人教版五年级上《用字母表示数》教学设计范文(精选12篇)
人教版五年级上《用字母表示数》教学设计范文(精选12篇)
作为一名教职工,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。教学设计要怎么写呢?以下是小编为大家整理的人教版五年级上《用字母表示数》教学设计范文,欢迎阅读与收藏。
五年级上《用字母表示数》教学设计 1
教材分析:
“字母表示数”属于代数初步知识,是代数学习的首要环节,也是本单元的起始课程,理解字母表示数的意义是学习代数的关键,也是后面学习方程、不等式的前提条件。
学生对字母表示数的理解,是在经历运用字母表示具体数量的活动中实现的。教材通过青蛙儿歌、母子年龄、摆小棒等情境,引导学生用字母表示数、运算定律和公式,这样既简洁明了,又抽象概括。教材中三个不同的情境从不同的角度引导学生体会用字母表示数。儿歌情境直接用字母表示一个变化的数;年龄情境和摆小棒情境不仅用字母直接表示一个变化的量,同时又用含有字母的式子表示了两个量之间的关系。通过三个情境的学习,使学生充分体会用字母表示数的方法和作用。练习中让学生通过解决实际问题,进一步体会建立含有字母式子的必要性,让他们在具体情境中反复体会字母表示数的意义,建立字母表示数的模型。
学情分析:
小学生由具体的数过渡到“用字母表示数”,是认识上的一次飞跃,这一内容对于他们来说是很抽象的。但学生在生活中见到过用字母代表一些事物,另外在前面的学习中也曾见到过用字母表示数的情境,但这些都是比较形象的。
教学目标
1.知识与技能:会用字母表示数,会用含有字母的式子表示简单的数量关系。
2.过程与方法:在概括生活情境中的数量关系时产生符号化的需要,在活动和探索中体会字母表示数的意义和用字母表示数的方法,从而提高推理能力、概括能力和抽象思维能力,并逐步建立符号感。
3.情感态度价值观:在探索、发现活动中感受数学学习的乐趣,体验数学的简洁之美。
教学重点
理解和掌握字母表示数的方法
教学难点
学生学会有意识的用字母表示数
教学过程
一、谜语引入
师:一位游泳家,说话呱呱呱,小时有尾没有脚,大时有脚无尾巴。能猜出是什么小动物吗?(青蛙)
二、自主探究
1、数青蛙感知用字母表示数
(出示一个池塘的青蛙图片)
师:看着这可爱的青蛙,老师想起一首儿歌:一只青蛙一张嘴,两只眼睛四条腿,扑通扑通跳下水.....
我们先来念前半句,来点节奏——[出示:画面]
师:一只青蛙一张嘴,两只青蛙两张嘴,——
生:三只青蛙三张嘴……(让学生自己读这首儿歌,直到学生停下来。)
师:怎么不读了?照这样下去,能读得完吗?
是啊,这样下去肯定读不完,你能不能想个办法,用一句话表示这首儿歌呢?
生:几只青蛙几张嘴;无数只青蛙无数张嘴……
师:同学们都是用文字表述的。能不能用字母表示呢?
生:n只青蛙n张嘴。
师:这句话能不能代替这首儿歌呢?
如果n是3,()只青蛙()张嘴;
如果n是8,()只青蛙()张嘴;
如果n是10,()只青蛙()张嘴;
如果n是100,()只青蛙()张嘴;
师:这里的n还可以表示那些数?
生:可以表示1、2、3、4、5……
n可以表示任何自然数。
师:n的威力可真大,能表示这么多不同的数!可以换个字母说一说吗?
生:a只青蛙a张嘴……
师:可以说:“a只青蛙b张嘴”吗?为什么?
(青蛙只数与嘴的只数相同,用同一个字母就能表示出这两者之间的关系。)
师:我们用“n只青蛙n张嘴”一句话就概括了这首说不完的儿歌,既然用字母表示数这么简明、方便。这节课,我们就一起来学习“用字母表示数”。(板书课题)
2、猜年龄感知用字母表示数量关系
师:同学们喜欢做游戏吗?下面我们做一个猜年龄的游戏,想知道老师今年多大年龄吗?猜一猜。生猜老师年龄
师:到底我多大了,不能直接告诉你(指名问一生)你多大了?
师:老师的年龄比你大20岁(此处可根据学生年龄自行设定),现在你知道老师的年龄吗?用式子怎么表示?板书算
师:现在让我们进入时空隧道,当这位同学1岁的时候,老师几岁?
当他25岁大学毕业的时候,老师几岁?
当他60岁大寿的时候,老师几岁?
师:那么如果用一个字母表示他任意一年的年龄,怎样用含有字母的式子表示老师的年龄呢?板书:bb+20
b表示什么?b+20又表示什么?
师小结:看来,用字母可以直接表示一个数量,用含有字母的式子还可以表示另一个数量(老师的年龄)以及表示两个人之间的年龄关系(老师比同学大20岁)
(2)渗透字母的取值范围。
师:当b=20时,老师多少岁了?当b=30岁时,老师多少岁?
b可以等于200吗?为什么?
师:这位同学说对了,老师曾在网上找到一条相关信息,目前世界上寿命最长的是130岁,所以,用字母表示数,有时候可以表示任意的自然数,有时会有一定范围,要学会具体问题具体分析。
师:换个角度,如果用x表示老师的年龄,那这位同学的年龄应该怎样表示?(x-20)
3、摆三角形(用字母表示倍数关系)
(1)同学们会用小棒摆三角形吗?请学生摆出摆出一个三角形,用了几根小棒?摆2个这样的`三角形需要几根小棒?摆3个呢?摆4个呢?你发现了什么?
(2)当摆a个三角形,需要用多少根小棒?字母a表示什么?含有字母的这个式子a×3,又表示什么?式子a×3可以看出小棒根数是三角形个数的几倍?
(3)学生自学乘法的简便的写法与读法(课件出示)
①当字母与数字相乘时,可以去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如:ɑ×2通常可以写成2ɑ或2ɑ,读作:2ɑ或2乘ɑ。
②当字母与字母相乘时,可以省略乘号用点表示,也可以直接去掉乘号,如:ɑ×b写作ɑb或ɑb,读作:ɑ乘b或ɑb。
③字母与1相乘省略1不写,只写字母本身,如:1×ɑ写做ɑ。
(4)练一练:省略乘号,写出下面各式。
a×812×ya×b
反问:8+a可以写成8a吗?为什么?(只有乘法才可以省略乘号。)
三、实践运用,巩固新知。
我们的好朋友笑笑与淘气正在逛超市,让我们运用所学的知识,帮他们解决一些问题,好吗?
(一)用含有字母的式子表示:
1、星期天,笑笑与淘气一起去超市。笑笑带了a元,淘气带了30元,他们一共带了()元。
2、超市里的商品可真多,一个作业本要y元,笑笑买了4本,要用()元。
3、一个书包要k元,一个文具盒的价钱是一个书包价钱的一半,淘气买一个文具盒要()元。
4、笑笑有50元钱,买书包用去b元,还剩下()元。
(二)我是小法官。
四、课堂总结。
这节课你学到了什么?
