《商的变化规律》教学设计范文(精选16篇)
《商的变化规律》教学设计范文(精选16篇)
作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么大家知道规范的教学设计是怎么写的吗?下面是小编精心整理的《商的变化规律》教学设计范文,欢迎大家分享。
《商的变化规律》教学设计 1
教学内容:
教材第93页例5
教学目标:
1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。
2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。
3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。
教学重点:
发现规律,掌握规律
教学难点:
利用商的变化规律进行简便计算。
教学准备:
课件,实物投影
教学过程:
一、谈话导入,揭示新课
师:同学们,来到阶梯教室,能和四(1)班的同学们在阶梯教室上课,我非常高兴,因为我班学生个个都是最棒的,上课认真,思维敏捷,发言积极。这节课曾老师将带大家一起探索数学的奥秘,有没有信心把它学好?
师:先来一场热身赛,快速抢答。预备——开始。
200÷2=200÷20=16÷8=200÷40=160÷8=320÷8=14÷2=
560÷80=280÷40=
师:同学们算得既对又快,注意观察这些算式,你能把它们分类吗?
师:依据是什么?(按被除数不变、除数不变、商不变。)
二、探究体验,建构新知
(一)被除数不变时,商的变化规律。
师:我们先来观察第一组算式,你发现了什么变了,什么没变?(被除数不变,除数和商有变化。)
师:从上往下看,除数和商有什么变化?(被除数不变,除数扩大,商反而缩小。)
从下往上看,除数和商有什么变化?(被除数不变,除数缩小,商反而扩大。)
师总结:被除数不变,除数扩大(或缩小),商反而缩小(扩大)。
师:继续观察除数和商的扩大、缩小有什么规律呢?
②式与①④比(除数乘10扩大了,商反而除以10缩小了。)
③式与②式比(除数乘2扩大了,商反而除以2缩小了。)
小结:被除数不变,除数乘几,商反而除以几。
②式与③式比(除数除以2缩小了,商反而乘2扩大了。)
①式与②式比(除数除以10缩小了,商反而乘10扩大了。)
小结:被除数不变,除数除以几,商反而乘几。
师:谁能完整地说一说,当被除数不变,商的`变化规律?
【被除数不变,除数乘几(或除以几),商反而除以几(或乘几)】
师实物讲解,平台展示。
练习:
1121
231÷33=7
773
(二)除数不变时,商的变化规律。
课件出示:
1、什么变了,什么没变?
2、商随着谁的变化而变化?怎么变的?
3、它们的变化有规律吗?
讨论、交流、汇报结论:
除数不变,被除数乘几(或除几),商也乘几(或除几)。
练习:
13211
264÷12=22
1320110
(三)商的不变规律。
师:刚才同学们通过计算、观察、比较、讨论、总结出了商的变化规律。你们再想一想、猜一猜如果要商不变,被除数、除数会发生什么变化了?
师:同学们说对了吗?同学们可以带着以下问题通过计算、观察、比较、讨论等方法自己研究研究。
1、什么变了,什么没变?
2、商随着谁的变化而变化?怎么变的?
3、它们的变化有规律吗?
汇报交流。
师:被除数、除数同时乘(或除以)相同的数,这个数是“0”可以吗?
师:在这一条规律中要注意些什么?(同时、相同的数)
师:谁会完整地说一说商不变规律呢?
被除数和除数同时乘(或除以)相同地数,(0除外),商不变。大家一起读一读。师:通过大家认真的观察、比较,同学们发现了商随被除数、除数的变化而发生变化的规律,这就是今天学习的内容。(板书课题:商的变化规律)
4、练习
72÷9=8
720÷90=
7200÷900=
三、应用练习,拓展提升
1、看谁算得又对又快?
6300÷700=8100÷300=2800÷20=
2、谁是它的朋友。(用线段连接)
320÷80180÷60
1800÷600160÷40
360÷603200÷800
3、思考题,填空。
(1)120÷30=(120x3)÷(30x□)
(2)60÷12=(60÷2)÷(12○2)
(3)200÷40=(200x□)÷(40○5)
(4)150÷50=(150○□)÷(50○□)
四、课堂小结
1、这节课你有什么收获?
2、课后拓展:你能把今天所学的商的变化规律与积的变化规律对比,看看它们之间有什么联系和不同点?
