的总棵数一定,每人植树的棵数与人数。 ( )
(2)李叔叔从家到工厂,骑自行车的速度和所需的时间。 ( )
(3)华荣做12道数学题,做完的题和没有做的题。 ( )
(4)长方形的面积一定,它的长和宽。 ( )
(5) 小林拿一些钱买练习本,单价和购买的数量。 ( )
3、 机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获? 还有什么遗憾?
五、板书设计:
本节课有以下几个特点:
1、很好的抓住了学生的兴奋点,教师遵循学生的年龄特点和认知规律,将教材中的例题进行再创造,改成了学生熟悉的事例,设计精心,形式新颖,情境意识强,问题导向明确。从学生的实际出发,由实际生活引入,使学生感受数学就在身边。
2、教学过程中,教师为学生创造了轻松、民主的课堂氛围。教师与学生一道沉浸在数学活动中,从操作、观察、讨论、填表、比较、分析、概括等一系列循序渐进的活动里,逐步抽象出反比例的意义,在这个学习过程中,学生能够畅所欲言,主动学习。
3、充分利用电教媒体,新课的导入、活动的进行、习题的出示均由电脑显示,充分刺激学生的多种感官,调动了学生学习的积极性、加大了课堂教学的密度,提高了课堂教学的效率。
本节课很好的实现了教学目标,学生经历了操作、思考、讨论、比较等一系列活动,充分明确了反比例的意义,并能够正确地判断两种量是否是成反比例的量;在整个学习过程中,学生表现出的情感是积极的、向上的,每位学生都愿参与到学习活动中来,能与同伴很好交流、合作,体现出一丝不苟的学习态度和实事求是的学习精神。但其中有一道题学生的争议很大,即总路程一定时,已行路程和剩下的路程。全班还有许多同学认为是成反比例的量,这些同学忽略了两种相关联的量一定要乘积一定的时候,这两种量才是成反比例的量。这也暴露了学生在解决问题中思考的过程还不够灵活和全面。今后的教学过程中要加强对学生思维深刻性和全面性的培养。
反比例教学设计 9
学习目标结合丰富的实例,认识反比例。能根据反比例的意义,判断两个相关联的量是不是成反比例。利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
学习重点认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
过程与方法
教师活动
一、复习
1、什么是正比例的量?
2、判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课
情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的`语言描述变化关系乘积(路程)一定
情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:
活动四:想一想
P26页第1、2、3题
关系式:X×Y=K(一定)
课后反思:
学生活动
学生自由回答,相互补充。
学生观察,弄清题意。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
独立观察,思考同桌交流,用自己的语言表达写出关系式:速度×时间=路程(一定)观察思考并用自己的语言描述变化关系乘积(路程)一定。
你有什么发现?用自己的语言描述变
都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这
两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
反比例教学设计 10
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1.经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2.通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:
理解和领会反比例函数的概念.
教学难点:
领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的`总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1);(2);(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1);(2);(3)
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1.只有xy=123是反比例函数.
2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设,因为x=2时,y=6,所以有解得k=12
三、巩固提高
活动5
1.已知y是x的反比例函数,并且当x=3时,y= ?8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2.y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
反比例教学设计 11
教学目标:
经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。
教学程序:
一、导入:
1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。
2 、U=IR,当U=220V时,
(1)你能用含 R的代数式 表示I吗?
(2)利用写出的关系式完成下表:
R(Ω) 20 40 60 80 100
I(A)
当R越来越大时,I怎样 变化?
当R越来越小呢?
( 3)变量I是R的函数吗?为什么?
答:① I = UR
② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。
③变量I是R的函数 。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的.函数。
二、新授:
1、反比例函数的概念
一般地,如果两个变量x, y之间的关系可以表示成 y=kx (k为常数,k≠0)的形式,那么称y是x的反比例函 数。
反比例函数的自变量x 不能为零。
2、做一做
一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗?
解:y=20x ,是反比例函数。
三、课堂练习 :
P133,12
四、作业:
P133,习题5.1 1、2题
反比例教学设计 12
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究
(一)教学例1
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600
2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数×加工时间=零件总数
3.小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的'张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书:xy=k(一定)
