《三位数乘两位数——笔算乘法》教学设计(精选11篇)
《三位数乘两位数——笔算乘法》教学设计(精选11篇)
作为一名默默奉献的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那要怎么写好教学设计呢?以下是小编为大家整理的《三位数乘两位数——笔算乘法》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《三位数乘两位数——笔算乘法》教学设计 1
【教学内容】
人教版四年级数学(上册)第49页例1
【教学目标】
1、根据两位数乘两位数的笔算方法,推出并掌握三位数乘两位数的笔算方法,能正确进行计算。
2、通过两位数乘两位数到三位数乘两位数知识的迁移,感受数学知识和方法的内在联系,培养迁移类推的能力和解决简单实际问题的能力。
3、在主动参与学习活动的过程中,进一步体验学习成功的快乐,激发探索计算方法、解决实际问题的兴趣。
【教学重点】
探索笔算三位数乘两位数的算理并掌握计算方法,能正确进行计算。
【教学难点】
1.理解三位数乘两位数的算理。
2.正确规范地计算和书写乘法竖式。
【课前准备】
多媒体课件。
【教学过程】
一、激情导课
1、口算:
16×4 230×4 19×3 180×4 140×7
2、笔算:
145×2= 45×12=
学生自己动手完成,说一说计算方法,竖式计算乘法要注意哪些问题?
小结:两位数乘两位数,用第二个因数个位上的数去乘第一个因数,乘得的.数的末位和个位对齐,用第二个因数十位上的数去乘第一个因数,乘得的数的末位和十位对齐,再把两次乘得的数加起来。
3、揭示课题:三位数乘两位数。
二、民主导学
任务一:
1、任务呈现:李叔叔从某城市乘火车去北京用了12小时,火车每小时约行145千米,该城市到北京大约有多少千米?
(1)李叔叔的城市离北京有多远?你能解决吗?
145×12=(板书:145×12=)
(2)猜一猜:李叔叔家离北京大约有多远吗?说一说你的想法?
(3)你能用竖式计算出准确答案吗?
2、自主学习:学生独立思考,自己试着在练习本上算一算。小组内交流。
3、展示交流:
理解算法,掌握方法。
应说以下几点:(1)、数位对齐;(2)先算2×145(3)再算1×145(10×144);⑷、最后将两次乘法结果相加。
讨论:
⑴、290和145分别是怎么得到的?
⑵、为什么145与290不用数位对齐?
小练习:用竖式计算。
142×23 214×34
(先完成前一个反馈后再练习,最后将214×34改为34×214)
学生独立用竖式计算,完成后,反馈交流。
任务二:沟通联系,归纳算法。
1、任务呈现:比较一下,三位数乘两位数和两位数乘两位数的计算方法有什么区别和联系?
(设计意图:迁移类推的办法,不仅是一种有益的联想,也是解决问题时经常采用的一种思路。让学生经历探索三位数乘两位数笔算方法的过程,并在探索计算方法的过程中体会新旧知识的联系,培养学生类比迁移以及分析、概括的能力。)
2、自主学习:独立思考,组内交流。
3、展示交流:小组汇报。
三、检测导结
1、三级跳:列竖式计算163×21时,要先算(),再算(),最后算()。
2、笔算竞技:比一比,哪组算得又快又准。
134×12 25×116
241×23 217×42
四、课堂总结,课外延伸。
1、今天我们学会了什么?计算时要注意什么?
2、如果让你计算四位数乘两位数,你有办法吗?下课试试看。
(设计意图:四位数乘两位数表面看只是对三位数乘两位数乘法计算的一次拓展,但实质是对学生是否掌握计算法则的一次检测,是对学生迁移类推能力的再次训练。)
教学反思
本节课是一堂计算知识的新课教学。回顾从教学设计到课堂实施整个过程,自己收获很多。
从学生已有知识经验出发,给学生创设了思考与交流的空间。从学生运用已有知识解决问题,到相互交流探索笔算方法,学生始终处于学习的主体地位,在活动中学生经历了笔算乘法的计算方法的得出过程,体会了计算的用处,真正成为了学习的主人。
由于追求课堂的高效而忽略了学生学习知识过程中的知识生成环节。在将两位数乘两位数的竖式计算方法与三位数乘两位数的竖式计算方法做知识迁移过程中老师参与的程度太大,应该将更多的时间和空间留给学生,让学生大胆的说说自己的想法。
在教学时,我觉得竖式的书写很重要,在课上就重点培养学生认真书写乘法竖式的习惯。我在教学板书时做到以身作则;要求明确,包括数字间的间距、相同数位如何对齐以及横线的画法;对学生提出了严格的要求,作业批改中要求学生按要求书写,但效果却并不明显,大部分学生没有按我的要求写,所以错误还是很多。
所学知识的深度拓展不够。导致学生的思维训练发展的一个很好的机会没有得到发挥。
《三位数乘两位数——笔算乘法》教学设计 2
教学目标:
1、知识目标:
让学生经历探索三位数乘以两位数笔算方法的过程,掌握三位数乘以两位数的基本笔算方法,能正确进行计算。
2、能力目标:
让学生在探索计算方法和解决实际问题的过程中体会新旧知识的联系,能主动总结、归纳三位数乘以两位数的笔算方法,培养类比及分析,概括能力,发展应用意识。
3、情感目标:
让学生在主动参与活动的过程中,进一步体验数学在日常生活中的运用,培养学生迁移类推的能力,掌握算理和计算的方法
教学重点:
探索并掌握三位数乘两位数笔算乘法的算理和方法,能正确进行计算。
教学难点:
理解竖式中,第二个因数的十位与第一个因数相乘时,积的末尾要与十位对齐的道理。
教学过程:
一、创设情境,复习旧知,导入新知
1、开心吃水果。
31×2= 18×3=200×3=19×5≈21×7≈398×2≈
2、算一算
24×12=
3、观察
师:现在请同学们观察24×12与241×12有什么不同?找出其相同点和不同点。
揭示课题:这就是我们今天学习的内容。
板书课题:三位数乘两位数
二、自主交流,合作探究,获取新知
课件出示例1:李叔叔从银川乘火车去北京用了12小时,火车1小时约行145千米。银川到北京大约有多少千米?
(1)学生独立思考,试着写出算式。
(2)学生小组内交流,说说解决问题的方法。
(3)学生汇报,教师根据学生的汇报写出算式:145×12=
1、估算。
师:怎样计算呢?我们先来估算一下结果。
师:你是如何估算的?谁愿意把你的估算过程和想法跟我们分享一下呢?