小结:用字母可以表示数,用含有字母的式子也可以表示数,还能表示出两个数量之间的关系。
五、感受历史,热爱数学
用字母表示数真是一个聪明的办法,给我们的生活带来了方便和好处,那你们知道是谁最早想出了这个方法的吗?让我们一起走进名人屋看一看吧(课件)
六、数青蛙结束
课前,我们的儿歌还只是念了一小段,现在我们一起来把它念完。
1只青蛙1张嘴,2只眼睛4条腿;
2只青蛙2张嘴,4只眼睛8条腿;
3只青蛙3张嘴,6只眼睛12条腿;
4只青蛙4张嘴,8只眼睛16条腿;
观察一下,眼睛只数与青蛙只数有什么关系?(2倍)
腿的只数与青蛙只数又有什么关系?(4倍)
n只青蛙()张嘴,()只眼睛()条腿。
师:这首儿歌,我们终于把它补充完整了。
生:(齐读)n只青蛙n张嘴,2n只眼睛4n条腿;“扑通、扑通”跳下水——
[学生一边念儿歌,一边做动作,全课结束。
板书设计
字母表示数
n只青蛙n张嘴
ɑ+23
b-23
3×a写作:3a或3a
五年级上《用字母表示数》教学设计 2
教学目标:
1、使学生理解并学会用字母表示数,能用含有字母的式子表示简单的数量关系或计算公式,学会求简单的含有字母式子的值;掌握在含有字母的式子里乘号的简写与略写。
2、使学生经历实际问题,用含有字母的式子进行表达的抽象过程,体会用字母表示数的简洁和便利,发展符号感。
3、使学生初步学习用符号语言进行表述、交流,体会数学与实际问题的密切联系,感受数学表达方式的严谨性、概括性以及简洁性。
教学过程:
一、谈话导入
师:谁来向客人老师介绍一下,你叫什么?今年多大了?
你们知道老师多大了?谁来猜猜。
师:老师比××大13岁。谁知道老师今年多大了?怎么计算?
(根据回答板书:老师的岁数11+13)
师:当××1岁时,老师的年龄是1+13。
谁能照样子说一说××几岁时,老师又是几岁?
二、自主探索,领悟新知
1、师:谁能想个办法,不管××几岁,你都能用一个式子来表示老师的岁数。
学生试着在自己本子上写,然后交流。
根据学生讨论、交流,师板书:老师的岁数是a+13。
师:确实在我们生活中,往往会用符号、字母来表示一些数,今天我们就一起来研究如何用字母表示数。
师:这里的a可以表示哪些数呢?表示500行不行?(不行,因为人不可能活到500岁。)师小结:看来用含字母的式子表示生活中的数量时,字母所取的数要符合生活实际。
师:在这个式子中老师比同学们大13岁是不变的,所以用a表示同学们的岁数,可以不用别的字母表示老师的岁数,用a+19就可以了。由此看出,字母不但可以表示一个数,用含有字母的式子也可以表示一定的'数量关系。
(板书:含有字母的式子可以表示一定的数量关系)
三、拓展延伸、以练促学:
出示例2:
1、独立完成用算式表示数量关系。
2、思考:如果x=10,合唱组有多少人?x=14呢?
3、归纳公式:如果正方形的边长用a表示,周长用c表示,面积用s表示。你能用字母表示出正方形周长和面积的计算公式吗?学生在小组中交流用字母表示公式的写法,后举手回答。
(板书:正方形周长:c=a×4;正方形面积:s=a×a)
小结:图形中用a表示边长(或长),b表示宽,C表示周长,S表示面积。
(板书:字母还可以表示的常用的公式)
4、字母与数字相乘的简便写法
关于含有字母的乘法式子,我们是可以进行简写的。究竟怎样简写呢?请自己看书106页,轻声的读一读。
5、用字母表示长方形的周长和面积公式,能简写的要简写。
四、多样练习,巩固新课
1、下面我们来当一次小法官,看你有没有掌握这些知识,有信心挑战自己吗?
(1)a×2写作a2。()
(2)1×t写作t。()
(3)a×9×c写作9ac。()
(4)12+c写作12c。()
(5)x×x写作2x。()
2、其实在生活中还有许多的数量都可以用含字母的式子来表示。下面我们来看一些例子。(完成想想做做1、2、3、4)
五、趣味应用、综合提高
师:出示儿歌,生齐读:一只青蛙一张嘴,两只眼睛四条腿,扑通一声跳下水。二只青蛙二张嘴,四只眼睛八条腿,扑通两声跳下水。三只青蛙三张嘴,六只眼睛十二条腿,扑通三声跳下水。……师:能念完吗?有什么办法能念完?
根据回答板书:
“a只青蛙a张嘴,2a只眼睛4a条腿,扑通a声跳下水”。
齐读儿歌,宣布下课。
五年级上《用字母表示数》教学设计 3
【教学目标】
1、让学生在现实情境中理解和掌握用字母表示数的方法,会用含有字母的式子表示简单的数量、数量关系与计算公式,学会含有字母的乘法算式的简便写法。
2、让学生经历把实际问题用含有字母的式子进行表达的抽象过程,进一步体会数学的抽象性、概括性与简洁性,发展符号感。
3、让学生在用字母表示数中感受数学的简洁美,增强对数学学习的好奇心。
【教学重点】
理解用字母表示数的意义,会用含有字母的式子表示数量。
【教学难点】
能用含有字母的式子表示数量,体会字母表示数的优越性。
【教学过程】
一、创设情境,导入新课
1、课件依次出示:麦当劳标志、路标、CCTV、鞋子尺码。
提问:在刚才的几幅图片中,它们有什么共同的地方?(都含有字母)
2、课件出示:2、4、6、a、10。
提问:你能猜到这里的a是几?
小结:根据这行数的排列规律,我们能看出字母a表示的是一个特定的数。(板书:特定的数)
师:今天在们就试着从数学的'角度研究字母,让我们的探索从一个大家都玩过的游戏开始吧!
二、自主探究,领悟新知
1、用字母表示数。
课件依次出现:1个三角形、2个三角形、3个三角形、4个三角形
(1)指名说说三角形的个数和所用小棒的根数(根据学生回答,老师依次板书)
(2)提问:如果让你接着摆下去,要摆出多少个三角形,要用多少根小棒了?(师相应板书)
(3)追问:照这样下去,摆的完,说的完吗?能不能用一个式子来代表上面所有的式子呢?
引导学生说出用字母表示的式子:a×3。
(4)提问:这里的a表示什么意思?3表示什么意思?a×3呢?
字母a可以表示哪些数?(根据学生回答,教师相应板书:变化的数)
(5)提问:除了用a表示三角形的个数,还可以用其他字母吗?
(6)小结:用字母不仅可以表示特定的数,更重要、更优越的是用字母还可以表示变化的数。
2、用字母表示数量关系。
玩猜年龄的游戏:老师和一名学生的年龄用字母表示
(1)(板书:b b+14)猜一猜: 这里的b、b+14分别表示谁的岁数?
请学生猜一猜,并说明猜测理由。教师相应板书:学生 老师
(2)提问:根据你的经验这里的b可以代表哪些具体的数?
