《质数和合数》教学设计模板(通用16篇)
《质数和合数》教学设计模板(通用16篇)
作为一名辛苦耕耘的教育工作者,时常需要准备好教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么你有了解过教学设计吗?下面是小编为大家整理的《质数和合数》教学设计模板,仅供参考,大家一起来看看吧。
《质数和合数》教学设计 1
教学内容:
质数和合数
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。
2、培养学生细心观察、全面概括、准确判断、自主探索、独立思考、合作交流的能力。
教学重点:
能准确判断一个数是质数还是合数。
教学难点:
找出100以内的质数。
教学过程:
一、复习导入(加深前面知识的理解,为新知作铺垫)
下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数。
3和154和2449和791和13(指名回答。)
二、小组合作学习质数和合数的的概念。
全班分两组探讨并写出1——20各数的因数。
1、观察各数因数的个数的特点。
2、填写表格。
只有一个因数
只有1和它本身两个因数
除了1和它本身还有别的因数
3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这样的数叫做合数。(板书:质数和合数)
4、举例。
你能举一些质数的例子吗?
你能举一些合数的例子吗?
5、小练习:最小的质数是几?最小的合数是几?质数有多少个因数?合数至少有多少个因数?
6、探究“1”是质数还是合数。
刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)
引导学生明确:1既不是质数也不是合数。
7、小练习:自然数中除了质数就是合数吗?
三、给自然数分类。
1、想一想
师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把自然数分为哪几类?
生:质数,合数,0。
2、说一说
知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?
引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数;如果有两个以上因数,这个数就是合数。
四、师生学习教材24页的例1。
老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。
1、师引导学生找出30以内的质数。
提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1)再划去什么?(再划去2以外的'偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)
(特殊记忆20以内的质数,因为它常用。)
2、小组探究100以内的质数。
3、汇报100以内的质数。师生共同整理100以内的质数表。
4、应用100以内质数表:
5、小练习:
(1)所有的奇数都是质数吗?
(2)所有的偶数都是合数吗?
五、思维训练。
有两个质数,它们的和是小于100的奇数,并且是17的倍数,求这两个数。
六、课堂小结。
这节课你学会了什么?什么叫质数?什么叫合数?你会判断质数和合数吗?判断的关键是什么?
《质数和合数》教学设计 2
教学目标:
1、掌握质数和合数的概念,并知道它们之间的联系和区别。
2、能够判断一个数是质数还是合数。
教学重难点:
质数和合数的概念。根据概念判断一个数是质数还是合数。
教学准备:
教学课件
教学互动过程:
一、创设情景,引入课题。
1、简单回顾因数和倍数的知识。
2、让学生列出1—20各数的因数,小组比一比,看谁列得快。
3、请同学们观察自己列出的这些数的因数,看看它们因数的个数有什么特点。(小组合作探究、讨论、汇报)
4、让学生按照汇报情况把这些数进行分类。
5、引出质数和合数的概念:因数只有1和它本身的数叫质数(也叫素数);除1和它本身以外,还有其他因数的数叫合数。(同时板书)
明确质数和合数的概念,结合刚才的分类进行初步理解。
二、学习质数和合数
1、在刚才的分类中,1好象没有被分到哪一类,那么1是质数还是合数呢?
2、了解了质数和合数的概念,现在同学们来判断一下,10以内的数中,哪些是质数,哪些是合数?
学生独立思考,根据概念判断,踊跃汇报。
3、组织学生做“我说你判断”的'游戏,同桌之间互相说出一个数,请对方根据概念判断其为质数还是合数。
4、我们已经找出了10以内的质数,那么,大家能找出100以内的质数吗?
小组讨论找100以内的质数的方法,根据找10以内的质数的方法找,发现用这种方法找太慢。
5、对,逐个判断比较麻烦,是否有什么方法可以很快地找出来?用排除法可以吗?
6、下面同学们就用排除法来找一找100以内的质数。
小组讨论,合作探究,商讨寻找质数的方案。
7、同学们的方案真是严密呀,一个都不漏掉。现在同学们把课本24页表格中的自然数用排除法找出质数吧。
按照小组讨论的方案依次划掉不是质数的数,完整划出100以内自然数中的质数。
三、阅读材料,知识拓展,进行课堂练习。
1、让学生阅读教材第24页阅读材料“分解质因数”,了解如何对一个数分解质因数。
学生阅读材料,明确质因数的概念,知道如何对一个数进行分解质因数:把一个合数分解成几个质数的积。
2、说出几个合数,让学生对这几个数进行分解质因数:36、42、144、228。
3、让学生做练习四第1、2、3、题。
(教师巡视,了解学生对知识的掌握情况,个别指导。)
四、总结
组织学生说说这节课学到了哪些知识,以及有些什么收获。
板书设计:
质数和合数
因数只有1和它本身的数叫质数(也叫素数)。
除1和它本身以外,还有其他因数的数叫合数。
规定:1不是质数,也不是合数。
10以内的自然数:2、3、5、7是质数;4、6、8、9、10是合数。
《质数和合数》教学设计 3
教学目标:
1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2、培养学生观察、比较、概括和判断能力。
3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。
教学重点:
理解质数和合数的意义。
教学难点:
判断一个数是质数还是合数的方法。
教学过程:
课前谈话:
给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。
一、复习旧知
说一说,在我们学习的空间,你可以得到哪些数?(要求与同学说的尽量不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。
板书对应的集合图。
自然数
(能不能被2整除)
把学生列举的数填写在对应的集合圈里。
问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
二、进行新课
今天我们就用找约数的方法来给自然数分类。
复习:什么叫约数?怎样找一个数所有的约数?
同桌合作,找出列举的各数的所有的约数。(同时板演)
引导学生观察:观察以上各数所含约数的个数,你能把它们分成几种情况!
根据学生的回答板书。
自然数
(约数的个数)
(只有两个约数)(有3个或3个以上的约数)
引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。
明确合数的概念,提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?
