新人教版《探索图形》教学设计(通用14篇)
新人教版《探索图形》教学设计(通用14篇)
作为一名默默奉献的教育工作者,总不可避免地需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。我们该怎么去写教学设计呢?下面是小编整理的新人教版《探索图形》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《探索图形》教学设计 1
教学目标:
1.借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
2.在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法和经验。
3.在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。
教学重点:
学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。
教学难点:
探索规律的归纳方法。
教学准备:
小正方体学具和。
教学过程:
一、复习导入
1、正方体有什么特征?
2、提问:棱长为10厘米的大正方体是由多少个棱长1厘米的小正方体拼成的?
3、导入:如果给这个正方体的表面涂上颜色,每个小正方体涂色的部分会一样多吗?
学生观察分类:三面涂色的块数、两面涂色的块数、一面涂色的块数、没有涂色的块数
师:你们能数出每一类小正方体到底有多少块吗?
师:这个图形太复杂了,我们很难数出。这样吧,我们先来研究简单的图形,探索图形中蕴含的规律,再利用规律去解决复杂的图形,好吗?(板书课题:探索图形)
二、探索新知
1、发现规律。
用棱长1c的小正方体拼成棱长为2c的大正方体(即①号),问一共有多少块小正方体?然后讨论:如果把它的表面涂上颜色,每个小正方体会有几个面涂色?
观察②、③号大正方体,想一想:每个小正方体会涂色几个面?看一看:每类小正方体都在什么位置。
(3)汇报交流
各小组汇报时,配合演示,集体订正。
A、三面涂色:当学生说出有8个三面涂色的小正方体时,追问:哪8个?学生说出三面涂色的小正方体在原来大正方体8个顶点的位置。
B、两面涂色:可能有的学生是数出来的,也可能有的学生是用2×12算出来的。先让用计算方法的学生说一说“为什么用2×12”从而引导学生发现两面涂色的小正方体都在原来大正方体的棱的位置,体会可以从一条棱上有2个两面涂色的,推算出12条棱上就有24个两面涂色的。引导比较“数”和“算”哪种更简便。
C、一面涂色:着重交流明确可以由一面有4个一面涂色的小正方体,推算出6个面一共有4×6=24个一面涂色的小正方体。还要追问:4从哪来的?
D、利用经验自主探究没有涂色的小正方体与原来大正方体的关系。
a引导学生自主提出新问题:没有涂色的小正方体有多少个?
b学生讨论方法。估计大部分学生是用小正方体的总个数减去三面、两面、一面涂色的小正方体的总个数。?
c实物演示将三面、两面、一面涂色的小正方体剥离出去的.过程,激发学生寻求更简便的方法。
2、验证猜想。
(1)如果拼成棱长为5c、6c的大正方体后,你能猜想一下三面、两面、一面、没有涂色的小正方体各有多少个?
(2)演示,验证学生的猜想。
3、演示,总结规律。
三面涂色的小正方体都在大正方体的顶点的位置。不论棱长是几,分割后三面涂色的小正方体的个数都是8个。
两面涂色的小正方体都在大正方体的棱的位置。只要用每条棱中间两面涂2色的小正方体的个数乘12,就得出两面涂色的小正方体的总个数,即(n-2)x12。
一面涂色的小正方体都在大正方体的面的位置。(每一面上除去外圈的位置)只要用每个面上一面涂色的小正方体的个数乘6,就得出一面涂色的小正方体的总个数,即(n-2)x(n-2)x6。
没有涂色的小正方体在正方体里面除去表面一层的位置。所以有用小正方体的总个数减去三面、两面、一面涂色的小正方体的总个数。或演示将三面、两面、一面涂色的小正方体剥离出去的过程,激发学生寻求更简便的方法是(n-2)x(n-2)x(n-2)。
三、巩固拓展
现在能解决我们开始遇到的问题了吗?
三面涂色:8块;
两面涂色:(10-2)x12=96(块);
一面涂色:(10-2)x(10-2)x6=384(块);
没有涂色:(10-2)x(10-2)x(10-2)=512(块)。
四、课堂小结
教师小结:当我们遇到比较复杂的问题,解决起来有困难时,可以尝试先从简单的情况开始,看能否发现规律,再应用规律去解决复杂的问题,这是一种解决问题常用的思想方法。(化繁为简)
《探索图形》教学设计 2
教学内容:
人教版小学数学五年级下册第三单元《长方体和正方体》综合与实践活动课,教材第44页:探索图形。
教材分析:
在认识长方体和正方体后,教材安排了“探索图形”的综合与实践活动。目的是让学生运用所学过的正方体的特征等知识,探索由小正方体拼成的大正方体中各种涂色小正方体的数量,发现其中蕴含的数量上的规律,以及每种涂色小正方体的位置特征,培养学生的空间想象力和推理能力、体会分类计数的思想。
原研究内容是这样呈现的:
(1)棱长1cm的小正方体拼成一个棱长2cm的大正方体,把它的表面涂成绿色。三面、两面、一面涂色以及没有涂色的小正方体各有多少块?
(2)棱长1cm的小正方体拼成个棱长3cm的大正方体,各种涂色情况的小正方体是多少块?棱长是4cm,5cm,6cm的呢?
让学生综合运用正方体的特征等相关知识,借助已有的学习经验,在观察、想象、推理、交流等活动中,把握问题的共性,从而发现三面涂色、两面涂色、一面涂色的小正方体的个数与大正方体顶点、棱、面之间的关系,使学生在探究规律的过程中,积累数学活动经验,发展空间观念。
正是由于各个小正方体在大正方体上的位置不同,所以它们涂颜色面的个数不同。研究小正方体涂色面的规律,要分类整理各种小正方体的原来位置,与刚刚教学的正方体知识有联系,对空间想象力提出了新的内容与要求,有益于学生空间观念的发展教材编排注重动手实践与自主探索,促进学生空间观念的发展。
学情分析:
学生在第一学段初步认识了立体图形,有一定的认识基础。同时也已经掌握了平面图形的知识,为学习立体图形作好了准备。本单元前面已经学习了长方体、正方体的特性以及两种立体图形的表面积、体积的计算。
由平面图形扩展到立体图形,是学生发展空间观念的一次飞跃,教学中应该注重学生的学习体验、动手操作、总结归纳,让学生在探索活动中掌握知识的内涵,转化为自身的能力。
教材以棱长为2、3、4的正方体入手研究规律,规律研究的最小数据棱长为2开始研究,从学生的实际反馈发现棱长为2的正方体对涂色图形的位置特征缺乏直观的感受,而棱长3、4的表格填写对规律的发现还有点薄弱。所以本课我在棱长为2教学时,切开让学生直观感受,里面的没有涂色。从棱长为3的正方体为切入点,通过观察魔方让学生初步感受不同涂色情况小正方体位置特征,再通过对棱长为4.5的正方体图形的涂色研究、数据填写,通过实验操作经历从具体到表象再到抽象的过程,丰满学生的规律发现探究之旅。
教学目标:
1.加深对正方体特征的认识和理解。
2.通过观察、列表、想象等方式探索、发现图形分类计数问题中的规律,体会化繁为简解决问题的策略,培养学生的空间想象力。
3.体会分类、数形结合、归纳、推理、模型等数学思想。
4.在相互交流中,学会倾听他人意见,及时自我修正,自我反思,增强学好数学的信心。
教学重、难点:
教学重点:学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。
教学难点:探索规律的归纳方法。
教学准备:
多媒体课件,三阶魔方、活动任务单。
教学过程:
(一)复习导入,提出问题
复习正方体知识
1.魔方大多数是正方体,正方体有哪些特征?