《商的变化规律》教学设计 2
我教学的内容是人教课标版数学四年级上册第五单元例5“商的变化规律”。
一、教材分析
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。
二、教学目标、重点难点
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
教学重难点:通过观察、比较、探讨发现商的变化规律。
三、教法学法
本节课我根据教学内容的编排特点和儿童的'认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
四、教学设计
一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)
的变化而变化的规律,并且能应用这些规律解决一些简单的问题。
教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。
在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。
在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。
《商的变化规律》教学设计 3
教学目标:
1、通过计算、观察、比较、探索,引导学生发现、概括商的变化规律,并能理解运用规律进行计算。
2、引导学生经历“计算—猜想—观察—探索—发现—验证—应用”的过程。培养学生初步的观察分析和抽象概括能力。
3、培养学生善于观察,勤于思考,勇于探索的良好习惯,初步体验应用科学的方法进行数学研究的过程。
教学重难点:
1、抽象并准确描述规律;
2、运用规律进行被除数和除数末尾都有零的简便计算。
教学准备:
课件
教学过程:
一、创设情境,提出问题
课件演示:“张老师买书”的图片,分别引出两组算式。
师:张老师花同样的钱,买到的书的数量却少了,这里面隐藏着什么样的数学规律呢?让学生说一说。
师:这节课我们就一起来研究“商的变化规律”。揭示课题:商的变化规律
【设计意图:从现实的情境中抽象出数学问题,既可以激发学生探索的积极性,同时也为学生的学习提供认知背景和停靠点,促进学生理解和思维发展。】
二、观察比较探索规律
1、探索“被除数不变,商随除数变化而变化”的规律
师:认真观察一组算式中被除数、除数和商各是怎么变化的?(引导学生分别从上往下观察和从下往上观察)
让学生和同桌同学说说。
根据学生的表述,概括出“被除数不变,除数扩大(或缩小),商反而缩小(或扩大)。
2、探索“除数不变,商随被除数的变化而变化”的规律课件演示,引出第二组算式
师:用刚才的方法认真观察,你能发现这里面除数、被除数和商有什么变化规律?要求学生认真观察、独立思考,尽可能完整表述变化规律“除数不变,被除数扩大(或缩小),商也扩大(或缩小)。”
3、探索“商不变的规律”
师:刚才同学们通过计算、观察、比较分别发现了被除数不变和除数不变两种情况下商的变化规律,猜一猜,如果商不变,被除数和除数会发生怎样的变化?
让学生说出他们的想法,然后提供探索材料让他们自主探索。
(1)明确探索要求,有序进行探究
阅读探索要求,提醒学生严格按要求有顺序地进行思考探索。
(2)先独立思考,再交流探讨
在学生认真计算,充分观察比较的基础上与小组内的成员交流看法,尝试描述规律。
(3)汇报探索结果
各小组展示汇报探索的成果。注意根据各小组探索的程度按“探索过程的展示——初步成果的展示——相对规范化描述”的顺序进行展示,逐步归纳出“商不变的规律”。
注意提醒学生“0”的特殊性,完整描述规律。
(4)验证规律,体验探索过程的严谨性
师:写出一组商是5的算式,来验证这个规律的正确性,并加以解释说明。
(5)引导学生进一步解读“商不变的规律”,指出关键词并读一读。
【设计意图:作为本节课的重点内容,商不变的.规律的探索发现教师采用了提供材料、自主探索,独立思考、交流讨论的学习方式,让学生有更大的探索空间。学生通过计算—观察—比较—交流—汇报—归纳—验证得出规律,体验了探究过程的科学性和严谨性。与前两条规律的发现在学法上具有层次感。】
三、应用规律,巩固提高
1、课件出示“减肥瘦身”的有趣图片,你能有商不变的规律给这些算式减减肥吗?120÷30=560÷80=480÷40=6300÷700=3200÷400=8100÷300=
2、数学诊所:通过“数学诊所”的情境,引导学生发现问题,进一步理解规律所表达的含义。
四、小结反思,评价升华
1、本节课我们发现了哪些规律?
2、在探索发现规律的过程中应用了哪些方法?3你对自己的表现满意吗?
五、拓展延伸:
师:老师给大家讲个故事:(财主发工钱的故事)思考:170除以60商2余5对吗?为什么?