明确:这是一种新的分类方法。看了集合圈,你想说什么?(学生看图说自己的想法,巩固奇数和合数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,奇数和偶数的个数也是无限的。运用新知,解决问题。
出示例1下面各数,哪些是质数?哪些是合数?
152831537789111
学生独立完成。
问:你是怎么判断的?
明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的'第三个约数,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例1的判断是否正确。
完成练一练。
三、练习巩固
1、检查下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。
22293549517983
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生操作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
四、全课总结
学到这里,一种新的分类方法,你掌握了吗?学生回答;相机揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是怎样的关系呢?
五、布置作业(略)。
《质数和合数》教学设计 4
教学内容:
质数和合数p23~24例题1及p25题1~5
教学目标:
①使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数
②知道100以内的质数,熟悉20以内的质数。
③培养学生自主探索、独立思考、合作交流的能力。
④让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
教学重点:
质数和合数的意义。
教学难点:
正确判断一个常见数是质数还是合数。
教学过程:
一、创设情境
1、谁能说说什么是因数?
2、自然数分几类?
自然数还有一种新的分类方法,就是按一个数的因数的个数来分,今天就来学习这种分类方法。
二、反馈预习,探索研究
1、学习质数和合数的概念。
预习反馈(1)请写出1~20各数的因数?(根据学生的回答板书)
预习反馈(2)观察:①每个数的因数的个数是否完全相同?②按照每个数的因数的多少,可以分几种情况?(学生讨论后归纳)
(3)可分为三种情况:(让学生填)
生反馈:
只有一个因数 1
只有1和它本身两个因数2,3,5,7,11,13,17,19
有两个以上的因数4,6,8,9,10,12,14,15,16,18,20
(4)教学质数和合数的概念。
①自然数只有两个因数的,如:2、3、5、7、11、13、17、19等。这几个数的因数一定是多少?
讲:一个数,如果只有1和它本身两个因数,我们把这样的数叫做质数(或素数)。
②4、6、8、9、10、12、14、15……这些数的约数与上面的数的约数相比有什么不同?
讲:一个数,如果除了1和它本身两个因数外还有别的因数,我们把这样的数叫做合数。(板书“合数”)
注意:1既不是质数,也不是合数。
(5)提问:什么叫质数?什么叫合数?自然数按因数个数来分,可以分几类?
2、质数、合数的判断方法。
(1)我们应该怎样去判断一个数是质数还是合数?(根据因数的个数来判断)
(2)完成p23做一做,判断下列各数中哪些是质数,哪些是合数?
(3)提问:你是怎样判断的?(找出每个数的因数的个数)
判断是质数还是合数,是不是把所有的因数都找出来?(不必要,只要发现自然数除了1和本身指望还有其它的'因数,不管有几个,它都是合数)
3、出示p24例题1,找出100以内的质数,做一个质数表。
(1)提问:如何很快的制作一张100以内的指数表?
(2)按质数的概念逐个判断?也可以用筛选法。
(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除,这样剩下的就是100以内的质数。
100以内的质数:(略)
(4)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。(或者看6的倍数的左右)
三、巩固练习:
完成p25题1~5
第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。
同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。
四、拓展延伸
1、判断
①所有的质数都是奇数
②所有的偶数都是合数
③自然数不是质数就是合数
④两个奇数相减,差一定是偶数
⑤两个偶数相加,和一定是合数
2、最小的质数是,最小的合数是 ,20以内的质数是,既不是质数也不是合数的数是 。
3、把下列各数写成两个质数相加的形式
①10=( )+( )
②16=( )+( )
①24=( )+( )=( )+( )=( )+( )
五、课后小结:
六、作业:
《质数和合数》教学设计 5
【教学目标设计】
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习-——提出猜想——合作、交流验证——分类、比较——抽象——归纳总结——巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
【教学重点】:
理解质数和合数的意义
【教学难点】:
判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
【教具学具准备】:
学生每人准备一张学号牌、课件
【教学过程】:
一、课前谈话:快点告诉我你的学号,学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的'感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?……
二、引入:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来;哪些人学号是偶数呢?都站过了吗,可见自然数可以怎样分类?分类依据是什么?
三、探究新知:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。
1、写因数。每个同学都有自己的学号对不对,那么请你写出自己学号的所有因数,在写之前请一两个同学说说写因数的方法?说完后然后学生现在开始写因数,就写在学号牌上。(要求:写因数时要求完整、工整、有规律。)
2、交流:请1—12号同学汇报自己学号的所有因数,教师板书。现在请所有同学一起来观察黑板上这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
(全班交流)板书完成:有一个因数:1
有两个因数:2、3、5、7、11、
有两个以上因数:4、6、8、9、10、12
(1)质数
师:先观察只有两个因数的特征,谁能发现:他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)板书
命名:我们给这样的数取名为:质数(或素数)(课件),齐读后特别强调“只有”两字然后个别读,最后再齐读)(一个数,如果只有1和它本身两个因数,这样的数叫做质数。)
再举出几个质数的例子。并让学生说说为什么是质数。举得完吗?说明了什么?(质数有无数个)想一想:最小的质数是几?最大的呢?
(2)合数
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
(板书:除了1和它本身以外,还有别的因数)应强调两个以上或至少有三个因数
命名:我们给这样的数取名为:合数。(板书:合数)(课件)齐读概念
所以质数和合数就是我们这节课所要学的内容(板书:质数和合数)
再举出几个合数的例子,然后问为什么。问:举得完吗?说明了什么?(合数也有无数个)想一想:最小的合数是几?最大的呢?
(3)1既不是质数也不是合数
(4)分类:所以按照因数个数的多少,自然数又可以分为哪几类呢?
明确用三分法可以把自然数分为质数和合数以及1三类
13号到27号的同学看看你们手中的因数也就这三类
判断你自己的学号是质数还是合数,悄悄地告诉你的同桌,并告知理由。
(二)动手实践,制作100以内的质数表。
1、51,是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
4、你还有什么发现吗?