反问:这里的数可以是500么?为什么?
(3)师:看来这个字母b啊在表示年龄时是有一定的限制的,所以字母在不同的情况下表示的范围是不同的。(板书:一定限制的数)看到这个式子你能联想到什么啊?比如(课件出示:当学生2岁时,老师的岁数是多少?)
学生各自举例说说,并算一算当b=18时呢?
(4)换个角度来看:如果用字母n表示老师的岁数(板书:n),那学生的岁数又该怎么表示呢?(引导学生认识到可根据年龄关系来判断)
根据学生的回答,老师板书:n—18
(5)小结:含有字母的式子不仅能表示数,还可以表示数量关系。
3、用字母表示公式。
(1)(出示一个正方形)复习正方形的周长公式和面积公式,指名回答,教师相应板书。
(2)课件出示:正方形的边长用字母a表示,周长用c表示,面积用s表示,你能用字母表示出正方形的周长与面积的计算公式么?生答,师板书:C=a×4 S=a×a
提问:这样表示与用文字叙述比较,哪种更简单?
(3)学生自学含有字母的乘法式子的简写方式。(数学书第106页的内容)
结合正方形的字母公式说说含有字母式子的简写规则。
(4)试一试:做“想想做做”。
(5)做判断题,强化认识
强调以下几点。
①数和字母相乘时的乘号可以写成小圆点,通常都省略不写,但数字必须写在字母的前面。字母和字母相乘时,乘号也可以写成小圆点,通常也省略不写。
②相同字母相乘,可以写成平方的形式。
③在含有字幕的式子里,加号、减号、除号都不能省略,如24+x不能写成24x
④两个1与任何字母相乘,通常省略不写。
(4)引导学生简写正方形周长与面积的公式,并完成书上“想想做做”第1题。
(5)小结
三、巩固运用,拓展延伸
出示快乐广场:(图略)说说:我想去哪儿?要走的路程是多少米?
五年级上《用字母表示数》教学设计 4
学习内容:
教材p52~53例1、例2及练习十二第1、3、7、8题。
学习目标:
知识与技能:理解用字母表示数的意义和作用。
过程与方法:
能正确掌握含有字母的乘法式子的简写。
情感、态度与价值观:
在探索现实生活数量关系的过程中,体验用字母表示数的简明性。
学习重点:
理解用字母表示数的意义和作用。
学习难点:
掌握含有字母的乘法式子的简写。
学习方法:
观察、比较、思考、交流
学习准备:
多媒体。
学习过程
一、情境导入
1.导入:你今年几岁了?再过两年呢?再过三年、四年、n年呢?学生回答自己的年龄,根据教师的问题回答:过几年就用年龄十几,n年就加n。
2.质疑:这里的n表示的是什么?(一个数)
3.揭题:今天咱们就来研究用字母表示数。(板书课题:用字母表示数)
二、互动新授
(一)教学用含字母的式子表示数量关系。
1.出示教材第52页例1。
引导:图中小红和爸爸也在探讨年龄的问题,从中你了解了哪些信息?
学生可能回答:小红1岁时爸爸31岁;爸爸比小红大30岁。
2.让学生尝试用算式表示爸爸的年龄。
出示教材第52页的表格,引导学生列式表示爸爸的年龄,并集体完成表格。
3.质疑:这些式子,每个只能表示某一年爸爸的年龄。你能用一个式子简明地表示出任何一年爸爸的年龄吗?
通过表格,学生能很快列出式子:小红的年龄+30=爸爸的年龄
追问:“小红的年龄”写起来有些麻烦,谁能想个办法让我们的书写更简便?
小组交流讨论,有些学生可能会想到用“小红”“红”代替小红的年龄,也有些学生可能会想到用一个字母或一个符号来代替。
4.重点引导学生用字母来代替。
引导学生说一说你是怎么写的?为什么这样写?
学生可能用n+ 30表示,n表示小红的年龄,n+30就表示爸爸的年龄;也有可能用a+30,用a代表小红的年龄,因为爸爸比小红大30岁,所以用a+30就是爸爸的年龄。(根据学生的回答板书代数式)
思考:大家都用一个含有字母的式子代替上面所有的算式,既简洁又方便。这些式子中的字母n、a都表示什么?(都表示小红的年龄。)
(板书:小红的年龄)
追问:是不是只能用这些字母表示?还能用其他字母表示吗?
引导学生理解:可以用任意字母来表示小红的年龄。质疑:这些字母可以表示哪些数呢?能表示200吗?
先让学生讨论,然后汇报:这里的字母能表示从1开始的自然数,但是不能表示太大的数,不能表示200,因为人不可能活到200岁。
引导学生小结:用字母表示数时,在特定的情况下,字母表示的数是有一定取值范围的,比如表示年龄时。
5.质疑:这些含有字母的式子都表示什么呢? (表示爸爸的年龄,也表示小红比爸爸小30岁。)
归纳:含有字母的式子,不但可以表示数,还可以表示两个数量之间的关系。(多媒体出示)
6.提问:如果用a表示小红的年龄,当a=11时,爸爸的年龄是多少?
学生自主计算,汇报:a+30=11+30=41(岁)
当a=12时呢?学生汇报:a+30=12+30=42(岁)
(二)教学教材第53页例2。
1.引导:同学们想不想知道月球上到底有什么秘密呢?让我们一起来瞧瞧。
(出示教材第53页例2):观察情境图,说一说你知道哪些数学信息。
学生汇报:在月球上,人能举起物体的质量是地球上的6倍;在地球上我只能举起l5kg。
你们知道为什么人在月球上能举起的物体的质量是地球上的6倍吗?
拓展:是月亮的质量小的原因,月球引力是地球的六分之一。
2.探索:在地球上能举起l千克的物体,那么在月球上能举起多少千克?在地球上能举起2千克的物体、3千克的物体,在月球上能举起多少千克呢?
出示:教材第53页的表格。通过刚才的列式,你能用含有字母的式子表示出入在月球上能举起的质量吗?
学生自主思考,集体交流。
引导学生把人在地球上能举起的质量用字母表示(以用x 表示为例):人在月球上能举起的质量就是x ×千克。
3.简写乘号。
直接教学:x ×6,我们可以写成6x ,中间的乘号省略不用写。在省略乘号时,一般要把数字写在字母的前面。
想一想:式子中的字母可以表示哪些数?
引导学生小结:人能举起的质量是有限的,因此字母表示的数也是有一定范围的,不能过大。
4.(出示教材第53页情境图)图中小朋友在月球上能举起的'质量是多少?
三、巩固拓展
1.完成教材第53页“做一做”。先让学生说一说长方形纸条的面积公式:长×宽。
引导:此题的宽是3cm,怎样用含有字母的式子表示长方形纸条的面积?
放手让学生自主完成,列式汇报:3x 。教师提示乘号简写的注意事项。
2.完成教材第55页“练习十二”第1题。
先让学生回忆厘米、千克用什么字母表示(厘米:cm;千克:kg),再自主完成。
四、课堂小结
这节课你学会了什么知识?有哪些收获?