《商的变化规律》教学设计 4
一、说教材
(一)教学内容
我说课的内容是人教版小学数学四年级上册第五单元除数是两位数的除法中的例5“商的变化规律”。
(二)教材分析
这是一节新授课,主要学习商的三个变化规律:即商随除数的变化而变化的规律、商随被除数的变化而变化的规律和商不变的规律。“商不变的规律”是一个新的数学规律。在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘、除法、分数、比的基本性质等知识的基础。在学习本节课前学生已经掌握了除数是两位数的除法法则,为本节课的学习提供了知识铺垫和思想孕伏。本堂课利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律,这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象,概括能力,以及善于观察、勤于思考,勇于探索的良好的学习习惯。基于对教材的以上认识,依据数学课程标准,确定如下教学目标。
(三)教学目标
知识与技能目标:
1、结合具体情境,通过计算、观察、比较、探索,引导学生发现商的变化规律,并能运用规律解决问题。
2、培养学生初步的观察分析和抽象概括能力。
过程与方法目标:引导学生经历“计算—观察—比较—探索—应用”的过程。
情感目标:培养学生善于观察,勤于思考,勇于探索的良好习惯,激发学生对数学学习的兴趣
教学重点:理解并掌握商的变化规律。
教学难点:运用规律,进行被除数和除数末尾都有零的简便计算,明晰算理。
(四)教学设想:
1、充分发挥学生主体作用,自主探究
通过这一节课的学习,使学生掌握商的三个变化规律,也为学生今后的数学学习打下了坚实的基础。通过课堂教学的实施,引导学生积极参与到探究规律、总结规律的过程中,让学生在观察、思考、尝试、交流的过程中,实现师生互动、生生交流,促进学生主动参与知识的形成过程。
2、紧抓学生知识的生长点,将学生知识、能力有效延伸
本课通过研究商不变的`规律,在学生初步感知到被除数、除数、商之间存在着变化的规律基础上,抓住学生这个知识的生长点,从单纯的算式计算延伸到算式内部、算式之间的联系上,延伸学生的知识范围。进而使学生通过本节课研究,经历数学规律产生或发现的一般过程。
二、说教法学法
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼睛观察,比较相关算式的内在联系;动脑去想,抽象出“变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情景中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主观察、发现、抽象概括、语言表达能力以及创新精神。
三、说教学设计:
在整堂课中,始终围绕着观察算式、找出规律、表述规律,充分体现了学生主动参与学习的积极性。
我把整个教学过程分为四大环节进行的。
第一环节:创设情境,导入新课。
在这一环节,我设计的是通过小精灵聪聪给大家带来两组口算题,要同学们同桌两人一组进行口算比赛,先算完又全对的为赢。我认为这样设计有利于吸引孩子注意力,激发学生学习兴趣。
第二环节:自主探索,发现规律
(一)探索“商随除数(被除数)的变化而变化的规律”。
(课件出示例题)在学生汇报结果之后,引导学生仔细观察算式并思考:
(1)每一组题中的什么数变了?
(2)什么数没有变?
(3)除数(或被除数)和商的变化有什么特点?(被除数不变,商随除数的变化而变化的)
根据回答边引导观察第一组算式,提问:除数是怎样变化的?商是怎样随着除数的变化而变化的?分别从上往下、再从下往上看第一个算式和第二个算式比较、第二个算式和第三个算式比较,从而发现:被除数不变,除数乘几扩大,商除以几变小;除数除以几变小,商乘几扩大。
这是本节课要学习的第一个规律:被除数不变,商随除数的变化而变化的,因为被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,所以我采取帮扶的方法,一来减缓知识梯度,二来培养了学生自主探究的方法,为第二个除数不变,商随被除数的变化而变化的规律探究,奠定了自学的基础,所以第二个规律的学习我放手让学生自学。
认真观察第二组算式,看看你能发现什么?边观察边思考,然后和小组同学说一说:
(1)每一组题中的什么数变了?
(2)什么数没有变?
(3)除数(或被除数)和商的变化有什么特点?
在全班汇报自学情况,然后引导小结第二个规律:除数不变,被除数乘几,商也乘几;被除数除以几,商也除以几。
通过对刚才这两组算式的观察、比较,我们发现商的变化和被除数、除数有密切的关系。这就是这节课我们要研究的新知识:商的变化规律。板书课题。(商的变化规律)
(二)小组合作,探索“商不变的规律”。
在这一环节主要探讨第三个规律:被除数和除数同时扩大(或缩小)相同的倍数(零除外)商不变。这是本节课的教学重点,我采用了小组合作学习的方法,因为数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的广泛经验。这样既培养的学生的合作意识与合作能力,又充分体现了教师是数学学习的组织者、引导者与合作者。
1、(课件出示)例题的表格,
说明要求:先填表,再回答问题,然后和小组同学交流:
(1)表中什么数有变化?什么数没有变化?