《质数和合数》教学设计 6
素质教育目标:
(一)知识教学点:
1、使学生理解质数,合数的概念。
2、熟记20以内的质数。
(二)能力训练点:
1、培养学生归纳概括能力。
2、掌握正确判断质数、合数的方法。
(三)德育渗透点:引导学生探索知识的内涵,激发学生兴趣。
教学重点:
1、理解掌握质数。合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:
区分奇数。质数。偶数、合数。
教具学具准备:
投影仪。投影片若干张。小黑板一块。
教学步骤:
一、铺垫孕伏:
(小黑板出示例1),要求写出下面各数的所有约数:
1的约数2的约数3的约数4的约数
5的约数6的约数7的约数8的约数
9的约数10的约数11的约数12的约数
(指名板演)其它同学打开书58页,按要求把例:填好,集体订正。
二、探究新知:
1、引导学生归纳:
(1)按这些约数个数的多少,可以分为哪几种情况,也就是说这些数的约数都有几个,从少到多找一找。
(2)分组讨论后汇报。
(3)引导学生说明:
有一个约数的。(板书:有一个约数的)
有两个约数的。(板书:有两个约数的)
有三个约数的.,有四个约数的,有六个约数的。
教师提示:像有三个、四个。六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的。(板书:有两个以上约数的)
2、按约数个数的多少,把自然数分成三种情况。
(1)分组再讨论。
(2)汇报讨论结果。
(3)引导学生说出:1的约数是:1(板书:1的约数:1)
有两个约数,它们分别、:
板书:2的约数:1.2
3的约数:1, 3
5的约数:1.5
7的约数:1, 7
11的约数:1.11
有两个以上的约数,它们分别是:
板书:4的约数:1, 2, 4
6的约数:1.2、3.6
8的约数:1.2、4, 8
9的约数:1, 3, 9
10的约数:1, 2, 5.10
12的约数:1, 2.3、4.6、12
《质数和合数》教学设计 7
教学目标:
使学生理解质数与合数的饿意义,掌握判断质数合数的方法,
教学过程:
一、复习
约数的概念,找约数的方法。
二、引入新课
例1写出下面每一个自然数的全部约数,在根据约数的个数,把这些自然数进行分类。
自然数约数
11
21、2
51、5
91、3、9
111、11
121、2、3、4、6、12
171、17
201、2、4、5、10、20
381、2、19、38
451、3、5、9、15、45
(1)找约数
(2)按照约数的多少进行分类?
(3)讨论:1是什么数?
最小的质数是几?
最小的合数是几?
三、巩固练习
1、练一练
第一题,练习判断一个数是质数还是合数。
分析:怎样去判断一个自然数是质数还是合数
2、试一试
第三题判断下面各题,正确的在括号里打对,不正确的打错。
四、总结归纳
使学生弄清奇数与质数,偶数与合数是不同的概念
五、布置作业
反思:对于本节课的知识学生还好理解,但当把自然数的.另一个分类混合的时候学生的概念就出现了混乱。所以我们的教学不能光着眼于学生会不会做这些题目,而是应该真正的了解把自然数分成1、质数、合数的理由是什么。并懂的与偶数、奇数的分类是不同的理由,也就是两个不能相等的概念。并渗透一种交叉的概念。
《质数和合数》教学设计 8
教学目标:
知识与技能:
1、进一步掌握质数和合数的意义,会根据质数和合数解决一些实际问题。
2、掌握质数、合数、偶数、奇数之间的联系和区别过程与方法:经历概念的辨别和指导练习的过程,体验比较分析、归纳整理、练习提高的学习方法。
3 、情感态度与价值观:在练习活动中,感受数学知识之间的密切联系和应用价值,激发学习数学知识的兴趣,培养和提高学解决问题的能力。
教学重点:
掌握质数、合数、偶数、奇数之间的`联系和区别。
教学难点:
会运用质数和合数解决一些实际问题。
教学准备:
幻灯片、数字卡片
教学过程:
一、复习回顾
1、教师:什么叫做质数?什么叫做合数?
2、20以内有哪些质数?
3、教师出示:判断下列各数,哪些是质数?哪些是合数?23 47 52 33 71 85 9 7 98教师指名说一说,全班一起判断。
二、指导练习
师:什么数既不是质数也不是合数?
生:1。
师:最小的质数是多少?它是偶数还是奇数?
生:2,偶数。
师:是不是所有的偶数都是合数,所有的质数都是奇数?
生:不是,2是质数。
师:最小的合数是多少?
生:4。
师:做一下教材练习四的第3题。说一说这些数都是几?你是怎么判断的?
生:3和7、13和7、2和4。
师:再做一下第4题,观察一下这幅图,从图上你知道哪些数学信息?小猴遇到了什么问题?
生:可以用56除以3。
师:接下来我们来做一个游戏。先由老师说出一个大于2的偶数,同学们找出和为这个数的质数,看谁找得又快又对。8、12、14、20、24。
生:3和5、5和7、7和7、13和7、17和7。
师:接下来每两个同学为一组,其中一人说一个大于2的偶数,另一个人来找和等于这个数的质数。找出后,两人一起讨论是否正确,然后交换角色继续游戏。
师:引导出“你知道吗?哥德巴赫猜想”
三、提高练习
师:幻灯片出示,在8、15、4、13、19、2、26、9、45、32、17、22这些数中,偶数、奇数、质数、合数,2、3、5的倍数填空。
生:口答。
师:小红家的电话号码是8位数,从左边起,第一个数字有因数3,也有因数6,第二个数字是10以内最大的奇数,第三个数是最小的质数,第四个数既不是质数,也不是合数,也不是0,第五个数是10以内最大的质数,第六个数是5的倍数,又是5的因数,第七个数是最小的合数,第八个数是0。
师:你知道小红家的电话号码是多少吗?