让学生说说,教师随机板书学生的估算方法。
2、笔算。
师:现在我们已经估算出来了,145×12大约是在1500至1800之间,那么如何准确算出145×12的积呢?同学们一起用自己喜欢的方法来算一算好不好?
学生动笔算,教师巡视,然后让学生说说自己是用什么方法算出来的。
(如果有用竖式算的就指名板演,并说出自己的计算方法;如果没有教师试着提示。)师:用竖式计算也就是笔算,这就是我们今天要掌握的内容:三位数乘两位数的笔算乘法(补充板书)
教师讲解,板书145×12用竖式计算的.过程
3、小结三位数乘两位数的笔算方法(课件演示)
(1)先用第二个因数个位上的数去乘第一个因数,得数的末位和因数的个位对齐。
(2)再用第二个因数十位上的数去乘第一个因数,得数的末位和因数的十位对齐。
(3)然后把两次乘得的积加起来。
同学们想一想,两位数乘
4、巩固练习
教材第49页做一做前四道。
三、仔细琢磨,细心计算,巩固新知
1、判断正误,找出错因。
(幻灯片出示题目,让学生观察,找出错误的地方,并改正过来。)
2、用心计算(分组完成,集体订正)
3、解决问题
四、仔细想想,谈谈收获,归纳小结
师:通过这节课的学习,你有什么收获?
生:三位数乘两位数的笔算乘法
师:那现在哪个同学可以来帮我们小结一下三位数乘两位数竖笔算乘法的计算方法?
五、作业布置:练习七第3题
六、板书设计
三位数乘两位数
———笔算乘法
复习
24×12=540
2 4
× 1 2
4 8
2 41 4 52 8 81 7 4 0
例1145×12=1740(千米)1 4 5 × 1 2 2 9 0 ……2乘145的积……10乘145的积答:从银川到北京有1740千米。
《三位数乘两位数——笔算乘法》教学设计 3
一、教学内容:
教材47页例1
二、教学目标
1、经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法。
2、让学生获得运用已有知识解决新的计算问题的体会,培养学生迁移类推的能力和解决简单实际问题的能力。
3、体验学习成功的喜悦,体会数学在生活中的应用价值。
三、重点难点
根据本节课的教学目标,本课的教学的重点为使学生理解算理并掌握三位数乘两位数的计算方法。难点为正确规范地计算和书写乘法竖式。
四、教具:
幻灯片
五、教学过程
一、创设情境,引发探究
师:国庆节要到了,如果有机会同爸爸妈妈一同去旅游,你最想去哪?打算怎么去?
师:同学们的打算都不错,老师全家也打算国庆节好好去玩一玩。据调查我国T字打头的特快列车时速为145千米/时,普快列车时速为75千米/时。老师设计了两个出游方案(多媒体出示)
方案一:乘特快列车时速为145千米/时,唐山北(丰润火车站)→哈尔滨 行程7小时
方案二:乘普快列车时速为75千米/时,唐山北(丰润火车站)→大连 行程11小时
请你帮老师算一算每个方案的行程都是多少千米?
教师组织学生交流每个方案怎样列式,用什么方法求出结果。
师:同学们回想一下计算两位数乘两位数要注意什么?三位数乘一位数又应该如何计算?(学生说两位数乘两位数和三位数乘一位数的笔算方法)
二、自主探索,寻求方法
1、同学们真了不起,这么快就用我们原来学过关于乘法的计算方法帮老师解决了三个方案,老师谢谢大家。李叔叔是哈尔滨人,国庆节也要去北京,他选择了T17特快列车,同学们愿不愿帮帮他?那就请同学们帮李叔叔算算他的行程有多远吧。出示从哈尔滨到北京特快列车时刻表
师:要求哈尔滨到北京大约有多少千米,你需要用到哪些信息?
生:需要用到特快列车时速为145千米/时和运行时间12小时
师:要解决这个问题应该怎样列式呢?
板书:145×12 12×145
师:观察这个算式,你发现和我们以前所学的乘法算式有什么不同吗?教师手指黑板上第一环节的三个算式75×2 75×11 145×7与新列算式进行比较
生:以前学的是两位数乘一位数,两位数乘两位数和三位数乘一位数,今天的是三位数乘两位数。
师板书课题:三位数乘两位数
师:请你先估一估大约有多远?把你的估计写下来,与同桌交流。
2、师:我们班的同学真厉害,能想出这么多的估算方法,方法不同,结果也不同。那有什么计算方法让我们的计算结果更加精确呢?(板书:笔算)大家拿笔来算算吧。
① 学生独立尝试笔算,教师巡视课堂,特别关注平时计算错误率高的同学,看看他们每一部分积的书写位置和计算结果是否正确。
② 反馈计算结果,要求学生回答:
板书:145 x 12=_(千米)
1 4 5
× 1 2
______
2 9 0
1 4 5
______
1 7 4 0
应该注意什么。(两部分的相同数位要对齐)
③师:根据估算结果你认为你算对了吗?
生1:我估算结果应比1800少一些,1740比1800少点,我觉得计算正确。
生2:我估算结果比1450多一些,1740符合估算范围。
生3:我估算结果接近1500,1740符合估算范围。
师:那结果到底对不对呢,我们还应该养成验算的好习惯,是不是?你打算怎么办?
生:再算一遍…,用计算器验算。
④ 师:同学们真了不起,这么快就帮李叔叔也解决了问题。那老师想问一问,三位数乘两位数是我们没有学过的,你们是怎么这么快就算出来的?先在小组内说一说,然后再说给老师和全体同学听听好吗?