2.这里有一个棱长为1厘米的小正方体,要用它拼成一个大正方体,最少需要多少个?
教师:这也就是拼成了棱为几的正方体。你们用到的小正方体的总块数是?
教师总结:我们用棱长为1厘米的小正方体,可以拼出棱长为2厘米的正方体,也可以拼出棱长为3厘米、4厘米、5厘米...的正方体。
引出问题
1.教师:这是棱长为几的正方体?它是由多少个小正方体组成的?
2.教师:如果现在给它的表面涂上颜色,会有什么问题发生,请大家在仔细看看,其中每一个小正方体涂色情况相同吗?对应的块数又是怎样的呢?
师总结:看来要想知道准确的答案并不是一件轻松的事情,我们不妨从一个简单的图形入手,一起来探索规律(板书课题,探索图形)。
[设计意图]:创设问题情境,在解决这个问题的过程中,让学生初步体会分类计数,深刻感受到原有的经验和方法解决问题有困难,产生认知冲突,促使学生积极主动地思考解决问题的方法,深刻体会化繁为简、探索规律解决问题的意义,积累解决问题的数学学习经验。同时,复习正方体的有关知识可以为后面的学习铺垫。
(二)活动研究,探索规律
1.探究棱长为2时,各种涂色小正方体的个数。
2.探究棱长为3时,各种涂色小正方体的个数。(利用正方体实物进行探究)
活动一:同桌两人合作,借助桌面上的三阶魔方进行观察,完成任务单活动(一)。
①在立体图形上找出三面涂色,两面涂色,一面涂色的小正方体的位置。
②数一数,算一算,每类小正方体各有多少个?
③汇报交流
教师:刚才你们观察到三面涂色的在的顶点处,两面涂色的在棱上,一面涂色的在面上。
猜想:是不是所有拼成后的三面、两面、一面涂色的'正方体都在相应的位置上呢?
四人一组,小组合作研究,验证猜想。
[设计意图]:探究大正方体棱长为3时不同涂色小正方体的个数,学生利用学具能比较容易地找到答案。但本环节的意图并不在此,而是以探究不同涂色小正方体的个数为主体,旨在让学生在探究过程中具体感受不同涂色的小正方体在大正方体上的位置,为找不同涂色小正方体的个数与大正方体棱的等分数的关系扫清障碍。
活动二:四人小组继续探究,当棱长为4,棱长为5时,每类小正方体的涂色情况,并快速填写任务单(二),看一看你能否发现规律。
学生汇报数据。
探究对应的数据如何得来的,验证答案。
[设计意图]:这一环节在学生抛开学具的基础上探寻不同涂色小正方体的个数,表面上看仿佛是上一环节在量上的增加,其实也有质的变化。上一环节重在让学生感受不同小正方体所在的位置,至于答案是学生数出来的还是算出来的,不作要求;而这一环节,要引导学生在观察的基础上,用想象、推理加计算来找答案。由数出来到算出来,规律就在一步步的探究过程中悄悄萌芽。
(三)比较归纳,概括规律
教师:当小正方体的个数足够多时,我们再继续拼下去,这时棱长可以怎样表示呢?(用字母表示)
教师:回顾一下刚才的探究过程,你们觉得哪组数据最好找?
为什么三面涂色的小正方体最好找,你有什么发现?
再来回顾下两面涂色的小正方体,它们有什么相同的地方?
回顾一面涂色的小正方体,你又有什么发现?仔细观察一面涂色的小正方形,它们构成的图形有共同点?
没有涂色的小正方体有什么规律呢?生汇报。
师:没有涂色的怎样找更快,还有更好的方法吗,他们都位于大正方体的什么位置?那就是需要我们揭开它表面的一层,一起揭开它神秘的面纱,我们一起来观察一下。(ppt播放)
师:你有什么发现?没有涂色的小正方体的形状有共同点吗?那它的数据还可以表示成?当棱长为n时,没有涂色的小正方体的个数就为?
[设计意图]:回顾总结,是本节课的一大亮点,不能简单理解为学生认识到什么就总结什么,而应该在学生认识的基础上顺势而为,作适当的延伸和提高,不仅使学生有机会感悟研究规律背后的数学思想,为以后的数学研究做好铺垫,也实现相关研究方法和数学思想由“外显”变为“内化”。
回到棱长为9。
师:现在你们能解决棱长为9时,每类小正方体的块数吗?生汇报数据。
(四)课堂小结,总结提升。
1、回顾刚才探索和发现的过程,说说你的体会。
其实刚才的探究方法,就是数学上解决问题,常用的方法叫做“化繁为简”,在以前的学习中,我们也用到了这种学习方法,让我们一起回顾下吧。(ppt播放)
在今后的学习中,这位老朋友还会陪伴我们解决更多的问题。
老师把爱因斯坦的这句名言送给大家,希望在今后的学习中,这句话能激励着你们不断探究。
板书设计:
探索图形(化繁为简)
8个顶点12条棱6个面
棱长
三面涂色的块数
两面涂色的块数
一面涂色的块数
没有涂色的块数
《探索图形》教学设计 3
[教材简析]
本节课的教学内容是探索图形覆盖现象中的规律。书中例题选取的素材是先用每次能框两个数的方框在写有1—10这10个自然数的表中框数,用移动方框的办法看能求出多少个不同的和,让学生自选策略找到答案。然后改为每次框3个数、4个数、5个数,看一看各能求出多少个不同的和,并把操作探究的结果列成表。引导学生观察表中的数据,探讨方框平移的次数与每次框出的数的个数之间的关系,以及得到的不同的和的个数与图形平移次数之间的关系,从而发现被覆盖的图形的方格总数、每次覆盖的方格个数与总次数之间的关系,也就是本节课要寻找的规律。“试一试”和“练一练”旨在运用所学规律解决实际问题。
[教学目标]
1、使学生结合具体情境,用平移的方法探索并发现简单图形覆盖现象中的规律,能根据把图形平移的次数推算被该图形覆盖的总次数,解决相应的简单实际问题。
2、使学生主动经历自主探索的过程,体会有序列举和列表思考等解决问题的策略,进一步培养发现和概括规律的能力。
3、使学生在他人的鼓励和帮助下,努力克服学习过程中遇到的困难,体验数学问题的探索性和挑战性,获得成功的体验。
[教学重点]
探索简单图形沿一个方向进行平移后覆盖次数的规律。
[教学难点]
能根据把图形平移的次数推算被该图形覆盖的总次数,解决相应的简单实际问题。
[教学过程]
一、微导入,大学问。
同学们,你们知道吗?20XX年对咱们南京人来说是一个重要的年份,对,20XX年青奥会在南京举办,但,小明却被一个关于“20XX”的数学问题难住了。请看:
师:用这样的方框可以框出4个数,他们的和是:1+2+3+4=10,移动这个方框就会产生新的和:2+3+4+5=14,一直移动下去,每次框出4个数的和会相同吗?移到20XX,一共可以框出多少个不同的和?……(环视)绝大多数都陷入了思考?什么感觉?——哇!好难啊!