生:小组合作讨论,写出小红家的电话号码,69217540。
四、课堂小结
师:通过这节课的学习,你有什么收获
板书设计:练习课
判断下列各数,哪些是质数?哪些是合数?23 47 52 33 71 85 9 7 98
《质数和合数》教学设计 9
教学内容:
苏教版义务教育教科书数学》五年级下册第37页例6、试一试和练一练,第39页练习六第1~3题。
教学目标:
1.使学生认识质数和合数的意义,能判断或写出质数或者合数,并说明理由;体会非0自然数的分类,了解50以内的质数。
2.使学生通过比较、分类、概括等活动认识质数和合数,积累认识数学概念的基本活动经验,进一步体会分类的思想,培养观察、比较,以及抽象、概括和判断、推理等思维能力。
3.使学生主动参与数学思考和交流等活动,体会数学内容的内在联系,产生对数学的积极情感和主动学习数学的愿望。
重点难点:
理解和认识质数和合数。
教学准备:
小黑板
教学过程:
一、导入新课
回顾:同学们在前面研究因数和倍数中,以是不是2的倍数为标准对大于O的.自然数进行过分类,还记得按这个标准,把大于0自然数分成了哪几类吗?(板书:偶数奇数)
引入:这节课我们继续研究大于O的自然数的分类。今天要按怎样的标准分类,可以分成哪几类,分成的每一类是什么数呢?老师期望大家一起来研究分类的标准,通过自己的分类认识质数和合数。(板书课题)
二、认识新知
1.出示例6。 了解题意,明确要求。
让学生分别写出6个数的所有因数。
交流:这6个数各有哪些因数?我们请一位同学来交流一下。 指名交流,并板书出6个数的全部因数。
引导:现在大家观察这些数的因数,看看它们因数的个数有什么不同,你想按什么分类?可以分成几类?在小组里先讨论,等会我们一起交流。
交流:你想按什么把这些数分类,分成几类?(学生交流不同想法,教师引导统一为两类)
引导:大家想到了可以按因数的个数分类,只有两个因数的为一类,有两个以上因数的为另一类。那这里只有两个因数的是哪几个数?有两个以上因数的呢?请你在课本上填一填。
交流:你是怎样填的?观察这3个数,只有两个因数的数,它们的因数是怎样的两个数?(板书:只有1和它本身两个因数)
有两个以上因数的数,它们的因数有什么特点?(板书:除了1和它本身还有别的因数) 揭示:像2、3、5这几个数,只有1和它本身两个因数,这样的数叫作质数;(板书:质数)像6,8、9这几个数,除了1和它本身还有别的因数,也就是有两个以上因数,这样的数叫作合数。(板书:合数)
追问:上面这几个数里,哪几个是质数?为什么?哪几个是合数?你是怎样想的?
2.完善分类。
提问:1是质数还是合数?说说你的想法。
说明:1只有一个因数,所以它既不是质数,也不是合数。(板书:1:既不是质数,也不是合数)
3.完成试一试。
让学生先填写因数,再判断各是什么数。
交流:说说你的判断依据和判断结果。(指名交流,呈现结果) 4.回顾整理。
三、练习内化
1.做练一练。
2.做练习六第1题。
3.做练习六第2题。
4.填充。(口答)
(1)质数只有( )个因数,合数至少有( )个因数。
(2)自然数中,最小的质数是( ),最小的合数是( )。
(3)比10小的数里,质数有( )个,合数有( )个。
(4) 20的因数有( ),其中是质数的有( )o
5.做练习六第3题。
四、全课小结
提问:这节课你认识了哪些知识,学到了什么本领?回顾一下,我们是怎样认识质数和合数的,学习过程中有哪些体会?
《质数和合数》教学设计 10
教学目的:
使学生理解质数和合数的意义;掌握判断一个数是质数还是合数的方法。
教学重点、难点:
理解质数和合数的意义既是本节的重点也是难点。
教具准备:
有关卡片
教学过程:
一、复习
1、什么叫因数?
2、自然数分几类?
3、前面我们学习了因数和倍数,现在我们利用所学知识,做下面几道:
①在下面的长方框里填上适当的数。
10的因数 12的因数
( ) ( )
②说出下面哪些有因数2、哪些有因数3、哪些有因数5?
20 60 42 98 78 120 45
二、新授。
板书课题:质数和合数
1、学习质数和合数的意义
写出下面每个数的所有因数:
1的因数 5的因数 9的因数
2的因数 6的因数 10的因数
3的因数 7的因数 11的.因数
4的因数 8的因数 12的因数
13的因数———— 14的因数———— 15的因数————
16的因数———— 17的因数———— 18的因数————
19的因数———— 20的因数————
引导学生按照每个数约数个数的多少,可分为几种情况?
学生归纳:这些数中只有1个因数的有
只有两个因数的有
有两以上个因数的有
小结:1只有一个因数,这是个特殊的数,把其它的分成两类:只有两个因数的和有两个以上因数的。现在给这两类数一个名称。
如果只有1和本身两个因数,这样的数叫做质数(或素数)。
一个数如果除了1和本身还有别的因数,这样的数叫合数。
对照质数和合数的定义,看“1”这个特殊的数是质数还是合数得出:
1既不是质数也不是合数。
2、判断质数的方法。
(1)通过对质数和合数认识,我们来对下面各数作一下判断。
判断下面各数,哪些是质数?哪些是合数?
17 22 29 35 37 87 93 96
是质数, 是合数。
a、小组讨论、说出判断的根据。
b、代表汇报、讨论结果。
(2)做一做。
古希腊数学家是用这种方法找质数的,你们想试一试吗?
【出示卡片】:
下面是2到50的数,先画掉2的倍数,再依次画掉3、5、7的倍数(但2、3、5、7本身不画掉),剩下的数都是什么数?
2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、37、38、39、40、41、42、43、44、45、46、47、48、49、50。
你用这种方法是否会找出100以内的质数、1000以内呢?
3、偶数、奇数、质数、合数的关系。
刚才我们把2—50以内的质数找了出来,现在这里有100以内的质数表,请你仔细观察,你从中发现了什么?