学生同组交流,教师巡视参与其中,注意搜集不同的'想法,而后组织集体交流。
师:同学们说得很好,三位数乘两位数的笔算过程和两位数乘两位数的笔算过程相同,只不过多乘了一次百位上的数。与三位数乘一位数相比,三位数乘两位数需要多乘一步,并把两次的部分积相加。我们应用原来的计算方法就能解决今天的新问题。
3、师:好,下面我们一起来总结笔算三位数乘两位数的计算方法三、巩固应用,内化提高
1.做一做:
完成课本P49下面的做一做
2.我来当老师:
完成课本P51页第7题,发现练习中出现的错误并进行订正
四、回顾整理,反思提升
通过本课的学习,谈谈自己的收获。
《三位数乘两位数——笔算乘法》教学设计 4
【教学内容】
人教版四年级上册教材第47页例1
【教学目标】
1.在已经掌握两位数乘两位数的笔算方法的基础上,理解三位数乘两位数的笔算算理,掌握三位数乘两位数的笔算方法。
2.结合具体的问题,选择合适的估算、验算方法进行估算、验算,养成良好的学习习惯。
3.经历利用旧知识解决新问题的过程,提升知识技能的迁移水平,发展逻辑思维能力。
【教学重点】
掌握三位数乘两位数的的笔算方法。
【教学难点】
用竖式计算时积的定位。
【教法选择】
引导法
【学法指导】
读—列—估—算—说
【教具准备】
课件、计算器
【教学过程】
一、复习导入
师:同学们,昨天我们年级开展了“经典美文诵读比赛”,检查了各班同学的诵读水平,现在老师也想开展“计算能力大比拼”竞赛活动,检查一下同学们的计算能力怎么样,你们敢接受挑战吗?
1.口算:
32×2=23×3=16×4=
180×3=240×2=410×2=
师:同学们的口算能力真不错,可是笔算能力怎么样呢?
2.笔算
14545
×2×12
提问:第一道题是几位数乘几位数?第二道呢?你们会算吗?
师:请同学们在练习本上计算。
问:谁能把你的笔算顺序讲给大家听?
师:看来同学们的笔算能力也很棒,把掌声送给自己吧!
3.导入新课。
(1)导入新课师:同学们,北京有很多著名的旅游景点,看看这些都是哪里?(课件出示北京的旅游景点)李老师也利用假期去北京旅游了。
(课件出示)李老师从某城市乘火车去北京用了12小时,火车每小时行145千米。该城市到北京有多少千米?
a.读题,你从题中了解到哪些数学信息?要解决什么问题?
b.要解决该城市到北京有多少千米的问题,应该用什么方法计算?为什么?
c.怎样列算式?(板书:145×12)
问:这个算式是几位数乘几位数?
(2)揭题板书
师:今天,让我们一起来探究三位数乘两位数的笔算方法,好吗?
板书课题:三位数乘两位数的笔算
二、探究新知
学习例1:145×12
1.估算。
问:谁能估算一下145×12的积大约是多少?说说你是怎样想的?
145×12≈1500
说明:145×12的积接近1500.
提问:如果我们想知道145×12的积的准确值,应该怎么办?
2.笔算。
(1)小组合作学习,探究145×12的笔算方法。
(出示自学指导)
a.分小组讨论145×12的笔算顺序和方法。
b.尝试笔算,遇到有疑惑的问题想本组同学请教。
c.小组内交流笔算方法。
(2)集体交流汇报。
师:哪一小组能把你们的笔算顺序汇报给大家。
问:a.先算什么?(用两位数个位上的2和145相乘),乘得的积的未位数写在什么位下面?(个位)
b.再算什么?(两位数十位上的1和145相乘),乘得的积的未位要写在什么位下面?(十位下面),为什么?(十位上的1表示1个十,乘145得到的是145个十,所以积的末位要和十位对齐)
c.最后算怎样?(把两次乘得的积加起来)
3.用计算器验算。
问:想知道我们刚才笔算145×12的结果对不对,应该怎么办?师:请同学们用计算器检验你刚才的计算结果对不对。
4.解决问题。
145×12=1740(千米)
答:该城市到北京有1740千米。
三、精讲点拨
师生共同归纳总结:三位数乘两位数的笔算方法。
引导学生说清:先算什么?再算什么,积的书写位置怎样?最后算什么?
(三位数乘两位数的`笔算:先用两位数个位上的数去乘三位数,积的末位要和个位对齐,再用两位数十位上的数去乘三位数,积的末位要和十位对齐,最后把两次乘得的积加起来。)
四、巩固练习
基础对点练,轻松来闯关。
师:学完新知识,我们一起来进行数学闯关,比比谁的收获最大。
1.填空。
123
×13
丁妮《三位数乘两位数的笔算》教学设计
369()位上的()与123的积
123()位上的()与123的积
丁妮《三位数乘两位数的笔算》教学设计
599()与()相乘的积
2.先列竖式计算,再用计算器验算。
134176425286
×12×47×36×35
3.误区警示:慧眼识真知,错误巧规避。
你能找出下列题中的错误,并改正过来吗?(略)
4.生活中的数学。
(1)一个长方形足球场,长是115米,宽是65米,这个长方形足球场的面积是多少平方米?
(2)一辆小货车载重量为3吨,现在用这辆小货车运25袋水泥,每袋水泥重125千克,能一次运走吗?
五、全课总结
今天你们学习了哪些知识,你有什么收获?