怎么办?别急,别急,读读华罗庚爷爷的这段话,也许有启发:轻声读一读:
“要善于退、足够的退,退到最原始又不失重要的地方,是学好数学的一个诀窍。”
——我国著名数学家华罗庚
师:研究数学要“善于退、足够的退”,这怎么退,有什么想法了吗?
是的,20XX个数,太多了……退一退!用几个数研究恰当?
每次要框出连续4个数……也挺多……先研究每次框几个数?
12
12345678910
123456789101112…20
(数的总数少一些,但又不能,每次框出的数少一些……)
对的,2个太少,20个有点多,10个正正好。
在2连框、3连框、4连框、5连框,也先选少一些的2连框研究。呈现:
12345678910
二、微探究,大收获。
出例题:一共可以得到多少个不同的和?这个便于研究。独立研究一番你一定能找到结论。
可以:
A列举所有的和;
B连线得出所有的和;
C圈出所有的和;
D平移出9个和;
E看头法;10—1
F看尾法;10—(2—1)
梳理整理。
同学们真棒,想到了这么多方式找出了答案,我们来梳理一番,看看能有什么发现。PPT回放两遍。列举依次加的、连线的、画圈的、移动的,仔细观察,这些做法都在做一个相似的动作(站起来手势模仿下平移),有什么共同之处:
(1)(都在平移)都在平移,平移了几次?9次?(一起数数!)
(2)唉,明明平移了8次,怎么得到了9个和呢?(覆盖的第一个的和不算平移)。
[设计意图:对学生进行积极地引导,培养学生从生活中抽象出数学模型的理念,让学生形成数学来源于生活的意识。]
三、微深入,大感知。
师:(指着黑板)真棒,刚才研究连框两数,有收获,那接下来就该研究:连框3个数。我们每次框出三个相邻的数,方框要平移几次?
可以得到几种不同的`和?大家跟我一起数。
一共平移了几次?(7次)一共有几种不同的和?(8个)
现在难度增加了,敢不敢跟着老师一起挑战更高的难度呢?如果在表中每次框出4个数,方框要平移几次?可以得到几种不同的和呢?连框5个呢?
汇报结论,相机追问:
A汇报结论,方框将平移几次?(齐数验证)现在这么快就知道平移次数的?有同学,不移就知道平移次数了!(给小组鼓励)
预计:生1:和—1=平移次数;生2:从上往下看,减少;生3:10—5=5(次)
四、微总结,大发现。
师:来之不易的数据啊,仔细看看,似乎有规律蕴藏其中啊……你有什么发现?
大家非常棒,看来,已经没有什么难题能挡住大家学习的脚步了,咱们一起来回顾一下每次平移的过程和得到的结果。
总个数框的个数平移的次数不同和的个数
10289
10378
10467
10556
核心问题:
A:和的个数与平移次数有关系吗?(对,知道平移次数,+1就得到了和的个数!)
B:怎样能很快知道平移次数?(没错,用数的总数—框的个数=平移次数)
学生可能得到:平移的次数与每次框几的个数相加正好是10;有几种不同的和比平移的次数多1;每次框的个数越多,平移的次数与有几种不同的和就越少;每次框出的数的个数增加1,有几种不同的和就减少1……
我们可以怎样迅速的算出有几种不同的和?
总个数—每次框出的个数=平移次数
总个数—每次框的个数+1=得到的不同的和
如果每次要框6位数呢?一共会有几种不同的和?
同学们通过探索找到了图形覆盖现象中的规律,真了不起!
[设计意图:使学生在独立思考、自主探索的基础上,通过教师的引导,发现并概括出图形覆盖现象中的规律。]
《探索图形》教学设计 4
一、教材内容:
人教版小学数学五年级下册44页
二、学情分析
五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。
三、教学目标
1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。
教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
四、 教学准备
魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡
五、教学过程
一、复习引入
(一)、同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?
学生:有8个顶点、12条长度相等的棱、6个大小相等的面。
教师随机板书正方体的特征。
【设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】
(二)、出示①②③组图,它们分别是由多少块小正方体组成的吗?
生:图①2×2×2=8(块)
图②3×3×3=27(块)
图③4×4×4=64(块)
师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?
生:不是,有的会被涂上颜色,有的不会被涂上颜色。
师:涂色的面数有几种情况?
学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。
教师随机板书:3面 两面 一面 没有涂色
师:今天我们就一起来探究正方体表面涂色的问题——探究图形
教师板书课题。
二、探究新知
(一)探究三面涂色的问题
师:三面涂色的小正方体分别有多少块呢?
生观察回答:图①有8块、图②有8块、图③有8块。
师:怎么都是8块?分别在哪里?
生:都在大正方体的8个顶点上。
师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?
生:也是8块。
师:这跟什么有关系?
生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。
教师随机板书:顶点
(二)探究两面涂色的问题
师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。
小组合作提示:
1、四人合作,利用学具探究两面涂色的小正方体有多少块?
2、试着将发现的结果用列式的方法表示在小组探究卡的表格中
小组探究
小组汇报
生:一面有4块,6面一共有12块。
师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的话,用这种方法还方便吗?还有其他的方法吗?
生:一条棱上去掉三面涂色的2块剩下的一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.
师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?
生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.