三、课堂小结
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习
完成教材43页做一做
五、课后作业
练习七6、7、8、9题。
六、板书设计
成反比例的量xy=k(一定)
每小时加工数×加工时间=零件总数(一定)
每本页数×装订本数=纸的总页数(一定)
反比例教学设计 13
教学目标
(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。教学过程
1、引入新课
上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨
2、提出问题、解决问题
(1)审完题后,你的.切入点是什么,
由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t>0.t
(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)
(3)明确了问题的区别,那么第二问怎样解决
根据反比例函数v=240(t>0),当t=5时,v=48。即每天至少要48吨。这样做的答t
案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0 3、巩固练习 例2某蓄水池的排水管道每小时排水8 m3,6 h可将满池水全部排空。 (1)蓄水池的容积是多少 (2)如果增加排水管,使每时的排水量达到q(m3),将满池水排空所需时间为t(h),求q与t之间的函数关系式。 (3)如果准备在5 h内将满池水排空,那么每小时排水量至少为多少 (4)已知排水管的最大排水量为每时12 m3,那么最少多长时间可将满池水全部排空 这个巩固练习前三问与例题类似,设置第四问是为了与第一堂课相衔接,使学生学会将函数关系式变形。授课时,教师要对第四问进行细致分析。由学生板书,师生分析,为小结作准备。 4、小结让学生以小组为单位进行合作交流,总结出本节课的收获与困惑,而后师生共同得出结论: (1)学习了反比例函数的应用。 (2)确定反比例函数时,先根据题意求出走,而后根据已有知识得出反比例函数。 (3)求“至少”“最多”值时,可根据函数的性质得到。 5、作业设计①必做题: (1)课本第61页第2题。 (2)某打印店要完成一批电脑打字任务,每天完成75页,需8天,设每天完成的页数y,所需天数x。问y与x是何种函数关系若要求在5天内完成任务,每天至少要完成几页 教学目标:使学生对反比例函数和反比 例函数的图象意义加深理解。 教学重点:反比例函数 的应用 教学程序: 一、新授: 1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么? 答:P=600s (s0),P 是S的反比例函数。 (2)、当木板面积为0.2 m2时,压强是多少? 答:P=3000Pa (3)、如果要求压强不超过6000Pa,木板的面积至少 要多少? 答:至少0.lm2。 (4)、在直角坐标系中,作出相应的函数 图象。 (5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。 二、做一做 1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。 (2)蓄电池的电压是多少?你以写出这一函数的表达式吗? 电压U=36V , I=60k 2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内? R() 3 4 5 6 7 8 9 10 I(A ) 3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的.图象相交于A、B两点,其中点A的坐标为(3 ,23 ) (1)分别写出这两个函 数的表达式; (2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流; 随堂练习: P145~146 1、2、3、4、5 作业:P146 习题5.4 1、2 教学目标 知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。 能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。 情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。 教学重难点 重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。 难点:掌握反比例的特征,能够正确判断反比例关系。 教学过程 (一)复习猜想导入,引出问题。 1、成正比例的量有什么特征?什么叫正比例关系? 2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。 达成目标:猜想导课,激发探究愿望 (二)共同探索,总结方法。 1、明确这节课的学习目标: (1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。 (2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。 2、情境导入,学习探究。 (1)我们先来看一个实验。 高度(厘米) 30 20 15 10 5 底面积(平方厘米) 10 15 20 30 60 体积(立方厘米) 提问:根据列表,你从中你发现了什么? (2)学生讨论交流。 (3)引导学生回答:表中的两个量是高度和底面积。 高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。 每两个相对应的数的乘积都是300. (4)计算后你又发现了什么? 每两个相对应的数的乘积都是300,乘积一定。 教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。 教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定) (5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定) 小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么? (6)归纳总结反比例的意义。 (7)比较归纳正反比例的异同点。 达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的'学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。 (三)运用方法,解决问题。 1、生活中,哪些相关联的量成反比例关系,举例说一说。 2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么? 3、出示反比例图像,与正比例图像进行比较学习。 达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。 (四)反馈巩固,分层练习。 