六、开心拓展
在下面的□里填入合适的数字(略)
七、布置作业
练习八第1(前四道)、第2题。
《三位数乘两位数——笔算乘法》教学设计 5
教学内容:
人教版义务教育课程标准实验教科书《数学》四年级上册第49页及50、51页相关内容。
教材分析:
《三位数乘两位数笔算乘法》这节课是在学生掌握两位数乘两位数的笔算基础上进行教学的,教学中两位数乘两位数的算理和算法都将直接迁移到三位数乘两位数笔算中来。
学习这部分内容,有利于学生完整地掌握整数乘法的计算方法,并为以后进一步学习小数乘法打好基础。
学情分析:
学生在三年级时已经学习过三位数乘一位数、两位数乘两位数的乘法笔算。而三位数乘两位数的笔算和两位数乘两位数的笔算相比,在算理和算法上是完全一致的。
因此,学生对算理和算法的理解和探索并不会感到困难。但是,由于因数数位的增加,计算的难度也会相应的增加,计算中就会出现各种不同的情况。
教学目标
1、知识技能目标:让学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,能正确地进行计算。
2、情感与态度目标:让学生获得运用已有知识解决新的计算问题的体会,体验成功的愉悦,进一步树立学习数学的自信心。
3、能力目标:使学生在探索计算方法和解决实际问题的过程中体会新旧知识的联系,能主动总结、归纳三位数乘以两位数的.笔算方法,培养类比及分析,概括能力,发展应用意识。
教学重点:
掌握三位数乘两位数的笔算方法。
教学难点:
三位数乘两位数笔算时的进位。
教学过程
一、创设情境,复习旧知,导入新知
师:王大伯在北京工作,过中秋节了,他很想念家中的亲人,决定在中秋与国庆双节期间回老家一趟,他买了12斤月饼,每斤45元,请同学们算一算王大伯买月饼一共花了多少钱。
(1)、让学生理清题意,找出题中的已知量和所求量。
(2)、根据已知量和所求量列出算式
(3)、全班齐做,然后指名口答其计算过程,计算时应注意什么。
师:在回老家的时侯,他为了节约钱,决定不座飞机,座火车,当他到家时,他算了算,从北京到老家用了12小时,火车1小时行145千米。
那你们算一算从北京到王大伯老家有多少千米。
(1)由学生列出式子,师板书:145×12(刚才我们计算的是两位数乘两位,现在是几位数乘几位数了)
(2)师:这就是我们今天学习的内容。板书课题:三位数乘两位数
二、自主交流,合作探究,获取新知
(一)、估算
师:那你可以估算出145×12的大致范围吗。估算时,我们是先把一个数看成整十、整百,再进行估算。
小组交流讨论,你是如何估算的。(小组交流讨论3分钟)
师:哪位同学把你的估算过程和想法跟我们分享一下呢。
生:把145看成150,150×10=1500,150×2=300,相加等于1800。所以我觉得,大约是1800千米,但比1800小。
(一定有生可以得到)
(二)、笔算
师:这个同学很有想法哦,那他估得接近145×12的积吗。我们一起来探讨一下145×12到底等于多少。那要如何准确算出145×12的积呢。
生:用竖式计算。
师:也就是笔算乘法(板书)
师:那么要如何用竖式计算145×12的积呢。先在你们的练习本上试着算一算。
(学生尝试计算,师巡视,找二三位同学板演并说出自己的计算方法)
生
1:拆分法,145×2=290,145×10=1450,290+1450=1740
【不排除会有学生这样做】
生
2:竖式计算
(全班学生齐做,把学生做错的几种不同情况,板书在黑板上)
师:我们一起来看看这几位同学的竖式,有什么不一样。你们觉得那位同学是正确的。
生:……
师:我们一起用计算器来验算一下积到底是多少。你算对了吗。
让板演正确的学生讲一讲“你是怎么算的”
师:那1与5相乘的积要写在哪位数位上呢。
是个位上,还是十位上。为什么呢。
生:写在十位上,因为1在十位上,相同数位要对齐
(此处,学生的表述可能不规范,可能说,“在这里的1表示的是10”,师要予以引导,得到这个之后,师可以再结合145×12=145×2+145×10,让学生明白145×12竖式的算理)
师:那列竖式计算145×12时,要先算什么。再算什么。
怎么算。
生:2乘以145,再算10乘145
师:积要写在哪里。为什么。
生:10乘145的积写在十位上,因为1在十位上,数位要对齐
师:最后写什么。
生:将两次乘积相加
师:那其他几个同学的竖式有问题吗。有的话,问题在哪里。
生:他没有乘以百位,……
(师要强调我们现在算的是三位数乘两位数,要记得乘百位,可以和45×12进行对比。)
师:现在请同学们观察45×
12、的竖式有145×12什么不同。找出其相同点和不同点。
(三)、小结三位数乘两位数的笔算方法
(1)先用两位数个位上的数去乘三位数,得数的末位和两位数的个位对齐。
(2)再用两位数十位上的数去乘三位数,得数的末位和两位数的十位对齐。
(3)然后把两次乘得的数加起来,注意满十进一。
(四)、两位数乘两位数与三位数乘两位数笔算比较
三、仔细琢磨,细心计算,巩固新知
49页做一做。(4名学生上黑板板演,其余学生齐做,师巡视,辅导学困生,集体订正)
四、仔细想想,谈谈收获,归纳小结
师:今天,我们学会了什么 ?
生:三位数乘两位数的竖式计算
师:那现在哪个同学可以来帮我们小结一下三位数乘两位数竖式计算的步骤和要注意的地方啊。
生:先分位相乘,再将两次乘积合并相加,要注意相同数位对齐,满十进一。(此处,生的表达可能不够规范,师应给予引导)
五、板书设计
这节课,我们根据两位数乘两位数的方法,进一步学会了三位数乘两位数的方法,我们运用的就是迁移类推的办法,这是我们解决问题时经常采用的一种思路。要是让你计算四位数乘三位数或多位数乘多位数你有办法吗。你敢试一试吗。愿意动脑筋的孩子,请你们试试吧。
鼓励学生大胆的展示、交流:
1、数位对齐;
2、分位相乘;
3、合并相加;
4、满十向前一位进1,带上今天的收获,勇敢的去做这些题吧。
《三位数乘两位数——笔算乘法》教学设计 6
教学目标
知识与技能目标
让学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,能正确地进行计算。
能力目标
让学生通过两位数乘两位数到三位数乘两位数知识的迁移,感受数学知识和方法的内在联系,培养学生迁移类推的能力和解决简单实际问题的能力。
情感与态度目标
让学生获得运用已有知识解决新的计算问题的体会,体验成功的愉悦,进一步树立学习数学的自信心。
教学重点和难点
教学重点:探索并掌握三位数乘两位数笔算乘法的方法,能正确地进行计算。
教学难点:让学生理解三位数乘两位数的计算中用第二个因数十位上的数去乘第一个因数,积的末尾应写在什么位置上。
教学过程
一、激情导入
1.激情导入
孩子们,在今天上课之前,请孩子们仔细看大屏幕上的题,你们会计算吗?大屏幕呈现45×12
谁来列竖式计算出结果呢?你们计算对了吗?
这是一道两位数乘两位数的笔算乘法,我们让他来说说它的计算过程。说的很清楚,值得表扬!
你们是这样想的吗?这是我们三年级学过的内容,现在稍作改动,你还会吗?板书145×12
这两道题有什么区别?
这节课,我们就在两位数乘两位数笔算方法的基础上讨论三位数乘两位数的笔算方法。
2.明确目标
请看今天的学习目标:
(1)掌握三位数乘两位数的计算方法并正确计算。
(2)养成认真计算的良好习惯。
我们找一名同学来读今天的学习目标。
3.预期效果
通过刚才的表现,我相信你们一定能达成今天的目标,你们有信心吗?
二、民主导学
1.任务呈现
请看任务一
师:根据题目中的.数学信息,如何列算式呢?
生:145×12
师:为什么要这么列算式呢?
生:火车每小时行145千米,从该城市到北京用了12小时,求该城市到北京的距离,就是求12个145是多少,所以用乘法计算。
师:你的表达很清楚,让大家一听就懂。谁来说一下145×12大约是多少呢?