(2)被除数、除数和商的变化有什么规律?
2、在小组交流的基础上全班交流时引导学生分别从左往右、从右往左每两栏进行比较从而发现并概括出规律:被除数和除数同时扩大(或缩小)相同的倍数(零除外)商不变。
第三环节:应用反馈、运用规律
这一环节我采取由易到难的形式呈现,首先完成练习十七的第四题,直接运用本节课所学的规律;加深对知识的巩固,进一步熟悉商的变化规律,了解商的变化规律的应用价值。第二完成第五题,虽然也是运用商不变的规律,但是题型稍有变化,练习题不是成组出现的提高了一点难度。从而达到知识的升华。
第四环节:课堂总结、拓展延伸。
先启发学生回顾本节课学习的知识,让学生根据板书了解本节课知识重点,从而形成完整的知识结构体系。拓展延伸练习的难度在巩固练习的基础上又加大了一点,既锻炼学生的思维能力,又加深了对商不变规律的进一步理解。
《商的变化规律》教学设计 5
教学目标:
1、通过观察、比较、探索,使学生发现商随出数(或被除数)的变化而变化的规律
2、增强学生抽象、概括能力
3、养成善于观察勤于思考,勇于探索的良好习惯
4、观察、比较、探索商不变的规律
教学难点:
通过观察、比较、探索商不变的规律
教学过程:
1、导入
在上课之前,我们要先来做个游戏,题目是抢答,在游戏开始之前,老师要说规则,规则很简单就是要等老师说开始之后举手抢答,不可以乱喊乱叫。现在老师开始出题了,同学们看仔细了哦。
板书:80÷4=150÷15=
80÷8=300÷15=
80÷16=450÷15=
同学们真棒,这么快就抢答完毕了,真是抢答高手!
2、抢答结束,现在老师请同学们仔细观察左边的一组算式,其中的被除数、除数、商都有什么变化特点呢?同桌讨论下,一会儿老师要请同学们来说说你们的发现。
刚刚有位同学说除数变了,被除数不变,商也变了,谁还有不同的发现呢?生没有发现,现在老师要问问大家,它们是怎样变的呢?生如果说被除数不变,除数扩大几倍,商反而缩小几倍,刚刚你是从上往下看这组算式,那如果从下往上看,你能发现什么?谁能用自己的话完整的说一说?
纠正错误,出示,被除数不变,除数扩大(缩小)几倍,商反而缩小(扩大)几倍。你真厉害真会概括。
现在请同学们看看右边的'这组算式,你们能发现什么呢?可以采用刚刚的观察方法来说一说。还可以用刚刚概括地方法说一说规律。
除数不变,被除数扩大(缩小)几倍,商也扩大缩小几倍。
同学真会观察发现,这么快就找到了商的变化规律,除数和被除数变化时,商一定变化吗?怎么样商才不变呢?先认真想想,想好的同学举手告诉老师,一会儿老师要请同学说说你的猜想。
1)若学生没有得出猜想,举例引导请同学们列出三条商为4的算式如:
16÷4=
32÷8=
64÷16=认真观察你有什么发现呢?