师:那棱长是5块、6块的呢?怎样列式计算?
生:(5-2)×12=36块 (6-2)×12=48块
师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?
生:(n-2)×12
师板书:在棱上 (n-2)×12
(三)探究一面涂色的问题
师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。
小组合作探究
小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)
生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。
师:你是怎么知道一面有1块、4块一面涂色的呢?
生:数的
师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?
生:有局限性
师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?
生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。
生:③号图形一条棱上去掉三面涂色的剩下的`两块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。
师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?
生:(5-2)×(5-2)×6=54块
(6-2)×(6-2)×6=96块
师:用字母怎么表示?
生:(n-2)×(n-2)×6=(n-2)2×6
(四)探究没有涂色的问题
师:没有涂色的小正方体有多少块呢?怎么计算?
生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。
师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?
生:在里面
师:有什么办法知道呢?
生:拆开看一看
师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数
师:现在你知道有多少块没有涂色了吗?
生:②号图形有一块没有涂色
③号图形有8块没有涂色的
师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。
组织学生观看动画过程。
生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。
生:③号图形每条棱上有4块,去掉两块三面涂色的剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。
师:真棒!你能试试棱长是5、6块的吗?
生:(5-2)×(5-2)×(5-2)=27块
(6-2)×(6-2)×(6-2)=64块
师:用字母怎么表示?
生:(n-2)×(n-2)×(n-2)=(n-2)3
三、知识应用
出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?
学生计算汇报
四、课堂小结
通过这节课的探究,你能说说你用什么方法学会了本节课的知识?
五、版书设计
探索图形
顶点上 棱上 面上 中心
正方体的特征:8个顶点 12条棱 6个面
三面 两面 一面 没有涂色
8 (n-2)×12 (n-2)2×6 (n-2)3
《探索图形》教学设计 5
教学内容:
教科书第44页内容
教学目标:
1、进一步认识和理解正方体特征。
2、通过观察、列表、想象等活动经历“找规律”过程,获得“化繁为简”的解决问题的经验,培养学生的空间想象力,让学生体会分类、数形结合、归纳、推理、模型等数学思想。积累数学思维的活动经验。
3、在相互交流中,学会倾听他人意见,及时自我修正、自我反思,增强学好数学的信心。
教学重点:
学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。
教学难点:
探索规律的归纳方法。
教学用具:
小正方体学具课件
教学过程:
(一)引发问题
1.复习正方体特征
课件出示:
棱长1厘米
(1)请同学们看屏幕,这是什么图形?
(2)正方体有哪些特征?
(二)探索规律
1.发现规律
(1)你认为什么样的'图形比较简单,我们容易找到答案?
(2)下面我们就来研究这三个图形,看看有什么发现?
①②③
(3)四人一组,小组合作探究
①用正方体学具摆出相应的图形
②观察每类小正方体都在什么位置
③把结果填在记录表中
④观察记录表中的数据,能否找到规律
记录表如下:
三面涂色的块数两面涂色的块数一面涂色的块数没有涂色的块数
《探索图形》教学设计 6
教学内容:
教科书第57~58页,例2、试一试、练一练,练习十第3题。
教学目标:
1、使学生结合具体情境,用平移的方法探索并发现把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律,会根据平移次数推算把图形分别沿两个方向平移后该图形覆盖的总数,并能解决简单的实际问题。
2、使学生主动经历自主探索和合作交流的过程,体会有序列举和思考是解决问题的基本策略之一,进一步培养发现和概括规律的能力,初步形成回顾和反思探索规律过程的意识。
3、在小组合作与交流中,努力克服数学活动中的困难,获得成功的体验。
教学过程:
一、复习引入
1、 12345678910111213141516
每次框出3个数,需要平移几次?可以得到几个不同的和?
说说自己的方法。
2、今天我们继续学习图形被覆盖的次数的规律。
板书课题:找规律
二、教学新课
1、出示例2.1、如果小芳家浴室的一面墙上改用由4块瓷砖拼成的图案贴在这面墙的任意一个位置,有多少种不同的贴法?(出示情境图)
理解题意。
2、中间的4块瓷砖组成的图案,可以贴在这面墙的任意一个位置,如果是你,你准备把这个图案贴在哪里?
3、不论你贴在哪,最多能够有多少种方法?你们能解决吗?
请同桌两人合作平移,看有多少种不同的贴法。平移好了后就请大家围绕下面三个问题在小组里讨论。(电脑出示)
(1)怎样贴,才能做到既不重复有不遗漏?
(2)沿这面墙的长贴一行有多少种贴法?沿着宽贴一列呢?
(3)一共有多少种贴法,与这面墙的长和宽各有多少种贴法是什么关系?
学生动手操作,完成后小组交流讨论。
4、交流汇报。
怎样数才能做到比较有序?
学生边汇报边演示。沿着长一行一行的贴,沿着宽一列一列的贴。(电脑演示)
师:沿这面墙的长贴一行有多少种不同的贴法呢?
学生回答:8—2+1=7(板书:8—2+1=7)(电脑演示)
师:平移了几次?有几种贴法?
师:一行一行的贴,贴了这样的几行?求贴法总数就是求5个7。所以贴法总数可以怎么求?(板书5×7=35)沿这面墙的宽贴一列呢?
学生回答。(电脑演示)平移了几次?有几种贴法?
(板书:6—2+1=5)
师:这样一列一列的贴,贴了这样的7列,求贴法总数,就是求7个5。
师:5个7或7个5都可以写成5×7=35
5、一共有多少种方法?与这面墙沿长和宽贴各有多少种贴法有什么关系?
得出:贴法总数=沿长的`贴法×沿宽的贴法。
6、小结规律。
师:同学们通过探索,找到了不同的贴法的计算规律,你认为在解答这类题时我们应先……,再……,最后……,与我们前一节课学习的找规律比较一下,它们有什么不同的地方?
7、试一试。
1、小芳家阳台上的一面墙要贴这种图案的瓷砖,你能算出有多少种不同的贴法吗?(出示情境图)学生尝试练习,教师讲解。(电脑演示)
板书:10—3+1=86—2+1=55×8=40
师:为什么一个减3,一个减2?
2、如果贴的瓷砖图案是这样呢?有多少种不同的贴
法呢?仔细观察以下,这个图形与刚才的图形有什么不同?(电脑演示)
刚才给你的是一个长方形,这个不规则图形怎么办?像这种图形平移时就可以看作什么在平移?
学生异口同声:长方形。(电脑演示)
师:你是怎样想的,可以和小组里的同学交流。
教师小结:今后,在解答这类题目时,碰到这种不规则图形,我们可以把它看作一个长方形或正方形,再平移
8、练一练。
独立完成。
汇报交流自己的思考方法。
三、巩固练习
1、完成练习十第3题。
理解题意。
指导方法。
任意框9次?看看框出的每个数的和是多少?与中间的数有什么关系?