生1:150×12=1800
生2:150×10=1500
生3:145×10=1450
师:看来145×12的积大约在1500至1800之间,更接近于1800.那么145×12的准确答案是多少呢?面对新问题,我相信同学们各有高招,现在进行小组讨论,用我们以前学过的方法准确的算出计算结果来。好,开始吧!
2.小组讨论。
3.展示交流。
师:今天的讨论很激烈,小组意识很强,参与的人数很多,老师为你们有这样的表现感到骄傲。下面我们先请最先举手的小组来说。
组1:我们是xx组,下面由我代表我们小组来汇报。我们是这样算出来的。把12拆分成10和2。计算结果如下:
145×10=1450145×2=2901450+290=1740
师:你们组的创意很独特,把掌声送给你们组。其它组还有吗?
组2:我们是xx组,下面由我代表我们小组来汇报。我们是这样算出来的。把12写成2×6的形式。计算结果如下:
145×2=290290×6=1740
师:你真聪明,用以前学过的知识解决了今天的问题。还有吗?
组3:我们是xx组,下面由我代表我们小组来汇报。我们是这样算出来的。把12写成3×4的形式。计算结果如下:
145×3=435435×4=1740
师:你们组的想法很妙,我很佩服你们。
组4:我们是xx组,下面由我代表我们小组来汇报。我们是这样算出来的。把100拆分成100+45,计算结果如下:
45×12=540100×12=1xxxx200+540=1740
师:你们的表述很清楚。还有吗?
组5:我们是用列竖式的方法写出来的
你能说说你的计算过程吗?
师:同学们挺清楚了吗?哪位同学也看着竖式说说计算过程呢?生说。
师:你真勇敢。大家看着这道题把计算过程说给同桌听,好吗?
师:一道题,大家想出了这么多的解法,你们真是一群爱动脑筋的孩子。这么多的算法,你更喜欢哪一种呢?
法2和法3是有局限性的,有的两位数就拆不成两个数相乘的形式。比如137×13,这样的算式很多。
法1实际上和法5是有联系的。
列竖式的好处是方便,好用。在小学阶段学习的笔算,通常是列竖式来计算的。
你听清楚了吗?
要想知道大家算的结果对不对?我们可以用计算器先来算一下。下面老师请一位同学当正人,用计算器算出结果。
看来大家笔算的结果都很准确,我们再做较大数的运算时,可用计算器来验算计算结果是否正确。
实际上,三位数乘两位数的算式非常多,谁来举个例子。生说。
列竖式计算以上题目,观察积是几位数?可以找其中的一道算式的计算过程讲给大家听吗?想想计算时应注意什么?三位数乘两位数的积可能是几位数。
现在开始核对答案。我们找一个小组说说他们的结论。
任务二
实际上,学习三位数乘两位数的笔算乘法,在生活中的用处还是蛮多的,大部分同学了解摩天轮,其实摩天轮里也有数学问题,请看任务二。
大家通过刚才的练习,大家掌握的都不错。这节课马上接近尾声了,你敢不敢接受老师的挑战呢?
三、检测导结
1.目标检测。请拿出检测题卡,时间为3分钟。
2.结果反馈。现在同桌互换,核对答案。全对请举手。错的知道自己哪儿错了吗?不会的请对的同学帮忙。
3.反思总结。
课已结束,现在说说你这节课的收获吧!短短的四十分钟,同学们的收获可真不少。希望大家带着自己的收获去数学王国里追寻属于自己的乐园!好这节课就上到这里。下课。
《三位数乘两位数——笔算乘法》教学设计 7
课题概述:
《三位数乘两位数笔算》是人教版四年级数学上册第四单元的一个重要内容。
教学目标:
1、使学生掌握三位数乘两位数的笔方法;培养学生类推迁移的能力和口算的能力。
2、使学生经历笔算乘法计算的全过程,掌握算理和计算的方法。
3、学生在自主探索,合作交流中体验成功的愉悦,进一步树立学习数学的自信心,发展对数学的积极情感。
学情分析:
三位数乘两位数的笔算是在学生学习了两位数乘两位数的基础上进行教学的,和两位数乘两位数相比,算理和算法是完全一致的。本课教学的关键就是如何引导学生把两位数乘两位数的算理和算法迁移到三位数乘两位数中来。因此,本课教学重点放在如何让学生学会三位数乘两位数的笔算上,让学生先通过新旧知识的比较,帮助学生形成笔算的技能,构建知识网络。
教学重点:
使学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法。
教学难点:
理解“用两位数哪一位上的数去乘,乘得的数的末位就和那一位”对齐。
教学过程设计:
一、复习导入、迁移旧知
1、脱口而出
师:同学们,老师带来了几位我们的老朋友,对他们很熟悉吧,你能快速准确的说出他们得数吗?
18×4=250×2=
24×4=150×5=
6×14=230×3=
2、出示情境图:王老师来到图书馆,每套书有14本,她买了12套。王老师一共买了多少本?
(1)指名列式:14×12=
(2)估算:你能不能先估计一下,王老师大约买了多少本?
学生估算后(一般估成14×10),请你说说为什么这样估?(估成整十数,又好算,又比较接近准确答案。)
(3)讨论:14×10=140这个结果,比实际结果大了还是小了,为什么?(小了,因为把因数估小了,所以乘积也小了)
(4)出示点子图:我们把一个点子看成一本书,一套书一共14本,就是14个点子,现在大屏幕上显示12行点子,哪位同学愿意到前面指一指14×10=140在图中对应那一部分?
(5)课件演示,学生对着屏幕指出计算的部分
(6)我们估出了其中的一大部分,还有一部分没有没有算。到底有多少本呢?你觉得可以怎样做?(用估算的那部分,加上还没有估的那部分)利用点子图直接呈现。
(7)板书计算过程14×2=28
14×10=140
28+140=168
(8)复习笔算:其实在这个时候很多同学发现14×12是我们上学期学习的两位数乘两位数乘法计算题,除了刚才我们分部的计算方法,还有没有其他算法?(列竖式板演)
(9)复习计算方法:学生独立计算,完成后重点交流两位数乘两位数的笔算方法。
学生总结,课件演示
两位数乘两位数的计算方法:
(1)、先用第二个因数个位上的数去乘第一个因数,得数的末位和因数的个位对齐;
(2)、再用第二个因数十位上的数去乘第一个因数,得数的末位和因数的十位对齐;
(3)、最后把两次乘的积加起来。
(设计意图:通过学生的回顾,对已有知识两位数乘两位数的计算方法进行复习的同时,为学习新知三位数乘两位数做好铺垫)
二、内化新知、总结方法
过渡:看来同学们这部分知识掌握得很牢固,说明大家在学知识的时候用心用脑去学,这节课我们继续发扬这样的精神,全身心地投入到学习中,好不好?