引导总结:
1.含有字母的式子,不但可以用字母表示数,还可以表示一个结果以及两个数量之间的关系。在特殊情况下,字母的取值是有一定范围的。
2.在省略乘号时,一般要把数字写在字母前面。作业:教材第55页练习十二第3、7、8题。
板书设计:
用字母表示数表示两个数量之间的关系
教学反思
《用字母表示数》是学习代数知识的重要内容,是小学生们由具体的数过渡到用字母表示数,在认识上的一次飞跃。对我们四年级孩子来说,本课内容较为抽象与枯燥,教学有一定难度。因此,在设计过程中应以建构主义为理论依据构建信息环境下“主体参与”教学模式,立足于学生的知识基础和认知水平,采用多样性的教学方式,让学生逐步理解用字母表示数的意义,并使学生在获取知识的同时,抽象思维能力得到提高,成为学习的真正主人。
讲完这节课,我有以下几点体会:
1.实现情景创设的趣味性和有效性
本课开始,我从学生感兴趣的儿歌入手,一只青蛙一站嘴,两只眼睛四条腿。让学生从儿歌中捕捉信息,再进行编儿歌的过程,充分调动积极性的同时也自然引出了新的问题,如果有很多只青蛙该怎么表示。学生在编儿歌的同时也在经历着寻找规律的过程,从而自然总结出相应的数量关系,再把数量关系从用文字描述上升到用字母表示,体会用字母表示的优越性。在这一环节中,原本比较枯燥的教学内容因为这样的情境创设变得十分生动,学生的学习兴趣充分被调动。更重要的是,在编写儿歌的过程中,学生的思维经历了从具体到抽象,从简单到复杂,从特殊到一般的过程。在玩游戏的同时,学到了许多数学知识。让教学情境直接为教学目标、教学内容服务。
2.练习设计的层次性
课堂练习是学生对学习内容的重复接触或重复反应,课堂练习能及时反馈不同层次学生所掌握知识的情况,能反映一堂课的教学效果,又能对学生的学习起到巩固、发展、深化知识的作用,同时又起到一种激励效应,通过课堂练习使三个层次的学生都有所获,有所悟,并体验到成功和快乐。在上完编儿歌这一环节之后,没有急着出示更高层次的问题,而是设置了摆三角形小棒这一环节,主要目的是为了让学生在基本练习中巩固新知,教师更可以从中检查学生对知识掌握的情况,促使知识的内化,以达到第一层次教学目标的落实。接下来的环节:“魔术盒”问题,就将显形的规律变化隐藏起来,要求学生要完全通过原始数据和结果中去寻找过滤,思维要求更高的同时也考察了学生对于知识掌握的程度和运用知识的能力。第三层次则是通过一些综合练习,对新知识掌握的程度和灵活运用知识的能力
3.本节课的不足之处
(1)对于相同字母相乘,用“平方”表示,强调不够,教学时,只具体针对了正方形的面积计算。
(2)数字写在字母前面,1可以省略,在做练习时强调的,教学时忽视了这一点。
五年级上《用字母表示数》教学设计 5
教学目标:
经历自主探索并用字母表示假发运算定律和用字母表示已经学过的周长、面积公式的过程;知道加法交换律、加法结合律的含义,会用字母表示加法运算定律以及正方形、长方形周长和面积的计算公式;在应用已有的知识和数学活动经验解决问题的过程中,获得成功的体验,发展简单的演绎推理和概括能力。
教学重点:
用字母表示运算定律和公式;根据字母公式求值。
教学难点:
理解平方的含义,乘号的简写和略写。
教具准备:
小黑板、投影片若干。
教学过程:
一、板书课题:
例1不计算,在○里面填上适当的符号。
78+301○301+78 219+86○86+219 □+△○△+□
说说你是怎样想的。
2、你能用字母表示这个运算定律吗?还记得这些运算定律的文字叙述吗?
加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
加法结合律:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。(a+b)+c=a+(b+c)
3、比较:用文字叙述和用字母表示运算定律,你有什么想法?(用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用。)
试一试:请你至少写出三组数,来验证加法结合律。
4、揭题:这节课,我们就来研究用字母表示数。
二、尝试、示范
1、师:我们也学过一些图形的面积和周长的计算公式,你还记得这几个图形的`面积公式吗?请你用字母表示,行吗?
2、生在练习本上用字母写出这些图形的面积公式。
3、师根据学生的回答,板书:
正方形: 边长用x表示,怎样表示正方形的周长和面积?
4、示范:x·x可以写成x2,表示两个数相乘,读作x的平方,所以正方形的面积公式一般写成S= x2。
5、读一读:22 32 42 52 62 82,说出表示什么意思?等于多少?
6、区别:x2与a×2
7、自学:P、8~9页有关内容,说说告诉我们哪些知识?
练习:说出下面各组中的两个式子的意义,并说出哪组中的两个式子结果相同。
62和6×2 x·x和x2 2、5×2、5和2、52 a×2和a2
8、生汇报,师板书:C= x·4=4x
9、师小结:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:a+b不能写成ab;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”。
问:如果用字母“a”表示正方形的边长呢?
练一练:
(1)如果用a表示长方形的长,b表示宽,用字母分别表示出长方形的周长和面积。
这个长方形的面积S= ab 这个长方形的周长C= a·4=4a
谈技巧——说明:在计算一个图形的面积或周长的时候,实际上是把数字代入有关的算式,算出的结果就是它的面积或周长。
2、省略乘号,写出下面各式。
a×b a×8 b×b a×1
3、下面我们来当一次小法官,
(1)a×2写作a2。 ( ) (2)1×t写作t。( )
(3)a×9×c写作9ac。( ) (4)12+c写作12c。( )
(5)x×x写作2x。( )
三、体验:这节课学习了什么知识?
四、作业:P、9页1、2、3。
五年级上《用字母表示数》教学设计 6
教学目标:
1、初步理解含有字母的式子即可以表示数量关系,也可以表示数量。学会根据量与量之间的关系,用含有字母的式子表示数量,并从中体会出用字母表示数的优越性,学会用科隆乘号在含有字母的式子里的简写法。
2、培养学生抽象概括的能力,提高学生的分析问题和解决问题的能力,发展学生的思维。
3、使学生感受到数学与生活的密切联系,培养学生的交流意识,使学生在学习过程中体验成功。
教学过程:
激发兴趣,启迪思维
师:请同学们欣赏画面,说一说字母都可以表示什么?
(大屏幕出示卡通动画)
飞机从A城-----到B城
生:字母可以表示地点。
按顺序排列扑克牌
A:字母可以表示数。
师:你在学习生活中哪些地方见到过字母?它们都表示什么?
生:洗手间WC。
生:汽车牌照上的字母,表示地区。
生:世贸组织WTO......{学生踊跃发言}
师:看来咱们班的同学都是生活的有心人,平时很留心观察身边的事物。
师:在数学学习中,字母又表示什么呢?
生:未知数X。
生:我们学过的运算定律,也可以用字母表示,比如乘法交换律是a×b=b×a.
生:加法结合律(a+b)+c=a+(b+c)......
师:大家对学过的知识掌握很扎实,你能说一说这些运算定律为什么用字母表示吗?