判断下面每题中的两个量是不是成反比例,并说明理由。 (1)路程一定,速度和时间。 (2)小明从家到学校,每分走的速度和所需时间。 (3)平行四边形面积一定,底和高。 (4)小林做10道数学题,已做的题和没有做的题。 (5)小明拿一些钱买铅笔,单价和购买的数量。 达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。 (五)课堂总结,提升认识 总结:今天我们学习了什么?(揭示课题—反比例)你有什么收获?学习中,你要提示大家注意什么?你对今天的学习还有什么疑问吗? 教学目标 1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用,反比例的意义(参考教案二)。 2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。 教学重点和难点 理解反比例的意义,掌握两种相关联的量变化规律。 教学过程设计 (一)复习准备 1.(出示幻灯) 一种练习本的数量和总页数如下表: 师:请回答下列问题。 (1)表中哪个量是固定不变的'量? (2)哪两种量是相关联的量?它们的变化规律是怎样的? (3)表内相关联的两种量成正比例吗?为什么? 2.填空。(小黑板(一)) 两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的关系叫做________关系。 3.判断下面各题中两种量是否成正比例。 (1)文具盒的单价一定,买文具盒的个数和总价( )。 (2)水稻产量一定,水稻的种植面积和总产量( )。 (3)一堆货物一定,运出的和剩下的( )。 (4)汽车行驶的速度一定,行驶的时间和路程( )。 (5)比值一定,比的前项和后项( )。 可选其中一、二题,说一说为什么? 师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义) (二)学习新课 1.出示例4。(小黑板(二)) 例4 华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表: (1)分析表,回答下列问题。(幻灯出示) ①表中有哪种量? ②两种相关联的量是如何变化的? ③你能说出它们的关系式吗? ④相对应的每两个数的乘积各是多少? ⑤哪种量是固定不变的? 师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。) (2)同学们发言。 教学目标 1、知识与能力目标: (1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。 (2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。 2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。 3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。 教学重点和难点 重点:进一步掌握反比例函数的概念、图像、性质并正确运用。 难点:反比例函数性质的灵活运用。数形结合思想的应用。 教学方法 探究——讨论——交流——总结 教学媒体 多媒体课件。 教学过程 一、知识梳理 同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识? 课件展示: 1、反比例函数的意义 2、反比例函数的图象与性质 3、利用反比例函数解决实际问题 二、合作交流、解读探究 (一)与反比例函数的意义有关的问题 课件展示: 忆一忆:什么是反比例函数? 要求学生说出反比例函数的意义及其等价形式 巩固练习:课件展示: 1、下列函数中,哪些是反比例函数? (1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4 2、写出下列问题中的函数关系式,并指出它们是什么函数? ⑴当路程s一定时,时间t与平均速度v之间的关系。 ⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。 3、若y=为反比例函数,则m=______ 4、若y=(m-1)为反比例函数,则m=______ 。 (二)运用反比例函数的图象与性质解决问题 1、反比例函数的'图象是 2、图象性质见下表(课件展示): 3、做一做(课件展示) (1)函数y=的图象在第______象限,当x (2)双曲线y=经过点(-3,______)。 (3)函数y=的图象在二、四象限内,m的取值范围是______ 。 (4)若双曲线经过点(-3,2),则其解析式是______. (5)已知点A(-2,y1),B(-1,y2) c(4,y3)都在反比例函数y=的图象上,则y1、y2与y3的大小关系(从大到小)为____________ 。 (三)综合运用(课件展示) 一次函数的图像y=ax+b与反比例函数y=交与m(2,m)、n(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X的取值范围 三、随堂练习 见课件 四、小结 1、反比例函数的意义 2、反比例函数的图象与性质 五、作业 配套练习22页21、22题 教学内容: 北师大版六年级下册第二单元第一课时教学目标: 1、知识技能目标: ⑴通过比较,进一步加深理解正比例和反比例的意义和特点,体会它们的联系与区别; ⑵掌握正比例和反比例的变化规律; ⑶在练习中进一步提高分析、比较、抽象、概括等能力。 2、过程性目标: ⑴在交流讨论中完善自己判断正、反比例关系的经验认识,掌握判断正、反比例关系的方法,形成接近自动化技能的判断策略; ⑵通过数“形”结合,进一步感受和领会正、反比例关系的变化规律及特点,进一步渗透函数思想,为今后中学的学习打下基础。 3、情感态度目标: ⑴体会借助图像对事物发展方向推断的作用,逐步养成用数学的眼光来分析问题的习惯; ⑵逐步增强数学学习的自信心,体验当独立思考解决不了问题时,与他人合作的成就感,逐步增强团队精神。 教学过程: 一、复习导入 1、揭示课题 师:老师知道同学们前两天已经学习了正比例和反比例意义。 谁来说一说正比例和反比例的意义。(板书:正比例和反比例) 2、出示练习九第1题 师:我们来用正比例和反比例的意义判断几道题?说说你的理由。 二、教学新课 1、教学例7 ⑴出示例7两个表,学生自学,并回答相关问题。 师:为什么左表相关联的两种量成正比例关系?为什么右表相关联的.两种量成反比例关系? ⑵小结。 ⑶师:我们已经知道,路程、速度和时间这三个量存在相依关系,根据这两个表我们可以用什么样的关系式来表示它们之间的相依关系呢?(根据学生的回答板书) ⑷师:在这里,当速度一定时,路程和时间成什么比例关系?为什么? 当路程一定时,速度和时间成什么比例关系?为什么? 请你推想一下,如果当时间一定时,路程和速度成什么比例关系呢?为什么? 你能用关系式来表示吗?(根据学生的回答板书) ⑸小结。 ⑹练习 ①做“练一练”第1题 师:你能用关系式来表示这题里三个量之间的相依关系吗? (根据学生的回答出示关系式) ②做“练一练”第2题 师:你能分别用数量关系式来表示吗?(根据学生的回答出示关系式) ⑺小结。 ⑻总结判断策略 ①师:同学们,学到这儿相信大家已经有了不少判断两种量是不是成比例的经验了,接下来请你们在小组里交流一下自己的经验,再听听别人的经验好吗?②小组活动讨论交流 ③各小组汇报交流结果 ④根据学生的回答板书 ⑤师:谁能再来说一说判断两种量是不是成比例时怎么办? ⑥小结:当我们判断两种相关联的量是成正比例还是成反比例的时候关键是看? ⑼练习 ①做练习九第2题 师:你是怎样判断的? ②出示练习九第7题 2、用图表示例7中两种量的关系 ⑴出示例7的两个表 师:两种量成正比例关系和反比例关系的变化规律,也可以用图来表示。我们先来研究怎样将正比例关系用图来表示。 ⑵出示空图,引领学生识图 ⑶根据表里的数据描点 ⑷出示空图,引领学生识图 师:我们再来研究怎样将反比例关系用图来表示。 ⑸根据表里的数据描点 ⑹正、反比例图比较 师:用图来表示正、反比例,你看了有什么感觉? ⑺练习:做练习九第8题 3、总结正、反比例的特点 师:通过我们这堂课的研究和学习,你们说说成正比例关系和成反比例关系的相同点和不同点吗? ⑴小组讨论交流 ⑵汇报交流结果,完成表格。 三、课堂小结 师:今天我们不仅进一步认识了正比例和反比例的意义,还对它们进行了比较,(补充完整课题:的比较)通过今天的学习,你学到了什么?你觉得怎样判断两种量是否成比例?判断相关联的两种量成正比例还是反比例的关键是什么? 教学目的: 1.通过检测讲评,进一步理解和掌握正、反比例应用题的解题规律。 2.通过一题多变、一题多解等题组练习形式,由浅入深,由易到难,培养学生思维的灵活性。 教学过程: 我们已经学过了正、反比例应用题,今天我们上一节检测讲评课课。(板书课题:正反比例应用题)通过这节课的学习,希望进一步理解和掌握正反比例应用题的解题规律。 一、检测题 1.什么叫成正比例的量?它的关系式是什么? 2.什么叫成反比例的量?它的关系式是什么? 3.判断下面两种量成不成比例?成什么比例? a.订阅《中国少年报》的份数和钱数。 b.日产量一定,天数和总产量。 c.路程一定,速度和时间。 d.圆的周长和半径。 e.长方形的周长一定,长和宽。 f.圆锥的体积一定,底面积和高。 大家对概念掌握得较熟练,但在应用中可看出对概念的理解程度还是有差距的。两种量是不是成正反比例的量先明确是谁和谁,其次看它们是不是相互影响,若是,就看着两种量是不是属于积商关系,积商一定时,就下断论。例如人的身高和体重是不是成正反比例的量,这两种量一种量变化,另一种量不一定发生变化,直接否定。再如,圆周率和圆周长是不是成正反比例的量,因为圆周长变化时圆周率并不发生变化,也是直接否定。a、b、c、d、f中两种量相互影响,且积或商一定所以成正反比例的量,e中两种量相互影响,但不实际上已定,故不成正反比例的量。大家一定要把握概念的实质,灵活运用。 二、练一练 1.计算下列各题: 农具厂生产一批农具,3天生产360台,照这样计算,30天可生产多少台?(指名读题) 师:这道题用比例方法来解答请同学们自己做一做。(一人板演) 订正时请板演的同学先讲一讲,做题的时候自己是怎么想的?并板书列式:360/3=X/30。 师:这道题,你们觉得他做得咋样?如果工作时间30天不直接告诉我们,还可以怎么说? 生:如果再生产27天,一共可生产多少台? 师:同原题比较,这道题复杂在哪呢? 生:原题的条件是直接的,这题的条件是间接的。 生:原题问题所对应的量是已知的,这题问题所对应的量是未知的。 师:这道题怎样解答呢?(要求学生口头列出比例式) 生:解:设一共可生产X台,360/3=X/(3+27)(板书:360/3=X/(3+27))。 教师提问:3+27求的是什么?把3+27写成27可以吗? 教师强调:列式时一定要找准相关联的量中相对应的数。 师;这道题还可以怎样解答? 生:解:设27天可生产X台,360/3=X/27X+360。(板书:360/3=X/27X+360)。 教师小结:80%同学能做出地一题,第二问题就有点大了。其实象这道题,问题虽然变了,但题中基本数量关系未变,所以我们都是用正比例的方法来解答的。这道题我们可以直接设问题为X,列出这样的比例式(指360/3=X/(3+27))。也可以间接设27天的生产量为X,求出27天的生产量再加上前3天的生产量,就得到了一共的生产量。 解答正比例应用题的关键一是要正确判断相关联的两种量是否成正比例,二是要找准相关联的量中相对应的数。 a.农具厂生产一批农具,原计划每天生产80台,20天完成任务。如果每天生产100台,需多少天完成? 师:这道题用比例方法来解答请同学们自己做一做。(一人板演) 教师订正时请同学讲述解题思路,并板书方程:100X=80*20。 将原题变成: b.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天多生产20台,需多少天能完成任务? c.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产25%,需多少天能完成任务? d.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天生产100台,可提前几天完成任务? e.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产20台,可提前几天完成任务? 以上4题要求学生独立完成。 教师评讲:通过刚才的变换我们发现,较复杂的反比例应用题,其复杂性表现在两个方面。一是已知条件发生变化,引起未知数X对应值的复杂化。二是问题发生变化,引起未知数X的复杂化。但不管怎样,我们要紧扣反比例的意义,对应用题中两相关联的量进行正确的判断。 三、巩固练习 1.学校买来塑料绳150米,先剪下12米做了4根跳绳。照这样计算,剩下的塑料绳可以做这样的`跳绳多少根?(用算术和比例两种方法) 2.利民加工厂生产一批零件,原计划每天生产25个,30天可以完成。实际每天多生产5个,这样可提前几天完成? 3.根据题中所给的条件,你能提出什么问题?并列出比例式。 一个农具厂,计划一个月(30天)生产农具600台,结果4天生产了100台,照这样计算,? 小结:刚才这道题同学们所提的问题有: (1)完成计划需要多少天? (2)余下的任务还需要几天? (3)可比计划提前几天完成? (4)全月实际可生产多少台? (5)实际超过计划多少台?虽然不同,但因题中的基本数量关系未变,所以我们都是用正比例的方法来解答的。 4.用正、反比例两种方法解答下题。 修一条公路,原计划每天修300米,60天修完。实际3天就修了120米,照这样计算,实际用几天修完? 教师小结:我们分析问题的角度不同,解题的思路也就不同。刚才这道题,从“照这样计算”可知每天修路的米数是不变的,可用正比例的方法来解答。从“修一条公路”又可知这条路的长度是不变的。又可用反比例的方法来解答。 四、全课小结 解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量 等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。 【教学内容】 北师大版小学六年级数学下册第二单元《反比例》 【设计思想】 《数学课程标准》明确指出:“自主探索与合作交流是学生学习数学的重要方式”。因此我在教学时充分相信学生,放手让学生在合作交流的基础上,主动探究,自己去发现。