出示卡片:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
①小组讨论。
②小组代表汇报。
③教师小结:按自然数中是2的倍数,把数分为偶数、奇数两类,按因数的个数多少分为1、质数、合数。两种分法标准不一样,判断时根据各自定义进行。
三、巩固练习:
1、判断:
(1)一个数不是质数就是合数。( )
(2)所有的偶数都是合数。( )
(3)两个不同的质数和一定是偶数。( )
2、填空:
(1)6的约数有x 个,它是x 。
(2)最小的质数是x;最小的合数是x 。
3、选择:
(1)两质数相乘,积一定是( )。
①质数
②合数
③偶数
④奇数
(2)一个合数的因数有( )
①1个
②2个
③三个或三个以上
小结:本节课我们首先学习了质数和合数的意义,又学习了一个数是质数还是合数的判断方法,接着学习了偶数、奇数、质数、合数它们之间的区别与联系。现在打开课本整理一下本节学习内容。
四、布置作业:
1、完成课本第25页练习四的第1——2题
2、讨论课本第25面第3题,第26面第4——5题
《质数和合数》教学设计 11
教学目标
1.通过探究知道两书之和的奇偶性。
2.能借助几何直观,认识两数之和奇偶性的必然性。
3.培养探究能力,积累观察、猜想、归纳等思维活动的经验,丰富解决问题的策略。
重难点
重点:在探究知道两书之和的奇偶性的过程中渗透解决问题的策略。
突破方法:猜想、探究、讨论的过程中理解解决问题的策略。
难点:认识两数之和奇偶性的必然性。
突破方法:举例验证中掌握两数之和奇偶性的'必然性。
教学准备:
课件,两种颜色的小正方形各10个
教学过程
一、创设情境,点评激思
活动一:激趣导入
1.复习概念,引入图示。
(1)说说什么样的数是奇数和偶数?
(2)偶数可以用字母表示为?奇数呢?
2.用1个小正方形表示1,一个接一个摆成两行,偶数总能摆成一个什么图形?奇数呢?
【设计意图:】:复习奇数和偶数的概念,为学习新知做组准备。
活动二:游戏导入
1.游戏规则:一个同学转,指针指到那个数,就加上这个数的本身。和是奇数有大奖,和是偶数没有奖
2.学生尝试玩游戏
3.提问思考:为什么没有人得大奖?
【设计意图:】:学生在玩游戏的过程中感知两数之和的规律
二、引导探究,互评对话
活动一:探索验证
1.明确探究的问题:刚才的游戏,一个数加上它本身只有两种情况,偶数+偶数,奇数+奇数。要全面研究,还有什么情况?
偶数+奇数
2.用自己想到的方法探究两数之和的奇偶性。可以用举例的方法得出结论,也可以用小正方形拼一拼、想一想,为什么是这个结论。可以独立完成,或者同坐合作。注意做好记录
3.全班交流、讨论。
(1)用举例的方法验证。
(2)用小正方形拼摆的方法验证
【设计意图:】让学生自己动手想办法,寻找规律,经历过程,从而能找到两数之和的规律。
活动二:归纳结论
1.教师板书结论:偶数+偶数=偶数奇数+奇数=偶数
偶数+奇数=奇数
2.举例验证规律
3.用今天学的规律解释前面的游戏。
活动三:巩固练习,内化新知
1、填空:
奇数+偶数=()奇数-偶数=()
偶数+偶数+偶数=()奇数+奇数+奇数+()
10个偶数想家的和是(),10个奇数相加的和是()
2、小明爸爸、妈妈今年的岁数和是奇数,几年后小明爸爸、妈妈岁数的和是奇数还是偶数?
【设计意图:】:及时练习,让学生对新学的内容得以巩固,内化所学的知识,掌握两数之和的规律,能灵活运用
三、梳理总结,赏评延展
活动一:
课堂小结
今天这节课我们学习了什么内容?你能说出奇数、偶数相加的规律吗?这些规律我们是怎样探究出来的?
活动二:作业
练习四的3、5、7题
【设计意图:】:安排以上几个练习,让学生独立思考,可以了解学生的学习掌握情况,学生也可以从练习中体验到学习的快乐。
四、板书设计
两数之和的奇偶性
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
《质数和合数》教学设计 12
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)五年级下册第14页质数与合数的概念及例1。对于质数合数的概念,教材通过让学生找出1~20各数的全部因数,然后按因数的个数分类,在此基础上给出概念。例1是让学生运用质数的概念找出100以内的所有质数。由于小学用到的质数比较少,所以教材只要求找出100以内的质数,这些质数不必要求学生都背,但是熟悉20以内的质数是必须的。
(二)核心能力
在认识质数与合数的过程中,培养观察、分析、归纳的能力;在找100以内质数的过程中,学会有条理的分析和解决问题。
(三)学习目标
1、通过观察引导、归纳推理,理解质数(素数)和合数的意义,会正确判断一个数是质数还是合数。
2、根据质数合数的意义,找出100以内的质数,学会有条理的分析和解决问题,并能熟练判断20以内的数哪个是质数,哪个是合数,
(四)学习重点
质数、合数的意义
(五)学习难点
正确掌握判断质数和合数的方法。
(六)配套资源
实施资源:《质数和合数》名师教学课件、百数表
二、教学设计
(一)课前设计(课前复习)
(1)找出1~20各数的因数。
(2)观察找出的1~20各数的因数,看看它们的个数有什么规律?
(二)课堂设计
1、谈话引入
师:学号是每位同学在这个班级的数字代号,每个人对自己学号的数字都会有特殊的感情,是吗?谁愿意用学过的知识来介绍自己的学号是个怎样的数呢?
师:刚才很多同学在介绍学号时很多用到了奇数和偶数的知识,请学号是奇数的同学站起来。哪些人学号是偶数呢?都站过了吗?可见自然数可以怎样分类?分类依据是什么?
师:这节课我们换个角度,通过研究因数进一步来研究自然数,看看是否有新的发现。
2、问题探究
(1)认识质数和合数
①引导观察,分类思考
师:课前大家都找出了1~20各数的全部因数,谁来展示一下。
生展示引导学生评价是否正确。
师:现在请所有同学一起来观察大屏上(课件出示)这些数字的所有因数,看看你发现了什么?