生:简洁清楚。
师:字母在我们的生活中有着广泛的应用,字母在数学王国里应用更为广泛。
自学讨论,探究新知。
师:谁能告诉大家,你今年几岁?
生:我今年11岁。
生:我今年12岁。
师:板书:学生年龄
12
师:你们想知道老师的年龄吗?猜一猜看。
生:……{争先恐后猜测}
师:我用数量关系来告诉大家,我的年龄:我比学生大18岁,你能说出我的年龄吗?
生:老师今年30岁。
师:你是怎么算出来的?
生:12+18师板书:老师年龄
12+18
师:当学生是其它年龄的时候,老师的年龄怎样表示呢?
生:举例说:
师板书:学生年龄老师年龄
12+18
13+18
15+18
18+18
师:请同学们观察这组算式,你发现了什么?
生:我发现学生的年龄是不固定的,是变化的。
生:老师的年龄也是在变化的,但是老师与学生年龄的差是永远不变的。
师:你真是个善于观察的孩子!
师:我们能不能再列举下下云?(能),老师再写下去你有什么感觉?
生:太麻烦。写不完......
师:你能不能帮助老师想个好办法,用一个简洁的`方法来表示学生的年龄,从而也表示老师的年龄呢?
小组讨论交流。
生:可以用a来表示学生的年龄。
生:可以用x表示……
师:怎么想到用字母表示呢?
生:用字母表示简洁。
生:因为学生的年龄是不固定的,a可以表示任何数,说明是不固定的,变化的。
师:这个方法太好了!,表述的也非常清楚。
师:用a来表示学生的年龄,那么老师的年龄怎样表示呢?
生:a+18(师板书)。
师:a+18表示什么?你发现了什么?
{交流讨论}
生:a+18表示表示老师的年龄。
生:还表示老师比学生大18岁的关系。
生:a+18也是不确定的,如果a确定了,a+18也就确定了。
学生举例:如a=5时,a+18=23……
师:刚才同学们帮老师想出了好办法,用字母来表示数和数量关系,这就是我们今天要了解的新知识——用字母表示数(板书课题)。
师:老师刚才来的路上,看到体育场内锣鼓齐鸣,知道是在干什么吗?
生:开运动会。
师:我了解到一些运动会的信息,运动员们为了补充体力买了饼干,饼干每千克为2.5元。{屏幕出示}
师:我们知道购买的单价和数量,就可以求什么?
生:可以求应付的总价。
师:如果我购买2千克饼干,应该付多少元?
生:2.5×2
师:能不能仿照第一个问题的形式,自己举2、3个数量试一试,购买其它数量时,应该付多少钱?
生:买3千克,应该付2.5×3
生:买5千克,应该付2.5×5
屏幕显示
师:能不能也想个简洁的方法来表示单价,数量与总价之间的关系?
生:用x表示数量,总价就是2.5
师:为什么?
生:因为我发现单价不变,数量有变化,总价也随着数量有相应的变化。
师:2.5表示什么?
生:表示应该付的总价,也表示单价,数量与总价之间的关系。
师:x取小数值行不行,举例说一说。
生:x可以取3.6。
生:试算。
师:我们还学过哪些数量关系式。
生:速度×时间=路程
生:单产量×数量=总产量
生:工作效率×时间=工作总量
师:这就有一个关于工作效率时间的问题
师:观察这组数量,与前两个问题的数量比较,有什么特点?
生:工作效率和时间都在变化。
师:我们可以怎样表示它们之间的关系?
生:用a表示每小时生产零件数,用t表示生产几小时,a×t就表示工作总量。
师:我用两个相同的字母表示行吗?
生:不行。因为这是两个不同的量,不能用同一个字母。
师:请打开书82页,用你喜欢的字母来表示工作效率、工作时间与工儿总量之间的关系,填在书上。
练习:(口答)
(1)红有320张邮票,小兰的邮票比小红多a张,320+a表示什么?
(2)学校买了x盒粉笔,每盒1.5元,1.5表示什么?
学习简写形式
师:我们知道了字母可以表示不固定的变化的数,它还有简写形式,同学们想了解吗?请打开书82页,快速自学中间一段,然后把你的收获讲给老师同学们听。
生自学,汇报,师相机板书
师点拨,强调:1、小圆点也表示乘号的简写。
2、字母与数字相乘时,应该注意什么?
3、在加、减、除法中也可以用这种简写形式吗?
三.拓展练习(电脑大屏幕出示)
3.判断:
6×2=62()
a×8可以写作8a()
9+x=9x()
省略乘号,写出下面的式子:
4×axX1
5b×t
4.在括号里填上适当的式子:
(1)一箱粉笔80盒,用去a盒,还有()盒。
(2)一个足球75元,买c个足球,用()元。
(3)一个商店运到200辆自行车,总价是b元,单价是()元。
(4)小华看一本故事书,已经看了a页,还有b页没看完,这本故事书一共有()页。
四.总结:这节课我们很轻松地解决了用字母表示数的问题,你能把自己的收获告诉大家吗?
生:谈收获。
教学反思:
一、将生活中的数学问题引入课堂,让学生在生活实际中勇于实践。
新《课程标准》强调“重视从学生的生活经验和已有知识中学习数学和理解数学”。首先教师要为教材内容选择生活背景,让学生体验数学问题来源于生活实际,其次,要大胆调用学生熟知的生活经验,使数学学习变得易于理解掌握;第三,要善于联系生活实际有机改编教材习题,让学生在实践活动中理解掌握知识,变“学了做”为“做中学”。本课的例题确定从生活背景出发创设与现实生活相似的学习情境,通过学生猜老师的年龄这样一个互动的过程,让学生能够接受学习内容,调动学习兴趣。做到了“生活性”和“数学性”相结合。
二、学生创设充分的思考空间,让学生在自主学习中勇于创新。
新《课程标准》指出:“动手实践,自主探索与合作交流是学生学习数学的重要方式”。因此,教师在课堂上应相信学生,大胆放手,让学生积极参与,最大限度给学生以自主学习的机会。引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在自主探索中力图创新,学会创新。本节课,我给学生提供了多次独立思考,自主探索的机会。学生有独立思考的时间,有合作讨论的交流。新课标指出,数学活动必须建立在学生的认知发展水平和已有知识、经验基础上,对学生来说,在新课的开展中,运用他们所熟悉的身边的人或事,如,老师的年龄、自己的年龄,探究两者之间的关系用字母表示,学生因感兴趣而易于了解接受。同时,不同的学生,不同的想法,相互的讨论,发展了思维,增强创新意识。课堂中,还安排有自学时间,质疑时间,锻炼学生的学习能力
三、设计开放性练习发展学生思维,让学生在解决问题中勇于探索。
这里有意识地创设可操作性的教学内容,使抽象的数学知识以直观丰富的客观事物为载体,促使学生以积极的心态探索遇到的问题,丰富和发展所学知识,从中激发创新的意识.让学生自己去发现问题和解决问题,利于学生多角度思考问题。最后小组内发表意见,提出相关信息。并且,在江报交流中学生不断质疑、释疑,超越自我,发展其良好的思维品质。
五年级上《用字母表示数》教学设计 7
一、教学内容:
北师大版小学数学四年级下册《认识方程》第一课时《用字母表示数》。
二、教学目标:
知识技能目标:
借助生活中的实例,体会用字母表示数的必要和重要。在具体的情境中能利用字母表示数进行表达和交流。
过程方法目标:
在探索现实世界数量关系的过程中,体验用字母表示数的简明。培养学生的数学意识,渗透归纳猜想、数形结合等数学思想方法。
情感态度目标:
学生在动手实践、自主探索、合作交流中获得成功的体验。在合作学习及相互交流中,培养学生的团结协作的精神。
三、教学重点、难点:
重点是理解字母表示数的意义。
难点是探索规律,并用字母表示一般规律的过程。
四、设计理念:
1、从有趣的问题情景出发,学生在轻松愉快的环境中进入问题的解决中,同时设计教学程序时由简单到复杂,逐层深入。
2、在课堂教学中,充分让学生自主地、主动地进行作、思考归纳和互相讨论,使规律、符号感得到成为学生研究的必然结果,使学生从中体味到合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气。
五、教法和学法:
根据课堂信息反馈理论,发挥教师引导探索的主导作用和学生积极主动参与学习过程的主体作用,以信息反馈为主线,把自学研讨贯穿始终。通过举例——观察——验——归纳,使学生不仅掌握本节课的知识,而且培养了学生学习方法的能力。
六、教学过程:
初步感知用字母表示数的意义
教学例1。
引导学生仔细观察两行图中,数的排列规律。
问:每行图中的数是按什么规律排列的?(指名口答)
2、学生自己看书解答例1的(2)、(3)小题
提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)
师:在数学中,我们经常用字母来表示数。
问:你还见过那些用符号或字母表示数的例子?