看来同学们都有发现,那现在先和同桌说说你的发现。
2)得出一种猜想,你们可真是会猜想,现在打开书本93页,完成表格,验证下你们的猜想。通过表格,证明你们的猜想在表格中是成立的,那现在请同学们赶紧举个例子证明自己的发现吧。小组讨论,这些算式对不对呢?通过同学们的动手实践,我们得出了商不变的规律。
3)得出多种猜想时,同学的猜想可真不少,学生说猜想老师板书,请同学们举举例子证明自己的猜想。刚刚同学用自己的例子证明了猜想,现在请同学们打开课本93页,再一次验证下你们的猜想。通过同学们的动手实践,我们得出了商不变的规律。
被除数、除数同时扩大或缩小相同的倍数,商不变。(齐读)
3、巩固练习,光说不练可不好,现在老师就要让大家练一练。
(1)运用商不变规律口算
120÷40=640÷80=810÷90=360÷60=
7200÷400=2400÷200=6400÷800=
哪一组举手的人最多老师就请哪一组开火车。其他组的同学认真听,他们组的答案对不对。
(2)学习了商不变的规律可以使我们的计算更为便捷,做一做
196÷4=392÷8=1960÷40=19600÷400=
28÷4=56÷8=168÷24=1680÷240=
课堂小结:通过这一节课的学习,你们都有什么收获呢?起来说一说。
这节课我们学习了商的变化规律以及不变的规律。
《商的变化规律》教学设计 6
教学内容:
人教版四年级上册第93页例5
教学目标:
1、通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。
2、引导学生经历知识的一般研究过程,培养学生研究问题、解决问题的能力。
3、培养学生善于观察、勇于发现、积极探索的好习惯。
教学重难点:
重点:帮助学生发现并理解商的变化规律。
难点:正确理解被除数不变,除数和商之间的变化规律。
教学过程:
一、创设情景,生成问题
师:经过这一段时间的努力,同学们的计算能力都得到了不同程度的提高。但老师想知道你们到底谁的进步更大一些?老师决定考一考你们:快速写出一个得数是2的除法算式。
师:谁能跟大伙说一说,你写的是哪一个算式。
随着学生的展示,教师有目的的随时手写几个得数是2的算式。
师:同学们的脑瓜转的真快,这么快就写出了这么多算式。请同学们仔细观察一下这些算式,你有什么发现?
生:算式不同,得数相同
师:孩子们,你们可真是火眼金睛,一下子就抓住了重点,哪你们想知道这些算式除了“算式不同,得数相同”外,究竟还存在着什么秘密吗?
(设计意图:“到底谁的进步更大一些”能够激发学生的学习热情;“快速写一个得数是2的除法算式”开门见山,直接找到本节课的切入点。)
二、探索交流,解决问题。
1、探索商不变的规律
1)独立思考,自主探索。
教师巡视,了解学生学习状况。
(设计意图:注重学生独立思考的重要性,保证在学生充分思考的前提下,再进行讨论。)
2)小组交流
师:有什么发现吗?想不想在小组内交流一下。老师提几点要求:小组长负责组织,每个同学都要发言,要按次序发言;记录员作好记录。
学生互动交流,在小组内展示各自的想法,比一比谁的想法更棒。小组内互相补充,形成小组意见。
教师巡视,积极参与学生的讨论。
3)集体交流
教师组织学生汇报各组的想法,依次板书。
师:是不是被除数变大,除数也跟着变大,商就一定不变呢?
组间质疑、辩论。
4)共同优化,形成结论
引导学生形成结论:
被除数和除数同时乘或除以相同的数(0除外)时,商不变。
5)验证结论
师:同学们我们发现的规律到底对不对呢?用你们自已手中的算式验证一下怎样?
小组合作验证
(设计意图:学生在经历猜测——验证的数学研究过程中理解、掌握商不变的规律,同时为下面的学习作了好的铺垫)
2、探索商的变化规律
师:同学们,我们知道被除数和除数同时乘或除以相同的数(0除外)时,商不变。如果被除数与除数只变一个,又将会怎么样呢?
学生猜测
1)学生独立思考,自主探索。
2)小组交流
学生互动交流,在小组内展示各自的想法。小组内互相补充,形成小组意见。
3)集体交流
教师组织学生汇报各组的想法,依次板书。组间质疑、辩论。教师适时点拔提升。
4)共同优化,形成结论
师:同学们我们发现的规律到底对不对呢?用你们自已手中的算式验证一下怎样?
小组合作验证,形成结论。
师:同学们你们知道吗?你们成功探索出了数学上的一条重要规律:商的变化规律。也让老师再一次感受到你们的'聪明才智,你们真了不起!
(设计意图:学生探究知识的过程,不仅培养了学生善于观察、勇于发现、积极探索的好习惯,更让学生真正理解了商的变化规律。)
三、巩固应用,内化提高
快速写出它们的商
8÷2=90÷30=60÷10=
80÷20=900÷30=60÷20=
800÷200=9000÷30=60÷60=
(设计意图:学以致用,不仅使学生进一步了解到数学的价值,提高他们的学习兴趣,而且让学生获得的新知得到了很好的巩固)
四、回顾整理,反思提升。
经过今天的探索你们有什么新的收获呢?你还有什么要向大家说的?