出示:李叔叔从某城市乘火车去北京用了12小时,火车每小时行145千米。某城市到北京有多少千米?
(1)理解题意分析条件:从题中你知道了哪些数学信息?(每小时行145千米,用了12小时)
师:如何解决这个问题?采用什么方法?为什么呢?
生:用乘法解决,因为这道题是求12个145,所以用乘法计算(对学生的正确回答给予肯定)
师:我们来看——出示线段图分析,理清数量关系
(设计意图:通过线段图的出示能够帮助学生更直观的理清数量关系,从而正确列出算式)
(2)列出算式,出示课题你能列出算式吗?
145×12=(千米)
(3)估算:你能不能先估计一下李叔叔乘坐的火车大约行了多少千米?
预设:学生可能会出现以下情况
估算一:把145看成150,把12看成10,150×10得1500
估算二:把12看成10,145×10得1450
让其说一说为什么这样估?
(设计意图:通过估算培养学生估算的意识,从而养成习惯在笔算中能够根据估算的结果确定准确值的范围)
(4)交流计算方法:
师:那么李叔叔乘坐的火车到底行了多少千米?请你自己尝试根据已有两位数乘两位数的经验去笔算一下好吗?算好后和你的同桌交流一下算法
生尝试计算,教师巡视,找错例
预设1:如出现错例,先请算错的同学汇报,投影展示
145
×12
290
145
435
师:他算得对吗?说说你的想法。
请学生针对这个答案进行交流
生1:我认为不对,他的数位对的不对
生2:290下面不应该用145×1,这个1是十位的1,表示1个十,是145×10,所以5应该和290十位的9对齐。
交流汇报后展示算对同学的答案,并询问:你是怎样算的,先算什么?再算什么?积写在哪?最后写什么?
145
×12
290………2乘145的积
145………10乘145的积
1740
预设2:如果没有错例都是正确的。找一名学生投影展示自己的计算过程,阐明自己的算法。
在学生汇报过程中老师适时提问:你是怎样算的,先算什么?再算什么?积写在哪?最后写什么?并重点强调第二部分的积应该怎么写,积的末尾应与第一部分积中的哪一位对齐?
生:145×1,这个1是十位的1,表示1个十,是145×10,所以5应该和290十位的9对齐。
课件演示计算过程
(设计意图:让学生尝试独立计算是为了让学生把对原来两位数乘两位数的计算方法迁移到新知中,通过全班共享,交流,自己去突破本节课的重点)
(5)验算成果
师:通过我们自己的努力,已经得出计算结果,那我们算得到底对不对呢?可以怎样验证呢?
预设:
生1:可以与估算的结果进行比较,看差距是否大?如果比较大,说明结果有问题。
生2:可以用计算器来检验是否计算准确。
(6)巩固归纳
师:通过计算我们对三位数乘两位数有一定的认识了,你们能说说计算方法吗?我们再做两道题进一步体验一下好吗?
(设计意图:这样既培养了学生语言的表达能力和归纳能力,也为总结方法做好了铺垫)
142×23214×34f
算好后指明汇报交流,并针对其中一道题进行计算过程的说明。
师:通过我们计算这几道题的过程,你们能不能自己总结出三位数乘两位数的计算方法呢?
学生尝试总结,教师归纳
三位数乘两位数的计算法则:
1、先用第二个因数个位上的数去乘第一个因数,得数的末位和因数的个位对齐。
2、再用第二个因数十位上的数去乘第一个因数,得数的末位和因数的十位对齐。
3、然后把两次乘得的积加起来。
(设计意图:通过学生借助以往学习两位数乘两位数计算法则的经验,并结合自己计算三位数乘两位数的.计算过程自主梳理计算步骤,帮助学生有序地思考问题,有条理的解决问题。)
三、巩固新知
1、我来算一算:142×23=214×34=
2、我来改一改
3、赛一赛,看谁算得快又准
134×12=225×36=176×47=237×42=
师:每组选择一道题计算,计时比赛,看哪组同学计算的最快并全部作对,评为优胜组。
(设计意图:通过以上这些练习让学生在不同的形式中巩固算法,使计算更加熟练)
5、知识的应用
师:我们能不能帮助我们学校解决问题呢?
(1)学校要为各班新购买一套百科全书。全校共36个班,每套书129元,购买这些新书一共要花多少钱?
(设计意图:通过这几道解决问题的练习,使学生感受到学习数学可以服务于生活,生活中处处有数学,并对数量关系的分析进行了练习,第三题让学生自己去提问解答,要在学生明确数量关系的基础上进行解答,是一个提升)
6、动脑筋
师:你能帮助老师解决这道题吗?
在竖式的方格里填上合适的数。
(设计意图:这道题是本节课的开放题,要在学生数量掌握三位数乘两位数的计算方法的计算上去完成,对学生是一种提升)
7、知识延伸:格子乘法(蒲地锦)的算法
四、课堂小结
师:通过这节课的学习,你有哪些收获?
学生自己总结
课件出示温馨提示:
三位数乘两位数和以前两位数乘两位数笔算方法是一样的,注意用十位去乘第一个因数积末位对齐十位,不同的就是要乘上百位上的数。(设计意图:通过学生总结本节课的收获,再次回顾三位数乘两位数的计算方法)
今天这节课,同学们运用两位数乘两位数的计算方法自己归纳总结出三位数乘两位数的计算方法,看来在学习上只要你做个有心人,会发现很多学习的奥秘,老师希望你们在学习的道路上收获更多成果,加油!
《三位数乘两位数——笔算乘法》教学设计 8
教学用具:
幻灯、小黑板、口算卡片
教学过程:
一、基础练习。
1、教科书62页的第7题。
以口算卡片的形式出示算式,个别答与开火车相结合,以作到人人参与。
2、教科书63页的第8题。
(1)学生独立笔算,教师巡视。
(2)汇报结果,要求学生说明因数中间的零和因数末尾的零在笔算时的不同操作办法,教师进行演板。
3、教科书63页的第8、9题。
(1)列出原算式:63×4=
(2)改变因数,再分别计算出它们的积。
(3)利用算式进行对比。
(4)仔细观察,请你说一说哪个因数的变化了,怎样变的,积又是怎样变的。
二、提高练习。
1、出示(1) 12 × 18 = 216 (12×3)×(18÷3)=
请你猜一猜结果会是几?你的理由是什么?教师结合算式进行详细的'讲解。
2、那么(2)(12÷3)×(18×3)=的结果是多少呢?你是怎样想的?