根据这个发现,你能解决第(2)小题的问题吗?
说说你是怎样框的?
2、独立完成第(2)、(3)小题。
说说思考过程。
四、课堂小结
今天这节课,我们一起找了规律,并用规律解决了一些问题,通过一节课的学习,你有什么收获和体会要和大家谈吗?
《探索图形》教学设计 7
教学目标:
1.结合现实情境,利用活动单导学,引导学生用多种方法探索并发现简单图形覆盖现象中的规律,能用“总数”和“不能打头的数”推算覆盖总次数或根据图形平移的次数来推算被该图形覆盖的总次数,并解决相应的问题。
2.使学生主动经历自主探索和合作交流的过程,体会有序列举和简化思维是解决问题的基本策略,进一步培养发现和概括规律的能力,初步形成对比与反思探索规律过程的意识。
3.让学生努力克服数学活动中遇到的困难,体验数学问题的探索性和挑战性,感受数学简约的魅力。
教学重点:
探索简单图形沿一个方向进行平移后覆盖次数的规律。
教学难点:
能用“总数”和“不能打头的数”或根据图形平移的次数来推算覆盖总次数,解决相应的简单实际问题。
教学具准备:
多媒体课件、学生自主活动单。
教学过程
一、动手操作,多样列举。
1、联系实际,谈话引入。
首先由旅游时间安排引入新课。女儿喜欢旅游,爸爸准备在5月1日到10日安排到常州恐龙园二日游,请孩子们当参谋选择哪两天去?
这一环节从学生熟悉的去恐龙园旅游入手,让学生帮助选择,拉近了生活和数学学习的联系,起点低,但贴近学生的最近发展区,有利于接下来的自主探究。
2、抽象排列,自主研究。
学生说的答案有些乱,接下来顺势利导我们有必要整理整理,用
10个数来表示这10天,用活动单的形式让孩子尝试用自己的方法来研究一共有多少种不同的情况。
用活动单导学的形式让学生自己动手操作,巧妙调动学生的积极性,用自己喜欢的方法来整理刚才的答案,得到一共有多少种方法。
3、交流展示,点明共性。
展示学生的活动单,欣赏不同的方法,如连一连、圈一圈、列举等,引导学生发现共性:具体操作时要注意什么?就是要有序思考,一个一个依次移,不重复、不遗漏。
在这个基础上在演示用红色方框平移的方法,让学生初步感受图形覆盖的道理。
展示作品便于学生对比研究,通过比较学生很容易达成共性要想将所有的答案整理全,就要注意有序思考,做到不重复不遗漏才是关键。在学生多种方法的基础上再出示移动方框的方法,开始渗透用简单图形来覆盖的现象,为下面进一步探索规律做好伏笔。
4、变化问题,二次探究。
改变问题,总天数不变,二日游改为三日游,让学生再次探究共有多少种安排方法?这一次让学生尝试用红色方框来覆盖平移,完成自主学习单上的活动二。
答案是多少?哪样的8种呢?我们一起来看看。多媒体演示“套框——平移”法。
让学生亲身经历简单图形覆盖平移的过程,通过让学生每次框出不同的数,既能丰富学生对规律有感知,又为发现规律积累必不可少的素材。
二、对比研究,发现规律。
1、合作探究,交流发现。
(1)质疑。
如果我们一家选择海南四日游,又会有多少种安排方法?如果我们5月份选择北京五日游呢?
孩子们我们还会继续框一框,移一移吗?
这一环节设置这样的疑问让学生从刚才的操作实践中走出来,开始冷静地思考如果总数增加,再框一框就显得很麻烦了,很自然会想到该找找有没有什么规律可循,把感性认识提升到理性认识,有助于下一步深入探索研究图形覆盖现象中的规律。
下一步让学生看图讨论,10天选3日游为什么结果是8种呢?
2、对比沟通,寻求最优。
(1)方法汇聚
让学生畅所欲言,大胆说出自己的想法。
如方法一:剩下的天数加1。
方法二:看移动的首数,也即总数减去不能做头的数。
教师根据学生的回答适当进行课件演示。
这一环节的设计只是想让学生初步说出所发现的规律,或许比较肤浅,或许表达不够清楚,或许只是一种猜测,都可以,这是学生最原始的发现,也是他们展示思维的一个过程,更为学生接下来深入探究规律搭建了桥梁。
(2)尝试填表,归纳对比,进一步深化图形覆盖现象中的规律。
根据刚才的回答让学生冷静下来,通过尝试填表,观察表中的数据进一步比较清晰地发现规律,有条理的说一说规律。完成自主学习单上的活动三。
我在这个环节设计了两个表格让学生来选择,汇聚了两种不同的方法,体现方法的多样化,让学生模仿上面的`数据继续填表,再尝试举一个例子来验证一下,发现的什么规律可用算式表示出来,在交流时让学生具体说一说所发现的规律,教师再进行适当的引导点拨,这一部分的教学,不是生硬、直截了当地告诉学生规律,而是采用了“慢镜头”,让学生在一步一步地摸索中慢慢悟出规律,重在“探索”,完善了认知建构。相信在这个环节学生会根据表格清晰地说出所发现的规律,教师板书规律后很自然地揭示课题。(图形覆盖现象中的规律)
接下来乘热打铁,举一反三,让学生应用规律进行练习,完成自主学习单上的活动四。
五月份去北京5日游、2012年台湾七日游
三、应用规律,解决问题。
这部分内容我在设计时从我们身边发现数学问题,让学生在具体情境中解决问题,由浅入深,步步深入,共分为三个层次。
(一)基本题练习
体育彩票和俄罗斯方块中的图形覆盖现象。
(二)变式练习
电影院里的座位,一排15个座位,母女连坐,女儿坐在我的左边,在同一排中有多少种不同坐法?