为此,教学时先复习一些基本的数量关系,使知识间发生迁移,在此基础上探求新知,最后深化新知。 【教材分析】 本单元内容是在学生已经学过比的意义、比的化简与比的应用的基础上学习的。《反比例》内容是前面学习“变化的量”,“正比例”等比例知识的深化,是以后学习函数的基础,起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。反比例关系是数学中比较重要的数量关系,而学生理解反比例的含义往往比较困难。为此,教材密切联系学生已有的生活经验和学习经验,创设了三个情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式,从而引发学生的讨论和思考,并通过对具体问题的讨论,使学生认识成反比例的量以及反比例在生活中的广泛存在。 【学情分析】 学生已经学习了“变化的量”和“正比例”的有关知识,对比例知识有了初步的了解,因此,在教学时依据教材特点,从学生的实际生活经验和知识水平出发,采用“小组合作交流”的教学方法,让尽可能多的学生主动参与到学习过程中,通过独立思考,合作交流,让学生在原有正比例知识经验的基础上,积极主动去建构新知,最大限度充分发挥学生主观能动性,通过学生观察、思考、感知、交流、比较、归纳等数学教学活动,探究新知,体验到成功的愉悦。 【教学目标】 1、知识与能力: (1)结合丰富的实例,认识反比例。 (2)能根据反比例的意义,初步判断两个相关联的量是不是成反比例,并能解决生活中的实际问题。 2、方法与途径:在互动、探究的合作交流活动中,培养学生观察、思考、比较、归纳概括的能力。 3、情感与评价:使学生在自主探索合作交流中体验成功的愉悦,感受反比例关 系在生活中的广泛应用。 【教学手段】 运用多媒体辅助教学 【教学重点】 理解反比例的意义,掌握判断两种量是否成反比例的.方法。 【教学难点】 通过具体情境认识成反比例的量,掌握判断两种量是否成反比例的方法。 【教学准备】 多媒体课件。 【教学过程】 一、复习铺垫,引入课题(出示课件) 师:前面我们学习了正比例的有关知识,你们还记得吗?现在老师想考考大家,同学们有没有信心? 1、复习:判断下面各题中两种量是否成正比例。 (1)文具盒的单价一定,买文具盒的个数和总价 (2)一堆货物一定,运出的和剩下的 (3)汽车行驶的路程一定,行驶的速度和时间 2、谈话引入:汽车行驶的路程一定,速度和时间这两种相关联的量不成正比例,那么它成不成比例呢?又会成什么比例?这就是今天要解决的问题。(出示课题:反比例)今天老师就和同学们一道共同探讨反比例的变化规律。 〔设计意图〕通过复习,巩固学生对正比例意义的理解。学生从中发现第3小题不成正比例,那么它成不成比例呢?又会成什么比例?引入课题。通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为学习新知作铺垫,也为自主探究新知创造了条件并激发了积极的情感态度。〕 二、教师引导,自主探索 (一)初步感知理解两个变化关系的不同。(出示情境(1)) 1、师:我们来看“加法表”格,同学们先来观察一下: ①图中蓝色部分表示的是哪个数字? ②哪两个量发生了变化?哪个量是固定不变的? (教师引导学生观察分析,学生自己总结出:和不变,一个加数随另一个加数的变化而变化,所有和为12的数都在同一条直线上。) 2、引导学生观察分析“乘法表”中两个量的变化关系(学生感知积不变,一个乘数随另一个乘数的变化而变化,积为12 的数成一条曲线) 3、小结:由此可见,对于“加法表”和“乘法表”中的两个变量,都是一个量变化,另一个量也随着变化,但是它们的变化关系是不同的。“加法表”表示的是和一定两个加数之间的关系,而“乘法表”表示的是积一定两个乘数之间的关系。所有和为12的数都在同一条直线上,积为12 的数成一条曲线。 (二)探索理解反比例的意义。 师;这两种关系是不是今天我们所学的反比例呢?这个问题放在后面再解答,请同学们看题目: (1)教师引导学生观察表格,把表格填写完整。 (2)观察发现:一行一行地看,发现了什么?再一列列地看,又发现了什么? (3)寻找规律:你是怎么知道路程不变的?用表中的数据说明。(同桌合作交流) 学生讨论反馈:10×12=120 40×3=120 80×1、5=120 … (4)小结:速度×时间=路程(一定) 2、出示情境(3)(小组合作交流) 师:请同学们在小组内互相讨论交流,并围绕这三个问题进行讨论。 (1)填表: (2)表中有哪两种量? (3)分的杯数是怎样随着每杯的果汁量变化的? (4)它们的变化规律是什么?用表中的数据说明。 每杯的果汁量×分的杯数=果汁总体积(一定) 3、学生合作交流比较情境(2)和情境(3)的共同点,比较概括反比例的概念。 (1)比较一下情境(2)和情境(3),请同学们在小组中讨论一下,互相说说这两个例题有什么共同的特征? (2)学生归纳概括反比例意义的概念: 反比例概念:两种相关联的量,一种量变化,另一种量也随着变化如果这两种量中相对应的两个数的积一定,这两种量之间成反比例关系。 4、学生归纳总结判断两个量是不是成反比例的方法:判断两个量是不是成反比 例,主要是看它们的积是不是一定的。 (三)练习:讨论“加法表”和“乘法表”中两个量是否成反比例。 (设计意图:通过让学生观察情境(二)和情境(三),在学生思考、交流合作、比较的基础上,归纳反比例的概念。归纳总结判断两个量是不是成反比例的方法。最后又对“加法表”和“乘法表”中两种关系进行分析讨论,解决了开始提出的问题,巩固了本节课的教学内容) 三、模仿应用,解决问题 1、判断下面每题中的两个量是否成反比例?并说明理由。(出示课件)指名学生口答,要求说出数量关系式判断。 (1)煤的总量一定,每天的烧煤量和能够烧的天数。 (2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。 (3)生产电视机的总台数一定,每天生产的台数和所用的天数。 (4)跳高的高度和她的身高。 (5)苹果的单价一定,购买苹果的数量和总价。 2、找一找生活中还有哪些成反比例的例子? (设计意图:通过五道练习题,运用正反比例的知识判断两种量是不是成反比例关系,进一步加深了对反比例关系的认识,又巩固了正比例的知识。最后又通过找一找环节,学生说出生活中成反比例的例子,让学生感受到了反比例关系在生活中的广泛应用。) 四、全课总结,深化提高 你们又有了什么新的收获?把你们的收获告诉大家。 (设计意图:让学生反思本课学习所得,把自己的收获告诉同学。这一过程,是知识再现的过程,又是再次学习、巩固的过程。) 五、布置作业:p26、1、2、3题。 一、教学内容: 反比例。(教材第47页例2)。 二、教学目标: 1、使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。 2、让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。 三、重点难点: 引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。 四、教学准备: 投影仪。 五、教学过程: (一)复习导入 1、让学生说说什么是正比例,然后用投影出示下面的题。下面各题中哪两种量成正比例?