师:按照每个数的因数的个数,(板书:按因数的个数)可以分为哪几种情况?并说说你为什么这样分?
全班交流,归纳小结。
可以分成三类:
有一个因数:1
有两个因数:2、3、5、7、11、13、17、19
有两个以上因数:4、6、8、9、10、12、15、16、18、20
②认识质数
师:先观察只有两个因数的特征,他们的因数有什么特点呢?
(出示:只有1和它本身两个因数)
师:我们给这样的数取名为:质数(或素数)(课件出示)一个数,如果只有1和它本身两个因数,这样的数叫做质数。
师:谁能举出几个质数的例子,并说说为什么是质数。举得完吗?说明了什么?(质数有无数个)
师:最小的质数是几?最大的呢?
③认识合数
师:再看4、6、9、10等这一类的数,它们的因数跟质数的因数比较,有什么不同呢?
引导小结:除了1和它本身以外,还有别的因数。
师:我们给这样的数取名为:合数。(板书:合数)(课件出示)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
师:谁再举出几个合数的.例子?举得完吗?说明了什么?(合数也有无数个)
想一想:最小的合数是几?最大的呢?
④1既不是质数也不是合数
师:现在还剩一个1,它是质数还是合数?
交流明确:1既不是质数,也不是合数。
⑤小结
师:按照因数个数的多少,自然数又可以分为哪几类呢?
明确:按照因数的个数,把自然数分为质数、合数和1三类。
【设计意图】通过课前找1~20各数因数,到课中观察因数的个数并发现问题,引导学生分类,从而引出概念。在理解概念的基础上,通过学生举例,进一步加强对概念的理解,明晰概念后,引导学生归纳小结,完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
(2)100以内的质数
师:如果请你们找出100以内的质数都有哪些,可以怎样来找?
生讨论汇报。
预设1:可以把每个数都验证一下,看哪些是质数。
预设2:先把2的倍数画去,但2除外,画掉的这些数都不是质数。3的倍数也可以……
师:你们认为哪种方法比较简便一些?(预设2的方法)
引导小结:利用百数表和2、3、5倍数的特征,选用筛除法去找质数。
四人小组合作,利用百数表找出100以内的质数,并思考:在找的过程中,画到几的倍数就可以了?
全班交流汇报,教师课件演示。
【设计意图】本环节主要依托小组活动,先制定找的方法,然后实际操作。在找的过程中不断加强对所学知识的理解和综合应用,帮助学生构建完整的知识体系,培养学生良好的数感。
(3)沟通联系,形成能力
师:通过今天的学习,自然数都可以怎样分类?
学生交流后,明确:
自然数按因数的个数分为:质数、因数和1;
自然数按是否是2的倍数分为:奇数和偶数。
师:请大家结合所学的这些知识介绍自己的学号。
随机抽取学生介绍,并适时拓展。
3、巩固练习
(1)将下面各数分别填入指定的圈里。
27 37 41 58 61 73 83 95
11 14 33 47 57 62 87 99
(2)下面的说法正确吗?说说你的理由。
①所有的质数都是奇数。
②所有的偶数都是合数。
③所有的奇数都是质数。
④所有的合数都是偶数。
辨析:
①所有的质数都是奇数
学生举反例反驳。
引导:你是怎样很快的找到这个数的,能说说方法吗?
交流,明确:先写出所有的质数,再找其中不是奇数的。
板书找的过程,并标注特殊数。
引申:这句话怎样改就对了?
交流,明确:除2外,所有的质数都是奇数。
辨析:“所有的偶数都是合数”、“所有的奇数都是质数”、“所有的合数都是偶数”。
学生分组辨析,每两大组辨析其中的一句话。
小组合作,用刚才列举的方法找到特殊数。
小组代表上台板演辨析的过程。
对比,明确:
除2外,所有的质数都是奇数,所有的偶数都是合数;
因为9、15等特殊数的存在,“所有的奇数都是质数,所有的合数都是偶数”是错的。
(3)括号内填入正确的质数。
15=()+()18=()+()
22=()+()49=()×()
4、全课总结
师:通过今天的学习你有什么收获?
小结:知道自然数按因数的个数的多少,可以分为三类:质数、合数和1,并且知道质数和合数的定义。
(三)课时作业
(1)填空。
①在1~9这9个自然数中,相邻的两个质数是()和(),相邻的两个合数是()和()。
②一个三位数,百位上的数是最小的合数,十位上的数是最小的奇数,个位上的数既是质数又是偶数,这个三位数是()。
答案:①2和3;8和9 ②412
解析:综合应用概念,熟练找出10以内的质数和合数。【考查目标1、2】
(2)老师家的电话号码是多少?
①八位号码从左到右排列,第一位上的数是既是2的倍数又是3的倍数的最小一位数。
②第二位上的数是最小的质数;第三位是最小的合数;第四位上的数既不是质数也不是合数。
③第五位上是小于10的最大合数;第六位上是最大的一位数;第七位上是自然数中最小的奇数;最后一位上是8的最大因数。
答案:62419918。
解析:综合练习题目,既复习因数、倍数的概念及找因数倍数的方法,又巩固质数、合数的概念,培养学生的数学推理能力。【考查目标2、3】
《质数和合数》教学设计 13
【教学目标】
1.理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数,能正确判断一个数是质数还是合数,能判断两个自然上的和是奇数还是偶数。
2.引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义。
3.培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
【教学重点】
理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。
【教学难点】
能运用一定的方法,从不同的角度判断、感悟质数合数。
【教学过程】
一、创设情境,引入新课。
1.谈话:在这一学期里我们学过了哪些概念?
在学生回答的基础上,教师指出:这些都是对于整数的认识和研究,我们继续研究整数。
2.抢答:请同学们以最快的速度说出下面的数有几个因数。
师出示数,学生抢答因数的个数。
3.思考:
(1)一个数的最小因数是几?最大因数是几?
(2)一个数的因数是有限的还是无限的?
(3)怎样找一个数的因数?