如果去掉女儿坐在妈妈左边一共有多少种坐法?(就要考虑两种情况)
如果这一排中9、10、11三个座位已经有人坐了还剩下几种方法呢?注意女儿坐在左边不带交换座位呀。(注意要分开算)
观看时装表演,T型舞台座位分两种情况,一种要分开算,一种不用分开算,重点考验学生灵活运用知识的能力。
(三)拓展练习
大摆锤的座位是环形的,首尾相连,在安排座位时就不存在哪个数字不好打头的问题,和以前学过的间隔规律有异曲同工之处,感受图形覆盖现象中的规律并不是一成不变的,要学会找准起点与终点,灵活应对。
四、全课总结,归纳回顾。
这节课的教学渗透了一些数学思想,如操作尝试、猜想验证、归纳应用、有序思考等,这些思想和方法在以前的学习中都有接触,通过最后的回顾归纳,让学生合理有效地建构认知结构,形成有效的思想方法,为以后的数学学习“扣线串珠”。
总的说来,本课教学我遵从数学从生活中来,到生活中去,儿童学习数学既要关注生活经验又要凸显数学本质的规律,注重找规律的过程,在“找”中探究,让规律在探究中深化,以学定教,充分体现学生的主体地位。
《探索图形》教学设计 8
教学内容:
P57---58找规律例2以及相应的“试一试”,“练一练”,练习十
教学目标:
1、使学生结合现实情境,用平移的方法探索并发现把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律,会根据平移次数推算把图形分别沿两个方向进行平移后被该图形覆盖的总次数,解决相应的问题。
2、使学生主动经历自主探究和合作交流的过程,体会有序列举和思考是解决问题的基本策略之一,进一步培养发现和概括规律的能力,初步形成回顾与反思探索规律过程的意识。
教学重、难点:
探索把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律。教学过程:
一、探索规律
1、出示例2,理解图意指名说说
(1)浴室的一面墙长有8格,宽有6格;
(2)理解问题
2、你准备怎样来贴瓷砖,才能做到既不重复,又不遗漏?同桌讨论后全班交流,明确方法:可以从左上角开始有次序地进行平移,可以向右平移,也可以向左平移。
3、学生动手操作,操作完后思考:你是沿着什么方向贴的?平移了几次?有几种贴法?
4、交流汇报,引导思考:
(1)沿着这面墙的长贴一行有多少种贴法?(平移6次,可以有7种贴法)沿着这面墙的宽贴一列有多少种贴法?(平移4次,可以有5种贴法)
(2)一共有多少种贴法呢?(5×7=35种)联系刚才的操作过程想一想:一共有多少种贴法与沿这面墙的.长和宽贴各有多少种贴法是什么关系?你是怎么想的?(就是求5个7或7个5是多少)
5、小结:我们发现沿着长贴有7种贴法,沿着宽贴有5种贴法,所以一共有7×5=35种贴法。
二、运用规律
1、完成“试一试”(1)你能用我们发现的规律来完成这道题吗?出示“试一试”这个图形你会把它平移吗?小组讨论,明确可以把“凸”字形看作长方形。
(2)想一想,有多少种不同的贴法?
(3)交流,引导学生有条理的表达思考过程。(沿着长有6种贴法,沿着长有5种贴法,所以一共有6×5=30种贴法)2、完成练一练小军打算在阳台上的一面墙上贴花砖,请你算一算,有多少种不同的贴法?学生独立完成后交流思考的过程。
三、全课总结
1、通过这节课的学习,你有哪些收获呢?
2、学生质疑。
四、拓展延伸
完成P59第3题
(1)仔细审题后,动手框一框,并算一算5个数的和。
(2)任意框几次,看看每次框出的5个数的和与中间的数有什么关系?小结:每次框出的5个数的和就等于中间的数乘5。
(3)如果框出的5个数的和是180,应该怎样框?能框出和是100的5个数吗?为什么?独立思考后解答。
(4)一共可以框出多少个不同的和?独立思考后同桌说说,学生解答后再组织交流思考过程。
《探索图形》教学设计 9
教学内容:
教科书第44页内容
教学目标:
1进一步认识和理解正方体特征。
2通过观察、列表、想象等活动经历“找规律”过程,获得“化繁为简”的解决问题的经验,培养学生的空间想象力,让学生体会分类、数形结合、归纳、推理、模型等数学思想。积累数学思维的活动经验。
3在相互交流中,学会倾听他人意见,及时自我修正、自我反思,增强学好数学的信心。
教学重点:学会从简单的情况找规律,解决复杂问题的化繁为简的'思想方法。
教学难点:探索规律的归纳方法。
教学用具:小正方体学具课件
教学过程:
(一)引发问题
1.复习正方体特征
课件出示:
棱长1厘米
(1)请同学们看屏幕,这是什么图形?
(2)正方体有哪些特征?
(二)探索规律
1.发现规律
(1)你认为什么样的图形比较简单,我们容易找到答案?
(2)下面我们就来研究这三个图形,看看有什么发现?
①②③
(3)四人一组,小组合作探究
①用正方体学具摆出相应的图形
②观察每类小正方体都在什么位置
③把结果填在记录表中
④观察记录表中的数据,能否找到规律
记录表如下:
三面涂色的块数两面涂色的块数一面涂色的块数没有涂色的块数
《探索图形》教学设计 10
一、教学目标
1. 知识与技能目标
通过观察、列表、想象等活动,经历“找规律”的全过程,得出小正方体涂色情况的规律。
2. 过程与方法目标
在探索规律的过程中,培养学生的空间观念和推理能力,体会分类、数形结合、归纳、推理等数学思想。
3. 情感态度与价值观目标
在相互交流中,学会倾听他人意见,及时自我修正、自我反思,增强学好数学的信心。
二、教学重难点
1. 教学重点
找出小正方体涂色以及它所在位置的规律。
2. 教学难点
探索规律的归纳方法。
三、教学方法
讲授法、讨论法、实践操作法
四、教学过程
1. 情境导入
展示由多个小正方体组成的大正方体,提出问题:如果把这个大正方体的表面涂上颜色,每个小正方体有几个面被涂上颜色呢?激发学生的兴趣,引入新课。
2. 探究新知
用棱长 1cm 的小正方体拼成棱长为 2cm、3cm、4cm 的大正方体,观察并记录每种棱长的大正方体中,小正方体表面涂色的情况(三面涂色、两面涂色、一面涂色和没有涂色的小正方体的个数)。
小组合作交流,尝试找出规律。对于三面涂色的小正方体,引导学生发现其都在大正方体的顶点处,所以个数总是 8 个。对于两面涂色的小正方体,通过分析其在棱上的位置,找出与棱长的关系。一面涂色的小正方体则在每个面的中间部分,进一步推导其个数与棱长的关系。没有涂色的.小正方体在大正方体的内部,通过分析其与棱长的关系来总结规律。