为什么? (1)每公顷产量一定,总产量和公顷数。 (2)一袋大米的重量一定,吃了的和剩下的。 (3)修房屋时,粉刷的面积和所需涂料的数量。 2、说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例? 教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。 (二)目标解读: 1、学生认真度学习目标。 2、理解目标。 (三)自主预习: 理解:哪两种量叫做成反比例的量?什么是反比例关系?请举例说明。 (四)检查预习。 (五)合作探究 活动一: 1、学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。 请学生认真观察表中数据的变化情况,组织学生分小组讨论: (1)水的高度和底面积变化有关系吗? (2)水的高度是怎样随着底面积变化的? (3)水的高度和底面积的变化有什么规律? 2、发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)即:30×10=20×15=15×20=?=300 3、高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。 活动二: 1、归纳反比例的意义。 像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。 2、用字母表示。 如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定) 3、生活中还有哪些成反比例的量?学生举例说明。如: (1)大米的质量一定,每袋质量和袋数成反比例。 (2)教室地板面积一定,每块地砖的`面积和块数成反比例。 (3)长方形的面积一定,长和宽成反比例。 活动三: 1、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些? 学生交流、汇报后,引导学生归纳: 相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。 不同点:正比例关系中比值一定,反比例关系中乘积一定。 2、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。 反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。课堂作业 1、教材第48页的“做一做”。 2、教材第51页第9、10题。课堂小结 说一说成反比例关系的量的变化特征。 (六)当堂检测: 1、完成练习册中本课时的练习。 2、教材51~52页第8、14题。 (七)总结归纳: 反比例 两种相关联的量 变化 xy=k(一定) 积一定 学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。 请学生认真观察表中数据的变化情况,组织学生分小组讨论: (1)水的高度和底面积变化有关系吗? (2)水的高度是怎样随着底面积变化的? (3)水的高度和底面积的变化有什么规律? 发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。) 教师板书配合说明这一规律: 30×10=20×15=15×20=?=300 教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。 2、归纳反比例的意义。 组织学生小组内讨论:反比例的意义是什么?学生小组内交流,指名汇报。 教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。 3、用字母表示。 如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定) 4、师:生活中还有哪些成反比例的量?在教师的引导下,学生举例说明。如: (1)大米的质量一定,每袋质量和袋数成反比例。 (2)教室地板面积一定,每块地砖的面积和块数成反比例。 (3)长方形的面积一定,长和宽成反比例。 5、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?学生交流、汇报后,引导学生归纳: 相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。不同点:正比例关系中比值一定,反比例关系中乘积一定。 6、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。 反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。 课堂作业 1、教材第48页的“做一做”。 2、教材第51页第9、10题。 课堂小结 说一说成反比例关系的量的变化特征。 课后作业 1、完成练习册中本课时的练习。 2、教材51~52页第8、14题 教学目标: 用反比例知识解决问题优秀教学设计 1.掌握用反比例的方法解答相关应用题。 2.通过解答应用题使学生熟练地判断两种相关联的量是否成反比例,从而加深对反比例意义的理解。 3.培养学生分析问题、解决问题的能力。 4.发展学生综合运用知识解决问题的能力。 教学重点: 掌握用反比例的方法解答相关应用题。 教学难点: 通过解答应用题使学生熟练地判断两种相关联的量是否成反比例,掌握用反比例的方法解答相关应用题。 教法: 创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。 学法: 理解分析与合作交流相结合。 教具: 课件 教学过程: 一、定向导学(5分) 1、判断下面每题中的两种量成什么比例?并说明理由。 (1)总价一定,单价和数量。 (2)我们班学生做操,每行站的人数和站的行数。 (3)路程一定,速度和时间。 (4)水费一定,每吨水的价钱和用水的吨数。 2、出示目标 (1)掌握用反比例的方法解答相关应用题。 (2)熟练地判断两种相关联的量是否成反比例,从而加深对反比例意义的理解。 二、自主学习(10分钟) 内容:课本62页例6 1、方法:自主学习,小组合作 2、时间:5分钟 3、思考问题: (1)、题目中有哪些变化的量和不变的量?你是从题中哪里发现的? (2)、这三种量成什么关系?你是怎样判定的? (3)、列出关系式。 4、跟踪练习 这批书如果每包20本,要捆18包。如果要捆15包,每包多少本? 三、合作交流(10分钟) 1、课本59页“做一做”第2题 2、六年级一班学生在操场做操,每行站4人,可以站9行。如果每行站6人,可以站几行? 3、聪聪每分钟走60米,8分钟可以到家。如果她从家走到学校用了6分钟,每分钟走多少米? 四、质疑探究(5分) 针对学生的'学习情况,重点强调用反比例知识解决问题的解题步骤和方法。 (1)、题目中有哪些变化的量和不变的量? (2)、这三种量成什么关系? (3)、列出关系式。 五、小结检测(10分钟) 1、这节课有什么收获?你学会了什么? 2、检测 第64页的5、6、7、8题 板书设计: 用比例解决问题 (1)、题目中有哪些变化的量和不变的量? (2)、这三种量成什么关系? (3)、列出关系式。 