如:扑克牌,行程a、b两地,c大调…….
七、新授:
1、学习用字母表示运算定律和质的意义和方法。
教学例2:
(1)学生用文字叙述自己印象最深的一个运算定律。
(2)如果用字母a、b或c表示几个数,请你用字母表示这个运算定律。
(3)当用字母表示数的时候,你有什么感觉?
看书45页“用字母表示………….”这一段。
(4)你还能用字母表示其它的运算定律和质吗?
请学生在草稿本上能写几个写几个,体会用字母表示数的优越。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
减法的质:a-b-c=a-(b+c)
除法的质:a÷b÷c=a÷(b×c)
2、教学字母与字母书写。
引导学生看书p45提问:在这些用字母表示的定律、质中,哪一个运算符号可以省略不写?是怎样表示的.?(请一生板演)
a×b=b×a(a×b)×c=a×(b×c)
可以写成:a·b=b·a或ab=ba(a·b)·c=a·(b·c)或(ab)c=a(bc)
(a+b)×c=a×c+b×c
可以写成:(a+b)·c=a·c+b·c或(a+b)c=ac+bc
其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。
3、教学用字母表示计算公式的意义和方法。
师:字母不但可以表示运算定律还可以表示公式、及数量关系。
用s表示面积,c表示周长,a表示边长你能写出正方形的面积和周长公式吗?
学生先自己试写,然后小组交流,看书讨论。
问:(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?
(2)字母和数字之间的乘号省略后,谁写在前面?
师强调:a表示两个a相乘,读作a的平方;
省略数字和字母之间的乘号后,数字一定要写在字母的前面。
4、练习:省略乘号写出下面各式。
x×xm×m0.1×0.1a×63×nχ×8a×c
学生自学并完成相关练习。两生板演。师强调书写格式。
八、巩固练习:
1、完成做一做1、2题。
要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。
2、练习十:第1-3题先解答后,再集体评议。
九、总结:
今天你学到什么知识,你体会到什么?
五年级上《用字母表示数》教学设计 8
教学目标:
1、知识与技能:使学生在问题情境中体会用字母表示数的意义与价值,会用字母与含有字母的式子表示数量、数量关系和计算公式,学会含有字母的乘法算式的简便写法。
2、过程与方法:让学生经历把实际问题用含有字母的式子进行表达的抽象过程,体会字母表示数的简洁和便利,发展符号感。
3、情感态度与价值观:在学习数学过程中体会数学的魅力,激发数学学习的兴趣和热情,体验数学与生活的密切联系。
教学重点:
学会用含有字母的式子来表示数量和数量关系。
教学难点:
理解用含有字母的式子来表示数量和数量关系的意义教学过程:
一、谈话导入
同学们,跟大家接触将近有半个学期了,你对老师有哪些了解呢?你知道老师几岁了?谁来猜一猜。在猜的过程中,有同学上下打量了下老师,看来,我们猜的时候不能胡乱猜,要有根有据。
二、新授
1、尝试表示:李明、李永、李刚的年龄分别是x,x+5,2x (1)猜李明几岁?
师:这里有位同学叫李明(板书:李明),猜一猜李明几岁? 生猜测
师:你能用一个符号表示吗? 预设:x,y,? 师:我们的数学家和大家一样,也用字母表示。我们今天这节课就一起来学习用字母表示数(板书课题)
师:现在又来了一位同学李永(板书:李永),你能用字母表示他的年龄吗? 生:李永的年龄可以用y表示 PPT:李永比李明大5岁
师:如果我告诉你他比李明大5岁,现在李永的年龄可以怎么表示? 预设:李永的年龄可以用y表示
李永的年龄可能用x+5表示(板书:x+5) 师:你更喜欢哪一种?为什么?
师小结:用x+5表示李永的年龄不仅更明确,并且可以知道李永比李明大5岁。我们最好加上一个括号,表示乘除不用。 师:其实x+5会说话,你听到了吗? 全班说:李永比李明大5岁
师:如果李明1岁(板书),那李永几岁?2岁呢?3岁呢?4岁呢? 师:可以表示几种情况?
预设:
(1)很多种
(2)无数种
师:如果李明1000岁,李永呢?10000岁呢? 师:你们真敢说,你们发现什么问题了? 生:人不可能活到1005岁、10005岁
师:人的岁数是有限的,但是我们可以用字母表示很多种可能。
师:李明的年龄是1岁,李永6岁......你能发现什么变了,什么不变? 预设:年龄在变,但是李永比李明大5岁这一关系不变 师:看屏幕,李明x岁,李永x+5岁 师:再来一个人李刚,他的年龄是2×x 师:这个人也会说话,谁能听懂? 生:李刚的年龄是李明的两倍。
PPT:李明x岁,李永x+5岁,李刚2×x岁,乘号可以省略,而且往往把数字写在前面,写成2x。
2、判断:谁的年龄最小、最大。 师:想一想,谁的年龄最小? 生:李明
师:有没有不同意见? 师:那谁的年龄最大? 预设:不一定
师:究竟谁的年龄大呢?请同桌交流一下。 反馈:
师:谁的年龄最大?你是怎么想的?
预设:
(1)李永的年龄最大,当李明1岁时,李永6岁,李刚2岁
(2)李刚年龄最大,当李明6岁时,李永11岁,李刚12岁
师:现在有可能是李明年龄最大,也有可能是李永年龄最大,现在数学变化了,还有其它可能吗?