3. 规律总结与归纳
引导学生将棱长和各类涂色小正方体的个数整理成表格,清晰地呈现规律。如棱长为\(n\)(\(n\geq2\)),三面涂色的小正方体个数是\(8\);两面涂色的小正方体个数是\((n 2)\times12\);一面涂色的小正方体个数是\((n 2)^2\times6\);没有涂色的小正方体个数是\((n 2)^3\)。
让学生结合图形理解这些规律,体会数与形的结合。
4. 课堂练习
给出一些不同棱长的大正方体,让学生根据总结的规律快速计算出各类涂色小正方体的个数,巩固所学知识。
5. 课堂小结
请学生回顾探索规律的过程,包括观察、分析、归纳等步骤。
强调在探索过程中运用到的数学思想方法,如分类讨论、数形结合等。
6. 布置作业
让学生完成课本上相关的练习题,并思考如果大正方体是空心的,规律会有什么变化。
《探索图形》教学设计 11
一、教学目标
1. 知识目标
学生能理解并掌握大正方体中不同位置小正方体的涂色规律,能运用规律解决简单的实际问题。
2. 能力目标
发展学生的空间想象能力、推理能力和数据分析能力,提高学生解决问题的能力。
3. 情感目标
激发学生对数学探索的热情,培养学生严谨的治学态度和合作交流的意识。
二、教学重难点
1. 重点
探索并理解大正方体中不同位置小正方体的涂色规律。
2. 难点
从不同棱长的大正方体中归纳出通用的规律,以及对没有涂色小正方体规律的理解。
三、教学方法
直观演示法、小组探究法、启发引导法
四、教学准备
若干棱长为 1cm 的小正方体、多媒体课件
五、教学过程
1. 游戏导入(5 分钟)
教师拿出几个小正方体,现场拼成一个大正方体,然后提问:如果我们给这个大正方体的表面涂上颜色,猜一猜,哪些小正方体涂的面数会相同呢?引导学生观察并思考,激发学生的求知欲。
2. 探究活动(25 分钟)
活动一:观察不同棱长的大正方体(10 分钟)
教师用课件展示棱长为 2cm、3cm、4cm 的大正方体,让学生观察其表面涂色情况,并尝试数出不同涂色情况(三面涂色、两面涂色、一面涂色和没有涂色)的小正方体个数。
活动二:小组合作探究规律(15 分钟)
将学生分成小组,每个小组发放棱长为 3cm 和 4cm 的大正方体模型(可用小正方体拼成),让学生进一步观察、讨论和记录不同涂色小正方体的位置和个数,尝试找出规律。教师巡视各小组,适时给予指导。
3. 规律总结(10 分钟)
请各小组代表汇报本小组的发现,教师在黑板上进行记录和整理。
对于三面涂色的小正方体,师生共同总结出其位于大正方体的顶点处,所以个数固定为\(8\)个。
对于两面涂色的小正方体,教师引导学生观察其在棱上的位置,通过分析得出其个数与棱长的关系为\((n 2)\times12\)(\(n\)为大正方体棱长)。
对于一面涂色的小正方体,分析其在面中间的位置,得出个数规律为\((n 2)^2\times6\)。
对于没有涂色的小正方体,通过层层剖析,得出其个数规律为\((n 2)^3\)。
4. 课堂练习(10 分钟)
教师在课件上展示一些练习题,如:一个棱长为 5cm 的`大正方体,三面涂色、两面涂色、一面涂色和没有涂色的小正方体各有多少个?让学生独立完成,然后请几位同学上台展示并讲解解题思路。
增加一些拓展性的练习,如:已知一个大正方体中没有涂色的小正方体有 27 个,求这个大正方体的棱长。
5. 课堂小结(5 分钟)
引导学生回顾本节课的主要内容,包括探索规律的过程和得出的规律。
强调数学学习中观察、分析、归纳等方法的重要性,鼓励学生在今后的学习中积极运用这些方法。
6. 布置作业(5 分钟)
课本上的课后练习题,巩固所学的涂色规律。
让学生自己用小正方体制作一个棱长为 6cm 的大正方体模型,然后数出不同涂色情况的小正方体个数,与根据规律计算出的结果进行对比。
《探索图形》教学设计 12
一、教学目标
1. 知识与技能
(1) 使学生通过自主探索,发现大正方体表面涂色后小正方体的各种涂色情况与大正方体棱长之间的关系。
(2) 能正确运用规律计算各种情况下小正方体的个数。
2. 过程与方法
通过观察、操作、分析、归纳等活动,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观
在探索规律的过程中,体验成功的喜悦,激发学生学习数学的兴趣。
二、教学重难点
1. 重点
探究大正方体表面涂色后小正方体的涂色规律。
2. 难点
理解和推导没有涂色小正方体个数的规律。
三、教学方法
自主探究法、合作交流法、讲授法
四、教学资源
多媒体课件、棱长为 1cm 的小正方体若干
五、教学过程
1. 创设情境,提出问题(5 分钟)
教师通过多媒体展示一个色彩鲜艳的大正方体魔方,提问:“同学们,如果我们把这个魔方的表面都涂上颜色,里面的小正方体有些会被涂上几个面呢?有没有小正方体一个面都没被涂上颜色呢?”引导学生观察和思考,引出本节课的探究主题。
2. 自主探究,发现规律(20 分钟)
探究准备:给每个小组发放一定数量的棱长为 1cm 的小正方体,让学生尝试拼成棱长为 2cm、3cm、4cm 的大正方体。
活动一:观察与记录(10 分钟)
学生以小组为单位,观察不同棱长大正方体表面涂色后小正方体的情况,记录下三面涂色、两面涂色、一面涂色和没有涂色的小正方体的个数。
活动二:分析与归纳(10 分钟)
小组内讨论这些数据之间的关系,尝试找出规律。教师巡视指导,引导学生从不同角度思考,如小正方体在大正方体中的位置等。
3. 交流展示,总结规律(10 分钟)
各小组派代表上台汇报本小组的探究成果,包括记录的数据和发现的规律。
教师引导全班同学共同总结规律:
三面涂色的小正方体在大正方体的顶点处,个数始终为\(8\)个。
两面涂色的小正方体在棱上(除去顶点处的小正方体),其个数为\((n 2)\times12\)(\(n\)为大正方体棱长)。
一面涂色的'小正方体在每个面的中间部分,个数为\((n 2)^2\times6\)。
没有涂色的小正方体在大正方体内部,个数为\((n 2)^3\)。
4. 实践应用,巩固提升(10 分钟)
教师在课件上呈现不同棱长的大正方体问题,如:一个棱长为 6cm 的大正方体,分别求出三面涂色、两面涂色、一面涂色和没有涂色的小正方体的个数。