3、而(3)(12×10)×(18×10)=又该等于多少呢?
三、综合应用练习。教科书63页的第11题。
1、认真读题,你知道了什么,题目给我们提出了什么要求?
2、鼓励学生从不同的角度去思考,提出多种解法。
如:用估算,430、380、407都看作400,因此400×30=12000(千克)或(400×3)×10=12000(千克)。
用笔算,430+380+407=1217(千克),1217×(30÷3)=12170(千克);(430+380+407)÷3=406(千克)把406看作400,因此400×30=12000(千克)。
四、课堂小结:
通过今天的综合练习,相信大家都有一定的收获,谁来说一说。
《三位数乘两位数——笔算乘法》教学设计 9
教学内容
人教版四年级数学上册第47页及相应练习
教材分析
该课内容为三位数乘两位数的笔算第一课时,在三年级学生已经学过多位数乘一位数,两位数乘两位数,本节课是在两位数乘两位数的基础上学习的,其乘法算理是一样的。该课也是小学阶段整数乘法的最后内容。
教学目标
1、让学生经历两位数乘两位数笔算知识的迁移,自主理解三位数乘两位数的笔算算理,掌握三位数乘两位的笔算方法。
2、引导学生结合具体的问题情境,选择合适的.估算方法,体验知识迁移的过程,培养学生类推能力和概括能力。
3、在学习过程中,感受数学知识与实际生活之间的密切联系,培养学生认真计算并养成验算的习惯。
教学重点
掌握三位数乘两位数笔算方法,能够正确进行笔算。
教学难点
理解三位数乘两位数的笔算原理。
教具准备
课件、学生用计算器
教学过程
课前2分钟口算练习
一、情境导入
播放北京标志性景点的图片。
教师:同学们,暑假你们都去哪里玩了呢?王叔叔、李叔叔暑假去了首都北京旅游,他们乘车所用的时间都是12小时,想知道他们是怎么去的呢?我们一起来看大屏幕。
王叔叔
旅游大巴
平均78千米/时
李叔叔
火车
平均145千米/时
教师:他们是从同一个城市去的么?
教师:根据提供的信息,你能算出王叔叔所在城市到北京多少千米么?指明学生列出算式:78×12
学生列竖式计算,交流、汇报。
二、探究新知
李叔叔所在的城市离北京又有多少千米呢?如何计算呢?
引导学生列出算式:145×12
1、运用估算
能不能估一估李叔叔住的城市离北京大约有多少千米呢?
说一说估得方法。
要想知道准确结果,还得用笔算。
今天我们就来学习笔算三位数乘两位数。(板书课题)
2、探究算理
学生尝试笔算,教师巡视,挑选出几种不同思路的算法到黑板板演。我们先请刚才板演的同学说一说他是怎么算的吧,每一步的算理。(根据学生汇报,课件演示)
1 4 5
× 1 2
2 9 0 ——表示什么?(表示2小时行的路程,即290个1)
1 4 5 —表示什么?(表示10小时行的路程,即145个10)
1 7 4 0
我们想知道这个结果是否正确,有什么好办法呢?(一是与估算结果比较,二是通过验算。)
3、讨论交流
大家四人一组讨论一下,三位数乘两位数的计算方法是什么样的,互相说一说。
4、学生汇报。
三、巩固练习
1、教材第47页做一做横着第一排。
学生独立计算完成,教师巡视发现典型现象,请其板演。
集体订正。
2、算理选择题
(1)在计算234×35的时候,2×5表示( )
a、 2×5 b、 20×5 c、 200×5 d、 200×50
(2)下面( )算式中2×5表示的意思是200×50
a、 209×15 b、 205×52 c、325×52 d、 152×5
3、不计算,选择答案。
425×19=( )
a、3825 b、 8020 c、 8075 d、46325
425×219=( )
a、93075 b、68000 c、46325 d、80000
4、练习八第1、2题
四、课堂小结
同学们,通过这节课的学习你有什么收获呢?
《三位数乘两位数——笔算乘法》教学设计 10
一、教学目标
(一)知识与技能
使学生理解掌握积的变化规律,尝试用简洁的语言表达积的变化规律,并能运用规律解决一些简单的问题。
(二)过程与方法
引导学生参与自主探究活动,经历观察发现、大胆猜想、举例验证、归纳总结积的变化规律的全过程,获得探索规律的基本方法和经验。初步渗透函数思想。
(三)情感态度和价值观
初步获得探索规律的一般方法和经验,发展学生的推理能力。
二、教学重难点
教学重点:发现、掌握并运用积的变化规律。
教学难点:初步掌握探究规律的一般方法。
三、教学准备
课件
四、教学过程
(一)揭示课题
口算比赛
(1)6×2 = (1) 20×4=
(2)6×20 = (2) 10×4=
(3)6×200= (3) 5×4=
师:两组算式的积分别得多少?你们怎么算得这么快呀?今天我们就来学习找规律——积的变化规律
(二)探究新知
1.研究因数乘几的情况
看来,这三个算式中可能隐藏着某些联系、某些规律,为了便于发现,我们就一起按一定的顺序来观察。
(1)6×2 =
(2)6×20 =
(3)6×200=
(1)三个都是什么算式?
乘号两边的两个数叫什么?乘得的结果叫什么?
(2)整体看这三个乘法算式,什么变了?什么没变?
下面我们就具体研究一下因数怎么变的,积怎么变的?积的变化有没有规律,有什么规律?积的变化规律。(板书课题:积的变化规律)
(3)从上向下观察这三个乘法算式:
从(1)式到(2)式,一个因数怎样?另一个因数怎样?积呢?看来(1)式和(2)式间有这种关系,还有哪两个算式之间存在这种关系?