(3)李永和李刚年龄一样而且是最大的,当李明5岁时,李永10岁,李刚也是10岁。
师:那有没有可能是李明的年龄最大? 生:不可能。
师:我们走进用字母表示数的神奇变化,接下来我们继续看 小结:通过比较我们知道谁的'年龄最大是有多种可能的。
三、练习:
1、抢答
比b小8的数是()
正方形的边长是a,周长是() 表示x的一半的数是()
2、写出三个连续的整数
师:注意看,题目的要求是? 师:我给大家30秒的时间写数。 反馈:
(1)师:你写出了几种?100种有可能吗? PPT:挑战:10秒钟写出所有三个连续的整数。
(2)师:提示:今天我们走进神奇的用字母表示数的世界。 让学生动手试写。 预设:
生:x,x+1,x+2
3、读儿歌
1只青蛙1张嘴,2只眼睛4条腿, 2只青蛙2张嘴,4只眼睛8条腿, 3只青蛙3张嘴,6只眼睛12条腿 师:你能用一句话把它说完吗?
PPT:(n)只青蛙( )张嘴,( )只眼睛( )条腿 师:刚才是青蛙之歌,那同学之歌呢?螃蟹之歌呢? PPT:(n)个同学( )张嘴,( )只眼睛( )条腿
(n)个同学( )张嘴,( )只眼睛( )条腿
四、总结
师:今天这节课你有什么收获?
五年级上《用字母表示数》教学设计 9
教学内容
北师大版四年级下册数学85—87页。
教学目标
1.在具体情境中初步理解并学会用字母表示数,会用含有字母的式子表示简单的数量、数量关系和计算公式,会求含有字母式子的值。
2.经历把实际问题用含有字母的式子进行表达的抽象过程,体会用字母表示数的简洁、便利,发展符号感,培养学生的抽象概括能力。
3.在用简单符号语言表达交流的过程中,感受数学表达方式的严谨性、概括性,增强对数学的好奇心和求知欲。
教学重点
经历由数字表示数到用字母表示数的过程,初步学会在具体情境中用含有字母的式子表示简单的数量、数量关系和计算公式。
教学难点
有含有字母的式子表示简单的数量、数量关系。
教学准备
学案、课件
教学过程
一、创设情境,导入新知
和学生交流植树的事情,让学生感知生活中的未知数量。
二、小组合作,探索新知
(一)1.结合“盒子里放小球”的例子让学生自主思考,小组交流初步感知用字母和含有字母的式子来表示数。
2.通过练习引出含字母式子的简写形式并适当练习。
(二)通过老师和学生的年龄问题让学生深入感知含字母的式子既可以表示数量,也可以表示数量关系。
三、组织练习,实践应用
完成学案中训练卡的1、2题。
四、总结提高,深化新知
谈谈这节课的收获和感受。
板书设计
字母表示数
字母-----------未知数 任意数
字母式----------运算结果 数量 关系
教学反思
本课时“字母表示数”是简易方程的第一课时,总体上讲本节课着重围绕三个问题:一是让学生知道为什么要用字母表示数;二是让学生结合具体的例子明白字母可以表示哪些数;三是通过老师和学生年龄的例子让学生体会用字母、含字母的算式怎么去表示数,表示数量关系。
在设计本课时我尽可能多地创设一些有趣的情景,使学生体会字母表示数的.意义,在学生初步了解用字母表示运算律的基础上理解用字母表示数的意义,学会用字母表示数,感受字母的不同取值范围,从而体会用字母表示数的作用,经历把生活问题转化为数学问题的抽象过程。这一课的内容,看似浅显、平淡,但它是由具体的数和运算符号组成的式子过渡到含有字母的式子,是学生数学认知上从数向代数的一个转折,也是认识过程上的一次飞跃。其整个过程实质上是从个别到一般的抽象化过程。而本质上的目标是要教给学生一些抽象化后的表达方式:即学生只有在这节“用字母表示数”的课上真正掌握一些技能后,他们才会在个别到一般的抽象化过程中用数字和字母、符号建构起一些数学模型来。因而本节课的教学在学生用简易方程中有着特殊的地位。
对于“用字母表示数”,除了内容比较抽象以外,其中的规律探寻也有一定难度。教学中,首要的是唤醒学生已有的生活经验。所以我一开课创设和学生一起去植树的谈话式导入。其次,借助所学知识字母表示运算律让学生在特定的环境下感知用字母表示数的作用,渗透符号化的数学思想。另外,课上通过一系列富有思考性小组合作学习的活动,培养学生提出问题、交流问题和解决问题的能力。
不足之处:
1、课堂节奏把控不到位,学生没经行独立练习。
2、小组合作的方式没能完全带动起来,优等生带动学困生的教学方式没能充分发挥作用。(请各位领导老师多提宝贵意见)
五年级上《用字母表示数》教学设计 10
教学目标:
1、使学生会用字母表示数、公式和简单的数量关系。
2、通过情境学习,引导学生探索、体会字母表示数的意义,通过探索用字母表示数的过程,发展抽象概括能力、合作交流能力,感悟初步的代数思想。
3、情感态度价值观:感受数学符号的简洁美,激发学生对代数知识的兴趣和主动探索、团结合作的精精神,进一步发展学生的数感、符号感。
教学重点:
会用字母表示数和简单的数量关系。
教学难点:
理解字母表示数的意义。
教学过程:
一、激发兴趣,引入课题
同学们,老师为大家准备了一个谜语,谁能猜一猜这是个什么动物?大家一起说。下面我们一起来做一个游戏,叫做数青蛙.
1、编儿歌,找关系。
提问:同学们喜欢听儿歌吗?老师这里有一首儿歌,一起来读读看:
(课件出示:1只青蛙1张嘴;2只青蛙2张嘴……)
我发现有的同学不读了,为什么不读了?
读不完,那谁能在最短的时间内有一句话来说完。
让学生尝试用一句话来表达。(多找几名学生回答)
如果学生说出了无数只青蛙无数张嘴、几只青蛙几张嘴的话,(当学生说出几只青蛙几张嘴的时候,教师板书出来。)可以引导思考这里的“几”表示什么数?(让学生回答)
转折:这里既然可以用汉字来表示,那么用英文能不能表示呢?
提问:可以用什么来表示呢?(让学生思考,回答。)还可以用什么来表示?
可不可以用n来表示?那该怎么说呢?(指名回答)
(根据学生回答板书:n只青蛙n张嘴)
引出课题:这里的n又表示的是什么呢?
这就是我们今天研究的内容:用字母表示数。(板书课题)
启发思考:这句话中前面的n和后面的n表示的一样吗?
(让学生发现,在一个问题中应该用一个字母表示一个数字。)
归纳:看来,在一个问题中,相同的字母表示相同的数。
二,师生互动,探索新知.