一个数是最小因数是1,最大因数是它本身。
一个数因数的个数是有限的。
找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。
4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。
(板书课题)
二、探究新知。
1.找出1—20各数的因数,看看它们的因数的个数有什么规律。
(1)学生小组内交流,写出1—20各数的因数,看看它们的因数的个数有什么特点。
(2)师:观察它们因数的个数,你发现了什么?
小组讨论:根据因数的个数,你觉得可以怎样分类?
2.学习质数与合数
师:一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数,也不是合数。
3.做质数表。
(1)找出100以内的质数,做一个质数表。
(2)学生讨论:怎样找100以内的质数?说说你的'方法。
可以把每个数都验证一下,看哪些数是质数。先把2的倍数划去,但2除外,划掉的这些数都不是质数。3的倍数也可以……划到几的倍数就可以了?划到7的倍数就可以了.
(3)剩下的数都是质数。
(4)师出示100以内的质数表
4.牛刀小试。
(1)练习四第2题。
(2)两个质数,和是10,积是21,这两个质数是多少?
生:21=3×7,3和7都是质数,而且3+7=10,所以这两个质数就是3和7。
师:那两个质数,和是7,积是10,这两个质数是多少?
生:10=2×5,2和5都是质数,而且2+5=7,所以这两个质数就是2和5。
5.探索两数之和的奇偶性。
师:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?
师:同桌讨论:这个结论正确吗?你还有其他的方法吗?试一试。
同桌找一些大数,验证一下所得的结论是否正确。
汇报交流:
6.火眼金睛辨对错。
(1)所有的奇数都是质数。(×)
(2)所有的偶数都是合数。(×)
(3)在1,2,3,4,5中,除了质数以外都是合数。(×)
(4)两个质数的和是偶数。(×)
(5)两个奇数的和是偶数。(√)
7.小结:刚才的学习你学会了什么?
三、课堂练习。
谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?
1.写出下面各数的因数。
(1)在50以内的自然数中,最大的质数是(47),最小的合数是(4)。
(2)既是质数又是奇数的最小一位数是(3)。
(3)如果两个质数的和是24,可以是(5)+(19),(7)+(17)或(11)+(23)。
(4)在自然数中,最小的奇数是(1),最小的偶数是(0),最小的质数是(2),最小的合数是(4)。
2.不计算,判断下面算式的结果是奇数还是偶数。
1+2+3+4+…+40
生:1—40的自然数中,奇数和偶数各有20个,因为奇数+奇数=偶数,20个奇数相加和是偶数,偶数+偶数=偶数,20个偶数相加和是偶数,所以最后结果一定是偶数。
《质数和合数》教学设计 14
教材分析:
在数轮中,有关质数和合数的理论一直吸引着数学家们不断研究。在小学阶段,只是让学生在因数,倍数的基础上初步掌握质数,合数的概念,为后面学习求最大公因数,最小公倍数以及约分,通分打下基础。在本节课中,要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。
学情分析:
由于这部分内容较为抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数,倍数,奇数,偶数,质数,合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应该注意让学生辨析这些概念。
教学目标:
1.理解质数,合数的概念,掌握判断质数,合数的方法,并能自主探索找出100以内的质数。
2.培养学生自主探究的过程中,独立解决问题的能力。
3.在自主探究的过程中,使学生获得成就感。
重点难点:
重点:理解并掌握质数,合数的意义
难点:根据概念判断一个数是质数还是合数
教具学具:
课件
教学过程:
一、回顾导入
1.师:这些天,我们了解了不少有关数的知识,谁来给大家说一说?
生A:我们学习了因数和倍数。
生B:我们知道了奇数和偶数。
生C:我们还知道了2、5、3的倍数的特征。
2.师:你们确实学习了不少数的知识,那么,老师任意给出一个数,谁能迅速找出它的因数?
学生纷纷举手。
师:这么多同学对自己都很有信心,我们就试一试。
设计意图:通过让学生介绍所学知识,为学生创设良好的学习情境,激发学生解决问题的兴趣,自然地引入本课学习内容。
二、自主学习:
1.课件出示要求:
每组四人分工写出1--20各数的全部因数。
小组讨论交流
2.学生汇报1--20各数的全部因数及各小组的发现。
生A:我发现2、3、5、7、11这五个数的因数有两个。
生B:我知道这五个数的因数是1和它本身这两个因数。
生C:我发现4、9的因数有三个,6、8、10的因数有四个,12的因数有六个。
生D:我看出来了!这些数的'因数个数不固定,有多有少,但不管有几个因数,都有1和它本身。
师:这些数如果按照因数的个数来分,哪些数可以归为一类?
学生分组合作,展开讨论。
生A:我把这些数分成四类:一类有两个因数;一类有三个因数;一类有四个因数;一类有六个因数。
生B:我不同意。如果按这种分法,那可以把数分成无数类。如果把有相同因数个数的分成一类,那数是无限的,它的因数个数也是无限的,数也自然可以分成无数类了。
师:看来这种按一个数的因数个数来分确实不科学。大家想一想,这些数的因数有什么共同点呢?
生:老师,我知道了!我们可以把这些数分成两类。因为不管它们的因数有多少个,都离不开1和它本身。可以把只有1和它本身两个因数的分为一类;把其余的分成一类。
师:像这样,(指2、3、5、7……)一个数如果只有1和它本身两个因数,这样的数叫质数也叫素数。(出示定义)剩下的这一类数叫合数,你能说一说一个怎样的数叫做合数吗?
学生小组交流,共同归纳。
师:我们再来看几个数,如果你认为是合数,你就站起来;如果你认为是质数,你就坐端正。(教师依次出示:15、21、29、37、1)
生A:我认为1是质数。
生B:我不同意,因为1的因数只有1个,而其它的质数的因数有两个。
生A:质数的因数有1和它本身,1的本身也是1,我认为1还是质数。
生C:我认为1不是质数,因为质数只有1和它本身两个因数。也就是说一个质数要有两个因数;而1的因数只有1个。
师:1比较特殊,它既不是质数也不是合数,而大于1的数不是质数就是合数。
3.出示100以内的质数表
4.知识拓展
自然数(质数、合数、1);自然数(奇数、偶数)
设计意图:教师充分相信学生的能力,放手让学生自主学习、合作交流,通过不同的方法解决问题,体现解决问题的策略多样化,让学生凭借以往的知识技能和自己的努力获得知识,并加深理解,进一步提高学习能力。
三、全课小结
师:今天这节课我们学习了哪些内容?