从(1)式到(3)式,因数和积发生了怎样的变化?从(2)式到(3)式呢?两人互相说一说。
(4)刚才我们观察了(1)式和(2)式、(1)式和(3)式、(2)式和(3)式,你们发现什么共同的`规律了吗?(在乘法算式中,一个因数不变,另一个因数乘几,积也乘几)
(5)我们通过观察这三个算式,发现了算式间的联系与变化,这个过程叫“观察发现”(板书:观察发现)。随后,我们根据发现进行了大胆猜想(板书:大胆猜想)――在乘法算式中,一个因数不变,另一个因数乘几,积也乘几。要想知道这个猜想是不是在任何情况下都成立,是否正确?我们可以怎么办?(板书:举例验证)
(6)两人一组举例验证,我们刚才的猜想是否成立。
(7)汇报。
(8)回忆一下,我们归纳这条规律经过了哪几个环节?
(观察发现、大胆猜想、举例验证,归纳结论。)
【设计意图】这一环节的设计,让学生不仅仅再次明确了本课知识点,更加明确了积的变化规律的探究策略,这样真正做到了授之以“渔”,为后面的探究做好方法铺垫。
2.研究因数除以几的情况
(1)由此你能猜到,在乘法算式中,还可能有什么规律?
(2)两人一组,用我们刚才的方法来研究:“在乘法算式中,一个因数不变,另一个因数除以几,积也除以几”这个猜想。
可以以口算题为例,也可以自己举例。
①20×4=
②10×4=
③5×4=
(3)汇报。
(4)通过验证研究,我们又发现了一个什么规律?
(在乘法算式中,一个因数不变,另一个因数除以几,积就除以几。)
(5)刚才举例验证时,另一个因数除以几都行吗?除以0行不行? 为什么?
这条规律还要补充什么?(板书:0除外)
3.归纳小结:
最开始,我们发现在乘法算式中,一个因数不变,另一个因数变化,积也变化。通过整节课的学习,能完整地说说因数和积是怎么变化的吗?
师:“谁能用一句话将发现的两条规律概括为一条?”(在乘法算式中,一个因数不变,另一个因数乘几或除以几(0除外),积就乘几或除以几。)
4.应用规律。
完成例3下面的“做一做”第1题
【设计意图】根据前面探究积的变化规律的方法,每一位学生都亲自去经历探究规律的方法,从而培养学生的探究能力,概括总结能力。
(三)规律拓展
研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)
1.独立思考,发现规律。
请学生完成下列计算,并在组内述说自己发现的规律。
18×24= 105×45=
(18÷2)×(24×2)= (105×3)×(45÷3)=
(18×2)×(24÷2)= (105÷5)×(45×5)=
2.交流讨论,概括规律
组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)相同的数,它们的乘积不变。
【设计意图】不同层次练习的设计,让学生真正把学到的知识应用于解决实际问题中,并激发学生进一步探究的热情,把学习引向课外。
(四)巩固练习
1.在○中填上运算符号,在□中填上数。
24×75=1800 36×104=3744
(24○6)×(75×6)=1800 (36×4)×(104○4)=3744
(24○3)×(75○□)=1800 (36○□)×(104○□)=3744
2.应用规律解决问题。
完成例3下面的“做一做”第2题
【设计意图】通过基本练习,让学生不断加深对规律的认识与理解,提升学生的观察能力、概括和归纳能力以及语言表达能力。通过解决实际问题,让学生切实感受数学与生活的联系。
《三位数乘两位数——笔算乘法》教学设计 11
教学目标:
1、使学生理解速度的概念,掌握速度×时间=路程这组数量关系。
2、学会速度单位的写法。
3、体验“速度×时间=路程”数量关系,解决问题的过程。
重点难点
理解速度的概念,掌握速度×时间=路程这组数量关系,应用数量关系解决
实际问题掌是本节课的学习重点和难点。
教学过程
一、情境导入
1、出示交通工具的时速,介绍学生未知的交通工具(陆、海、空、宇宙等方面)的运行速度,还有自然界一些动物的运行速度等等。
2、你还知道哪些运行速度?学生展示搜集的信息
[设计意图]创设情境,提高学生的学习兴趣,扩大学生的认知视野,使学生感受人类创造交通工具的'智慧和自然界的多姿多彩。
二、探究新知
1、教学速度的概念,学会速度的写法,(出示课件)
1)特快列车1小时约行160千米。
我们把特快列车1小时行的路程叫做速度
还可以说成:特快列车的速度是每小时160千米。可以写成160千米/时。(用统一的符号表示速度)
2)普通列车每小时行106千米。
3)人骑自行车的速度是每小时16千米。
4)小林每分钟走60米
师:还可以怎么用数学语言叙述?
这些用符号怎么写呢?
师:每小时,每分钟都表示单位时间。单位时间可以是每小时、每分钟、每秒、每日等等
5)试着写出其他交通工具的速度。
[设计意图]使学生理解速度的概念,学会速度单位的写法。使学生体会用这样的符号表示一个物体的运动速度具有简明、清楚的特征。
2、探究速度、时间和路程之间的关系(出示主题图)
1)根据信息,独立计算
80×2=160(千米)225×10=2250(千米)
2)找出速度、时间和路程之间的关系是怎样的?
3)学生根据算式写出关系式
问:你能发现速度、时间与路程有什么关系吗
4)总结数量关系式:
速度×时间=路程
3、改变其中一题,求时间或速度?
1)每位学生写出关系式
2)全班交流,展示自己的关系式
3)汇报结果
小组派代表汇报板书
4、小结:速度×时间=路程
路程÷时间=速度
路程÷速度=时间
[设计意图]通过解决简单行程问题,引导学生自主探索速度、时间和路程之间的关系,构建数学模型:“速度×时间=路程”。在学生独立解答的基础上,引导学生独自找出速度、时间和路程之间的关系,并请每一位学生写出关系式,然后全班交流,交流时尽可能让一些学习有困难的学生展示自己的关系式,给他们以鼓励和学好数学的信心。使学生正确掌握速度×时间=路程这组数量关系,并应用它去解决实际问题。
三、方法应用
1、练习
1)猎豹奔跑的速度可达每小时110千米,可写作——
2)蝴蝶的速度每分钟500米,写作——
2、潇潇每天早上跑步20分钟,他的速度大约是110米/分,潇潇每天大约跑步多少米?
3、课件出示练习
[设计意图]通过练习,加深学生对单位时间、速度的理解,巩固速度×时间=路程这组数量关系,并应用它去正确解决问题
四、课堂总结:
今天你都学会了什么?有什么收获?
[设计意图]让学生在交流总结收获的过程中,既便于了解学生对新知识的掌握情况,又能使学生学会自我评价,享受成功的喜悦。