1.在刚才的游戏中,如果用字母a来表示青蛙,你想怎么去表示青蛙的腿数呢?请你写在练习本上,和同学交流。
教师巡视,学生展示思路:
在刚才的巡视中,老师发现有的同学是这样做的,你同意他的想法吗?
a只青蛙a条腿/a只青蛙b条腿/a只青蛙4×a条腿
重点在探究用字母和含有字母的式子表示数及数量间的关系
2、这首没完没了的儿歌,其实它的完整版是这样的.:
1只青蛙,1张嘴,2只眼睛,4条腿
2只青蛙,2张嘴,4只眼睛,8条腿
来读一读,能不能接下去说?生试说()只青蛙,()张嘴,()只眼睛,()条腿……
(让学生接着说,会发现越来越难以口算,产生概括规律的想法。)
引导归纳:能不能用我们刚才学过的方法用字母一句话来概括这首儿歌?在小组内交流一下。
引导学生归纳类似于a只青蛙a张嘴,2×a只眼睛4×a条腿的答案。
如果学生说出a只青蛙b张嘴,c只眼睛d条腿,可以让学生解释,这里用四个字母来分别表示,能不能看出这些量之间的关系呢?(不能)那怎样才能把关系也交代清楚呢?(指名回答自己的结果)这里用了同一个字母来表示数字,而用含有字母的式子又交代了数量之间的关系。】
这里的n表示什么呢?可以表示包括1的任何自然数。
3数学王国里的故事
字母表示数在生活中的应用无处不在,这天早朝上,国王正在听小不点乘号汇报工作:“陛下,因为我和字母x很相近,许多人都把我们混淆。请陛下想出一个对策才行啊!”于是国王传下命令:“加号,减号,除号先行退朝,乘号留下议事。”第二天早朝上,零国王宣布了四件事。
(1)在含有字母的式子里,数字和字母中间的乘号可以记作小圆点,也可省略不写,数字要写在字母前面。
x×33×x
3·x
3x
(2)1和任何一个字母相乘,1通常省略不写。
1×bb×1
b
(3)字母和字母相乘中间的乘号也可记作小圆点或省略不写。
(4)2个相同字母相乘,可以写成平方的形式。
x×yb×b
x·y
xy
三、综合训练、应用新知
1.与2a表示的意义相同吗?
=a×a(表示2个a相乘)
2a=a+a(表示2个a相加)
=a×2(表示a的2倍)
2.判断:下面的说法对吗?
(1)bx2可以写成()
五年级上《用字母表示数》教学设计 11
教学内容:
人教版第九册数学课本第86~87页的内容,完成练习二十一的部分题目。
教学目标:
1、通过教学使学生对用字母表示运算定律和计算公式有进一步的认识;理解用字母表示数的意义,知道一个数的平方的含义及读写法。
2、会用简写或略写乘号的方法表示数与字母相乘的式子,会利用公式求值。
3、培养学生的`抽象概括能力。
教学重点:
用字母表示运算定律和计算公式,一个数的平方的含义及读写法。
教学难点:
乘号的简写及一个数的平方的含义。
教学过程:
一、复习引入
1、用字母可以表示运算定律:a+b=b+a
2、用字母表示图形的面积计算公式;
3、用字母还可以表示人名、地名和数;
4、导出课题:用字母表示数。
二、探索新知
1、出示自学思考题:
(1)在含有字母的式子里,怎样简写或缩写?要注意什么?
(2)a 读作什么?表示什么?它与2a有什么不同?
学生先自学第86~87页,再小组交流,然后汇报
2、做一做第1、2题
3、学习例1归纳用代入字母公式求面积的计算步骤
4、做一做
5、课堂小结。
三、巩固练习,深化知识
1、判断
2、选择
3、第88页第3题
4、总结质疑、评价
5、拓展练习
四、作业
第88页第3、4题
五年级上《用字母表示数》教学设计 12
教学目标:
1.知识与技能:
(1)懂得可以用符号或字母表示数。
(2)理解用字母表示运算定律和计算公式的意义。
(3)学会用简便写法表示含有字母的乘法的运算式。
2.过程与方法:应用观察和比较的方法,掌握用字母表示运算定律和计算公式。
3.情感态度与价值观:通过观察和比较,会用字母表示运算定律和计算公式,培养抽象思维能力,渗透求未知数的思想。在教学中渗透环保教育。
教学重点:
能正确运用字母表示运算定律,进行乘号的简写,略写。
教学难点:
理解一个数的平方的含义,乘号的简写和略写。
教学准备:
教学课件。
教学流程:
一、生活引入、揭示课题:
1、教师:今天,老师带来了一首歌曲,会唱的同学可以一起唱。(电脑播放:英文字母歌)
2、畅谈字母在生活中的用处。
3、新课引入:不仅生活中我们要用到字母,在数学学习中,我们还经常用字母表示数。这节课我们就来学习用字母表示运算定律和公式。(板书课题)
二、合作交流、探究新知:
用符号、字母表示特定的数。
1、出示例1:下面每行图中的数,都是按规律排列的。
教师:这里有几组数。都是按一定的规律排列的。看看谁最快地发现他们有什么规律?并说一说它们等于多少?
2、学生在课本上独立完成,并交流发现的规律和算法。
3、教师:这几小题中,要求的.未知数表示的方法都有一个什么共同的特点?
用字母表示运算定律:
1、教师:请同学看下面的等式,你知道这些等式分别应用了哪些运算定律?谁能用文字叙述一下它们的含义吗?你能用字母表示这些运算定律吗?
18+34=34+18(357+55)+45=357+(55+45)
53×63=63×53 47×25×4=47×(25×4)
(38+92)×20=38×20+92×20
1000-436-564=1000—(436=564)
1200÷25÷4=1200÷(25×4)
2、引导学生回顾学过用字母表示的运算定律。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
连减的性质:a-b-c=a-(b+c)
连除的性质:a÷b÷c=a÷(b×c)
3、引导学生观察比较:用字母表示运算定律比用文字叙述有什么优点?
引导学生得出:用字母表示比用文字叙述简明易记,便于应用。
4、认识乘号的简写书写习惯。
(1)教师示范讲解乘法交换律:在含有字母的式子里,字母中间的乘号可以记作:“”,也可以省略不写。
板书:ab=ba或ab=ba
(2)要求学生将其它的乘法运算定律简写一下。请动作快的同学上台板演,集体检查核对。
用字母表示计算公式
1、引入和出示例3(1)。
2、学生独立完成,然后小组交流。
3、反馈学生的尝试完成和交流结果,板示完成。
S=aaC=a4
还可以写成S=a2可以写成C=4a
4、强调:a2表示两个a相乘,读作a的平方;省略数字和字母之间的乘号后,数字一定要写在字母的前面。
5、比较:“a2”与2a的意义有什么不同?
6、引入和出示例3(2):
让学生自学并完成,师强调书写格式:计算时等号要对齐。
三、拓展应用、培养能力:
1、完成课本46页做一做。
要求:第2题先写出字母公式,再应用公式代入数据计算。
2、省略乘号写出下面各式。
a×x=x×x=b×8=
a的5倍6个х两个b相乘。
3、判断题。
(1)6÷a=6a;6×a=6a。
(2)25×4和C×4的乘号都可以省略不写。
(3)a×8简写作a8
(4)72=7×2( )
4、口算。
32= 52= 62= 82=
72=22=102=0.52=