学生分组讨论、交流。汇报结果
师:我们可以用今天学到的知识解决更多问题。
四、布置作业
练习四1、2、3题
五、板书设计
质数和合数
一、自然数按照是不是2的倍数分为
奇数、偶数
二、按照因数的个数分为
质数(只有1和它本身两个因数)
合数(除1和它本身还有别的因数)
《质数和合数》教学设计 15
一、教学目标
1、使学生理解质数和合数的意义,能正确判断一个数是质数还是合数。
2、知道100以内的质数,熟记20以内的质数。
3、在学习活动中培养学生自主探索、独立思考的能力。
二、教学重难点
理解质数和合数的意义,会正确判断。
三、教学过程
1、复习导入
74 900 105 228 判断这些数分别是几的倍数。
自然数按照是否是2的倍数可以分成哪两类?最小偶数是几?
2、自主探究,理解含义
⑴今天,我们来学习自然数的另一种分类方法,按因数的个数分。请同学们拿出已经做好的1~20的因数,根据因数个数完成表格。
⑵交流分法,理解质数和合数的意义。
一个数,如果只有1和它本身两个因数,这样的数叫质数,也叫素数。
一个数,如果出了1和它本身,还有别的因数,这样的数叫合数。
因为1只有一个因数,所以1既不是质数也不是合数。
⑶20以内的质数和合数有哪些,读一读。
⑷判断这些数是质数还是合数。说明理由。
8 35 84 11 111 9000
小结:除了1和它本身以外,它还是其他数的倍数,这个数就是合数。
⑸练习 课堂第8页填空
学生独立完成,交流校对。
3、找出100以内的质数,并整理。
我们已经认识了质数和合数两个新朋友,现在请同学们快速地找出表格中100以内的质数。
⑴先思考交流,有什么好办法可以帮我们又快又准确地找出质数,一个也不漏下。
⑵独立完成,把找到的质数读一遍。
⑶整理100以内大的质数,看看哪个同学的整理方法又清楚又方便记忆。
展示、评价 11 31 41 61 71
2
3 13 23 43 53 73 83
5
7 17 37 47 67 97
19 29 59 79 89
⑷观察100以内质数表,你有什么发现?
除了2,其他质数都是奇数。 质数的个位一般不会是0、2、4、6、8除了2和5这两个数。
⑸练习 书本25页判断题
交流,说明理由
4、拓展小游戏《猜猜我是谁》
我既不是质数也不是合数。( )
我的因数只有1和3。( )
我是20以内最大的质数。( )
我比10小,既是合数又是奇数。( )
把我两个数位上的数字交换位置,仍是质数。( )
我们是质数,把我们相加和是20,把我们相乘积是91,。( )( )
5、总结 揭题
经过这节课的学习,你知道按因数的个数怎样给自然数分类了吗?
这样分类,包括所有的'自然数了吗?0怎么办?为什么?
如果要给今天的学习内容起个名字,你会起什么呢?
教学反思
早上第一节在三班试教,感觉很差。
问题一:问题的针对性不够明确,导致浪费了很多时间。
试教时出现的状况:分类时,让学生按自己的方式,结果出现五花八门的分法,再分析引导花了七八分钟时间。
处理办法:分类时,出现表格,让学生根据表格要求进行分类。
问题二:知识点的小结和提炼不够及时,导致学生在练习中的错误很多。
试教时出现的状况:通过探究得出质数和合数的意义后,马上进行填空练习,这时候学生对意义还没有进过咀嚼消化,因此练习中错误很多。
处理办法:通过探究得出质数和合数的意义后,加入一个简单练习,判断这些数是质数还是合数,通过判断巩固意义,熟练判断方法。再做综合性的填空练习,效果会更好。
经过调整,总算在下午开课时还算顺利地把课上下来了。
《质数和合数》教学设计 16
教学目标:
1、创设情境,让学生经过探索理解质数和合数的概念,并能判断质数合数。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力
教学重难点:
理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
教学过程:
一、课前谈话
师:你们知道吗?数学在生活中真的是无处不在,如果把你们学号当成一个数,谁能试着用你学过的整除知识描述你的数?
二、教学过程:
(一)情境引入:
(1)把你的学号看成一个数,这个数是几,你手里就有多少个这样小正方形。(摆上正方形)就用他们拼出新的长正方形。因为拼起来很烦琐,所以把你想到的拼的结果画到方格纸上(摆方格纸)在图形中写上这个数,还要标上长宽或边长(举例)
教师提示:(同时演示)比如我的数是40,我就用40个小方格,可以拼出这样的85和58的长方形,别看摆法不同,但属于同一种的
(2)在3分钟内,我们比一比看谁拼得最多,谁就是冠军。
(3)学生反馈汇报:谁拼得多?还有更多的.吗?
生反馈24号4种,并验证
(4)看来24号同学是这次比赛的冠军。是最聪明的,你们同意吗?找个代表说说理由。
(5)验证刚才总结出的结论
(二)揭示质数、合数
(1)为什么这些数只能拼出一种来,这些数有什么共同点
(2)拼出不只一种的都有谁, 为什么这些数拼出的不止一种呢?这些数又有什么共同点呢?
(3)投影概念读一读
(4)研究数字1
揭示:1既不是质数也不是合数(板书)读一读
(5)小练习:现在我可以说自然数中不是质数就是合数,对吗?
三、巩固练习,加深认识。
出示学生表
1、抢答练习:一些数快速判断质数合数
2、判断
3、猜学号认同学
4、自我介绍
5、出示哥德巴赫猜想
四、小结收获
板书设计:
质数合数
只有1和它本身没有其他约数叫质数
除了1和它本身还有其他约数叫合数