学生独立完成后,同桌之间相互交流答案和解题思路。教师选取部分学生的答案进行展示和点评,强调解题的关键步骤和容易出错的地方。
5. 课堂小结,拓展延伸(5 分钟)
引导学生回顾本节课的探究过程,从提出问题、自主探究、小组合作到总结规律和应用规律,让学生体会探索规律的方法和乐趣。
提出拓展性问题:如果大正方体是空心的,这些规律会有什么变化?鼓励学生课后继续探究。
6. 布置作业(5 分钟)
完成课本配套练习册上关于《探索图形》的习题。
用小正方体制作一个棱长为 5cm 的大正方体模型,实际数一数不同涂色情况的小正方体个数,与根据规律计算出的结果进行对比,并写出心得体会。
《探索图形》教学设计 13
一、教学目标
1. 数学素养目标
(1) 通过探索图形的涂色规律,培养学生的观察能力、分析能力和归纳能力。
(2) 发展学生的空间观念,让学生能在头脑中构建和想象立体图形及其内部结构。
2. 知识与技能目标
学生能准确说出大正方体中不同位置小正方体的涂色特征,并能根据大正方体的棱长计算出各类涂色小正方体的个数。
3. 情感态度与价值观目标
在探索过程中,培养学生对数学的好奇心和求知欲,让学生体验成功的喜悦,增强学习数学的自信心。
二、教学重难点
1. 教学重点
深入探究大正方体中不同位置小正方体的涂色规律,并能灵活运用规律解决问题。
2. 教学难点
(1) 引导学生从复杂的图形现象中抽象出规律,尤其是对于没有涂色小正方体规律的理解和推导。
(2) 培养学生在探索过程中的'空间想象能力和逻辑思维能力的有机结合。
三、教学方法
问题驱动法、小组合作探究法、直观演示法
四、教学准备
多媒体课件、棱长为 1cm 的小正方体若干、学习记录单
五、教学过程
1. 问题导入(3 分钟)
教师在大屏幕上展示一个由多个小正方体组成的大正方体的图片,提出问题:“同学们,假如我们要给这个大正方体的表面涂上颜色,你们觉得小正方体的涂色情况会有几种呢?它们分别在大正方体的什么位置呢?”引发学生思考,进入本节课的学习。
2. 小组合作探究(22 分钟)
分组与任务布置(2 分钟)
将学生分成若干小组,每组发放一定数量的小正方体和学习记录单。要求学生用小正方体拼成棱长为 2cm、3cm、4cm 的大正方体,并观察和记录每个大正方体中不同涂色情况(三面涂色、两面涂色、一面涂色和没有涂色)的小正方体的个数。
小组探究过程(20 分钟)
学生在小组内进行操作、观察和讨论。教师巡视各小组,鼓励学生积极思考,引导学生从不同角度分析问题,如从顶点、棱、面等位置来观察小正方体的涂色情况。
对于学生在探究过程中遇到的问题,如对没有涂色小正方体位置的确定困难,教师可适时给予提示,帮助学生突破难点。
3. 全班交流与规律总结(10 分钟)
各小组选派代表汇报本小组的探究结果,展示在学习记录单上记录的数据。
教师引导全班学生共同分析和总结规律:
三面涂色的小正方体位于大正方体的顶点处,其个数恒为\(8\)个。
两面涂色的小正方体位于大正方体的棱上(除顶点处的小正方体),个数与大正方体棱长\(n\)的关系为\((n 2)\times12\)。
一面涂色的小正方体位于大正方体每个面的中间部分,个数为\((n 2)^2\times6\)。
没有涂色的小正方体位于大正方体内部,个数为\((n 2)^3\)。
在总结规律过程中,教师可结合多媒体课件进行直观演示,帮助学生更好地理解规律的形成原因。
4. 巩固练习(10 分钟)
教师通过课件展示一系列练习题,如:已知一个大正方体棱长为 7cm,求其中三面涂色、两面涂色、一面涂色和没有涂色的小正方体各有多少个?
学生独立完成练习,教师巡视,及时发现学生存在的问题并给予指导。练习完成后,选取部分学生的答案进行展示和讲解,让学生互相学习和交流。
5. 课堂小结(5 分钟)
教师引导学生回顾本节课的学习内容,包括探究问题的提出、探究过程、总结出的规律以及在探究过程中运用到的方法和思想。
强调空间观念和逻辑思维在数学学习中的重要性,鼓励学生在今后的学习中继续培养这些能力。
6. 布置作业(5 分钟)
基础作业:完成课本上相关的练习题,巩固所学的涂色规律知识。
拓展作业:尝试探究如果大正方体是由两种不同颜色分别涂表面和内部,规律会有什么变化,写出自己的探究思路和结果。
《探索图形》教学设计 14
一、教学目标
1. 知识目标
(1) 让学生理解大正方体表面涂色后小正方体的不同涂色情况与大正方体棱长之间的数学关系。
(2) 使学生能熟练运用规律计算不同棱长大正方体中各类涂色小正方体的个数。
2. 能力目标
(1) 培养学生的空间想象能力,使学生能在脑海中构建出大正方体内部小正方体的涂色分布情况。
(2) 提高学生的数据分析能力和逻辑推理能力,通过对不同棱长大正方体的观察和分析,归纳出一般性的'规律。
3. 情感目标
(1) 激发学生对数学规律探索的兴趣,让学生在探索过程中体验到数学的奇妙和乐趣。
(2) 培养学生的合作精神和自主探究能力,在小组合作和自主思考中完成知识的学习和能力的提升。
二、教学重难点
1. 教学重点
(1) 观察、分析并找出大正方体表面涂色后小正方体的涂色规律。
(2) 运用规律准确计算不同情况下小正方体的个数。
2. 教学难点
(1) 理解没有涂色小正方体的位置特点和其个数与大正方体棱长的关系。
(2) 在探索规律过程中,培养学生从具体到抽象、从特殊到一般的数学思维方式。
三、教学方法
情境教学法、探究式教学法、讨论教学法
四、教学准备
多媒体教学课件、足够数量的棱长为 1cm 的小正方体、探究活动记录表
五、教学过程
1. 趣味导入(5 分钟)
教师播放一段关于魔方比赛的视频片段,展示选手们快速转动魔方的精彩画面。然后拿出一个魔方实物,问学生:“你们知道魔方是由很多小正方体组成的,如果我们把魔方的表面涂上颜色,这些小正方体的涂色情况会是怎样的呢?这其中有没有什么规律呢?”通过这样的趣味导入,激发学生的好奇心和探究欲望。
2. 探究规律(20 分钟)
初步探究(5 分钟)
给每个小组发放一些小正方体,让学生尝试拼成棱长为 2cm 和 3cm 的大正方体。然后观察大正方体表面涂色后小正方体的涂色情况,简单记录下不同涂色情况的小正方体个数。
深入探究(15 分钟)
让学生继续用小正方体拼成棱长为 4cm、5cm 的大正方体,并详细记录不同涂色情况(三面涂色、两面涂色、一面涂色和