【教材分析】 本课教学内容是苏教版义务教育课程标准实验教科书六年级(下册)第64页到第65的“认识成反比例的量”。这部分内容是在学生已经学习了比和比例以及成正比例的量,认识常见数量关系的基础上进行教学的,通过对两种数量保持积一定的变化,理解反比例关系,渗透初步的函数思想。通过学习这部分知识,可以帮助学生加深对过去学过的数量关系的认识,同时这部分知识在日常生活和工农业生产中有着广泛的应用,还是今后进一步学习中学数学、物理、化学等知识的重要基础。 【教学目标】 1、使学生结合实际情境认识成反比例的量,能根据反比例的意义判断两种相关联的量是否成反比例; 2、使学生在认识成反比例的量过程中,进一步体会数量之间相依互变的关系,感受有效表示数量关系及其变化的不同数学模型,提升思维水平; 3、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的自信心。 【教学重点】掌握反比例的意义。 【教学难点】有条理地思考、判断成反比例的量。 【教学准备】多媒体课件 【教学过程】 一、联系生活,导入新课 1、同学们,前两节课我们认识了正比例,怎样的两种量成正比例呢? (结合回答板书:相关联、比值一定、y/x=k<一定>) 2、判断下表中的两种量是否成正比例,为什么? 表1:成正比例。买的数量扩大,总价也随之扩大,总价和买的数量的比值一定。 表2:成正比例。飞行时间缩小,航程也随之缩小,航程和买的飞行时间的比值一定。 表3:不成正比例。数量和单价的比值不是一定的。 二、自主合作,探究发现 1、设疑引入(购买笔记本问题) (1)(出示表格)谈话:除了观察到这两个量的比值不是一定,这两个量还存在其他关系吗?咋们不妨一起来研究研究。 (2)四人小组合作研究: 1、观察表格中的两个量有什么变化? 2、这种变化有什么规律? 3、这种规律与成正比例的量的规律有什么不同? (3)全班交流。 1、观察表格中的两个量有什么变化? 单价变化(扩大),数量也随之变化(缩小) 2、这种变化有什么规律? 这两个量的乘积总是一定的。 板书:单价×数量=总价(一定) 指出:都是用60元购买笔记本 3、这种规律与成正比例的量的规律有什么不同? ①成正比例的量,一个量扩大,另一个量也随之扩大,表3中,单价扩大,数量反而随之缩小。 ②成正比例的量,它们的比值一定,表3中,单价和数量的乘积一定。 (4)谈话:刚才,咋们研究了数量和单价的变化规律,猜一猜,单价和数量是什么关系呢? 请同学们打开课本65页,自学“试一试”上面的一段话,可以轻声读一读,圈圈重要的词字。 (5)交流:学生结合投影说说单价和数量之间的'关系。(2到3人) 单价和数量是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的数量是成反比例的量。 这就是我们今天要认识的成反比例的量。(揭示课题) 2、试一试 师:我们继续来学习反比例,请看大屏幕: (1)(出示表格)学生读一读题目,交流:表格中有哪两种量,他们相关联吗?根据已知条件把表格填完整。 然后指名口答,全班校对。 (2)同桌合作讨论(出示要求) 算一算:相对应的两个数的乘积各是多少? 想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗? 说一说:每天运的吨数和需要的天数成反比例吗?为什么? (3)全班交流。 算一算:相对应的两个数的乘积各是多少? (乘积都是72) 想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗? (这个乘积表示一共运的水泥吨数,每天运的吨数×天数=总吨数(一定)板书) 说一说:每天运的吨数和需要的天数成反比例吗?为什么? (略) 3、小结:刚才我们学习了两个反比例的例子,想一想,怎样的两个量是反比例关系?(板书:相关联、乘积一定) 4、用字母式子表示反比例的意义。 教师:根据上面两个例子,你也能像学习正比例的意义时那样用一个字母式子来表示反比例的意义吗? 根据学生回答,教师板书:x×y=k(一定) 三、巩固应用,深化发展 1、完成“练一练” 让学生判断每袋糖果的粒数和装的袋数是否成反比例。 (1)出示题目和要求 (2)把自己的想法和同桌互相说一说 (3)再全班交流、评议。 2、根据情况选择完成练习十三第6题 出示题目,学生独立思考后依次交流3个问题 3、根据情况选择完成练习十三第7题 (1)出示题目 (2)学生独立思考 (3)全班交流、评议。 4、判断下面每题中的两个量,哪些成反比例? (1)用同样多的钱购买不同的笔记本的单价和数量。 (2)一个人的年龄与体重。 (3)长方形的面积一定,长方形的长与宽。 (4)长方形的周长一定,长方形的长与宽。 (5)X和Y是两种相关联的量。(机动) X×Y=5 5×X=Y 四、全课总结,拓展延伸 今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。 教学内容: 北师大版数学第十二册第二单元教材第24页反比例的教学内容。 教学目标: 1、结合丰富的实际,认识反比例,能根据反比例的意义,判断两个相关的量是不是成反比例,利用反比例解决一些简单的生活问题,感受反比例在生活中的广泛应用。 2、培养学生的逻辑思维能力。 3、渗透数学源于生活的观点。 重点难点 1、通过具体问题认识成反比例的量。 2、掌握成反比例的量得变化规律及其特征。 教具准备: 课件 教学过程 一、复习铺垫,导入新课 1、复习 (1)路程、时间和速度这三种量中;当速度一定时,路程和时间成正比例吗?为什么? 当时间一定时,路程和速度成正比例吗?为什么? (2)正比例关系式用字母表示为(),y随着x的矿大而(),随着的()而()。(3)、判断两种量是不是成正比例:一看();二看() 2、揭示课题。 师:看来大家对正比例知识理解掌握得非常好,学完正比例接下来我们就该学习什么了?(生答)是啊,有正就有反,的确这节课我们就来探究反比例的有关知识(板书:反比例) 二、运用迁移,探索新知 1、探究情境 (一)让学生把汽车行驶的速度和时间的表填完整。观察上表,思考下面的问题: (1)表中有哪两种量? (2)时间是怎样随着速度的变化而变化的? (3)表中那个量没有变? (4)写出三者的关系式 2、探究情境 (二)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?哪一个没变?用自己的语言描述变化关系。 写出关系式:每杯果汁量×杯数=果汗总量(一定)以上两个情境中有什么共同点? 3、反比例意义 引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系(板书) 4、情境 (三)认识加法表中和是12的直线及乘法表中积是12的曲线。 引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。 三、联系生活,巩固练习 1、判断下面每题中的`两个量是不是成反比例,并说明理由。 (1)圆柱体的体积一定,底面积和高。 (2)小林做10道数学题,已做的题和没有做的题。 (3)长方形的长一定,面积和宽。 (4)平行四边形面积一定,底和高。 2、判断下面每题中的两种量是不是成反比例,并说明理由。 (1)煤的总量一定,每天的烧煤量和能够烧的天数。 (2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。 (3)生产电视机的总台数一定,每天生产的台数和所用的天数。 四、课堂小结 今天同学们学到了什么知识?觉得还有什么地方感到困惑的吗? 五、作业:找一找生活中有哪些例子成反比例。 六、板书设计 反比例 速度×时间=路程(一定) 每杯的果汁量×分的杯数=果汁总量(一定) 两种相关联的量,一种量变化,另一种量也随着变化,变化时两种量中相对应的两个数的积一定,这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。 教学目标: 1、学生能通过表和图读出其中反映的数学信息。通过具体丰富的实例结合图,感知两个成反比例量满足的条件。 3、能根据反比例的意义,判断两个相关的量是不是成反比例。 教学重点: 理解反比例的意义。 教学难点: 正确判断两种量是否成反比例。 教学用具: 电脑课件 教学过程: 一、创设情境,复习引入 填空 ()*()=路程 ()*()=总价 每杯果汁质量○杯数=果汁总质量 底面积○高=圆柱体积 师:在前几节课里我们已经学过两个量之间可以成正比例的关系,现在就请你判断判断下面的情况。 师小结:判断两个量是否成正比例首先要一个量在增加,另一个量也在增加一个量减少另一个量也在减少而且这两个量的比值要相同。我们就说这两个量成正比例。 二、探究新知。 师:我们已经学习了正比例,同学们来猜猜我们今天可能要学习什么新知识呢?(生答:反比例) 课件出示:反比例(师同时板书:反比例) 师:同学们说得很好,我们今天就一起来研究什么是反比例。 1、加法表 出示:加法表 师:请同学们观察这个表,你能看懂这个表吗?把你看到的说给大家听听。(如果生不能回答,师可以问得更细:这个表横着的这一行数是什么?竖着的这一列数是什么?中间的这些数呢?)(指定两个数提问) 师:这里的18是哪两个加数的和?23呢?(生回答)演示: 1、(1)在加法表上,把和是12的方格圈起来 师:和是12时,哪个量随着哪个量的变化而变化?是怎么变化的? 演示圈和是12 师:请同学们认真观察说说把这些和是12的圈依次用线连接起来成为一个什么图形? 出示:生回答的同时出示:可连成一条直线。 师:这条直线表示的是什么和什么之间的关系?(生回答:加数与加数之间的关系) 2、乘法表 出示:乘法表 师:这是什么表?(生回答) 师:你会看这个表吗?把你看到地说一说。(请生回答)108在这里表示什么意思? 演示: (2)在乘法表上,把积是12的方格圈起来 演示圈积是12 师:积是12时,哪个量随着哪个量的变化而变化?怎么变化的.? 师:把这些积是12的连起来可以成一个什么样的图形? 出示一条曲线,生回答后出现字幕。 师:这条曲线图表示的是什么与什么之间的关系? 师总结:现在我们回过头来对比一下两个表: 3、第一个加法表中的这条直线图表示和怎么样?(和一定)什么与什么的关系?(加数和加数的关系) 4、第二个乘法表中的这条曲线图表示积怎么样?(积一定)什么与什么的关系?(乘数与乘数的关系) 出示:思考:第(1)和第(2)中的两个变化关系相同吗? 师:观察这两个图,你觉得他们的变化关系相同吗?你是从哪里看出来的?(只需要学生回答到不相同就行。如果有孩子回答相同,师追问:哪儿相同?哪儿不同?) 5、探究例2。 师:春天来了,王叔叔打算去爬爬青城山,他有3种不同的交通工具可以选择。 出示三种交通工具图。 师:分别是哪三种交通工具? 出示:王叔叔要去游青城山。不同的交通工具所需时间如下,请把下表填完整。(及表格) 师:你能看懂这个表吗?表中出现了哪几个量?上面这一排数表示的是?下面这一排数呢?(请生回答)现在请同学们在书上独自完成表格。(生独自完成) 师:请你汇报答案,并说说你是怎么计算的。(生汇报) 师:现在我们把这个表制成图来看看。 出示:师:从图中你发现了什么?(生思考后说他发现的) (生的回答需要说到: 1、一个量随着另一个量的变化而变化。 2、是怎么变化的? 3、在变化过程中什么不变?) 师:我们把刚才同学们发现的做一下总结。 出示:路程不变,速度快的交通工具所需的时间少,速度慢的交通工具所需的时间多,而且速度和时间的积一定。(生齐读) 6、究例3 师:王叔叔去青城山,怕口渴他带了600毫升的果汁打算把这些果汁和他的朋友们一起分享。 出示: 3、有600毫升果汁,可平均分成若干杯。请把下表填完整。 师:完成的同学请汇报答案。(请生汇报,师出示正确答案) 师:现在我们把这个表也制成图来看看。 师:从图中你发现了什么?请与同桌说一说。(生讨论) 师:说一说你的讨论结果。(只要正确的就给予肯定) 师:你们能像刚才的练习二那样完整的总结吗?(生总结,教师给予补充,多请几位学生汇报) 出示:果汁总量不变,分的杯数在增加,每杯的果汁量在减少,而且分的杯数和每杯果汁量的积一定。(生齐读) 师:我们回顾一下刚才我们绘出的4幅图,如果让你来把它们分分类,你会怎么分?为什么? 出示:四幅图(生回答他的分法) 师:同学们把这三幅图分为一类,那我们来看看这三幅图。 出示成反比例的三幅图。 师:刚才我们总结出来了从这三幅图中观察到的变化关系。出示:一个乘数增加,另一个乘数减小;一个乘数减小,另一个乘数增加,而且两个乘数的积一定。 路程不变,速度快的交通工具所需的时间少,速度慢的交通工具所需的时间多,而且速度和时间的积一定。 果汁总量不变,分的杯数在增加,每杯的果汁量在减少,而且分的杯数和每杯果汁量的积一定。 师和学生一起读后教师总结:我们就说,这两个乘数成反比例。我们就说,速度和时间成反比例。 我们就说,分的杯数和每杯的果汁量成反比例。 师:我们已经看了三个成反比例的例子,谁来总结一下什么情况下成反比例呢?(生回答到哪一点师就在黑板上出示哪一点)最后完成板书。 板书出示:一个量增加,另一个量在减少;一个量在减少,另一个量在增加,而且两个量的乘积一定。 师:实际上我们还可以用式子来表示反比例的关系。比如在乘法表中我们可以用一个乘数*另一个乘数=积(一定)速度*时间=路程(一定),分的杯数*每杯果汁量=果汁总量(一定) 如果我们用字母x和y表示两种相互关联的量,用k表示他们的积,反比例就可以用一个概括式来表示: 师:请你在你的听算本上写出。(让学生在听算本上写出他的反比例表达式)(请几位生叙述) 出示:xy=k(一定) 三、巩固应用,内化提高 1、练习“练一练”1题 课件出示“练一练”1题 师引导:已知什么?题目要求回答什么? 师:请同学们独自填空,并思考后面的问题。(生独立完成后汇报答案及问题,回答时要求完整,可多由一些学生回答) 2、补充练习:判断下面每题中的两种量是不是成反比例,并说明理由 (4)平行四边形的面积一定,它的底和高。 (5)被减数一定,差和减数。 3、课后思考题 课件出示:课后思考并和同学说一说:下面各题中的两个量是否成反比例,请你说明理由。 1、五一班人数一定,每组的人数和组数。 2、被除数一定,除数和商。 3、一条绳子的长度一定,剪去的部分和剩下的部分 四,回顾整理,反思提升 这节课有哪些收获?反比例教学设计 14
反比例教学设计 15
反比例教学设计 16
反比例教学设计 17
反比例教学设计 18
反比例教学设计 19
反比例教学设计 20
反比例教学设计 21
反比例教学设计 22
反比例教学设计 23
反比例教学设计 24
反比例教学设计 25