板书设计:
商的变化规律
被除数÷除数=商
扩大(缩小)扩大(缩小)不变
扩大(缩小)不变扩大(缩小)
不变扩大(缩小)缩小(扩大)
《商的变化规律》教学设计 7
说教材
我讲的是人教版小学数学四年级上册第五单元“商的变化规律”,这是一节新授课,“商不变的规律”是一个新的数学规律。在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘、除法、分数、比的基本性质等的基础。在学习本节课前学生已经掌握了除数是两位数的除法法则,为本节课的学习提供了知识铺垫和思想孕伏。通过计算比较,提出问题,引导学生思考发现商的变化规律,这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象,概括能力,以及善于观察、勤于思考,勇于探索的良好习惯。
通过本节课的教学,使学生理解掌握商不变的性质,会用商不变的性质对口算除法进行简便运算。学生在参与,观察,比较,猜想,概括,验证等学习过程中体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。
说教学目标
根据课程标准要求:小学数学教学要达到知识与技能,过程与方法,情感态度与价值观三维目标的有机结合,由此我定了一下教学目标:
通过计算,观察,比较,探索,使学生发现商随除数(或被除数)的变化而变化的规律。培养学生初步抽象和概括的能力。培养学生善于观察,勤于思考,勇于探索的良好习惯,激发学生对数学学习的兴趣。
教学重点难点:通过观察比较,探讨发现商的变化规律,掌握规律。
教学方法:探究法,合作法,观察法,比较法。
教具准备:实物投影,题卡、小黑板
我们的校本研修主题是:在数学课堂中如何使用激励性语言。我在本节课中的.每一个教学环节,都要抓住适当的时机,适时,适当,适量的对学生进行激励性评价,建立评价目标多元,评价方法多样的评价体系,以达到全面了解学生的数学学习历程,激励学生学习热情,促进学生全面发展的目的。
说教法学法
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼睛观察,比较相关算式的内在联系;动脑去想,抽象出“变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。而学生也在创设的情景中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主观察、发现、抽象概括、语言表达能力以及创新精神。
说教学设计
在整堂课中,始终围绕着观察算式、找出规律、表述规律,充分体现了学生主动参与学习的积极性。
我把整个教学过程分为六大环节进行的。
第一环节谈话引入,有利于吸引孩子注意力,激发学生学习兴趣。
第二环节,探究新知。我把例题用投影展示,既直观形象,又节省时间,快速达到目标。在这一环节当中有三个变化规律要探讨,第一个规律是被除数不变,商随除数的变化而变化的,因为被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,所以我采取帮扶的方法,一来减缓知识梯度,二来培养了学生自主探究的方法,为第二个除数不变,商随被除数的变化而变化的规律探究,奠定了自学的基础,再放手让学生自学这一规律,就很容易了。第三个规律,是被除数和除数同时变化,相同的倍数(零除外)商不变。这是本课的重点内容,我采用了小组合作学习的方法,因为数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的广泛经验。这样既培养的学生的合作意识与合作能力,又充分体现了教师是数学学习的组织者、引导者与合作者。
第三环节是运用规律。采取了由易到难的设计方案,首先完成练习十七的四题,直接运用本节课所学的规律;第二完成五题,虽然也是运用商不变的规律,但是题型稍有变化,练习题不是成组出现的提高了一点难度。
第四环节,拓展训练。难度在此基础上又加大了一点,即锻炼学生的思维能力,又加深了对商不变规律的进一步理解。反馈练习加深巩固,进一步熟悉商的变化规律,了解商的变化规律的应用价值。
第五环节,归纳总结,启发学生回顾本节课学习的知识,让学生根据板书了解本节课知识重点,从而形成完整的知识结构体系。
板书设计
这样设计的板书简洁明了,使学生对本课的重点一目了然。在对比下,便于学生掌握商的变化规律。
《商的变化规律》教学设计 8
教案背景:
第五单元两位数除法最后一个教学内容,学生在学习积不变的基础上学习商的变化规律。教学课题:商的变化规律
教材分析:
“商的变化规律”是人教版四年级上册第五单元最后一个教学内容,教材内容主要分两部分,第一部分是商变化规律,第二部分是商不变规律,商无规律的变化也得参与。教学目标:
1、让学生经历感悟、体验、猜想、观察、验证、应用等学习过程,使学生理解、掌握商不变规律和商的变化规律。
2、结合教学过程、学习材料培养学生观察、比较、抽象和概括的能力,并渗透“变与不变”、“对立与统一”等辨证唯物主义观点的启蒙教育。
3、引导学生善于发现、提出问题、探究问题、合作交流的学习能力。教学重、难点:商的变化规律的.理解、掌握及应用。
教学方法:
探究学习法
教学过程基本设计:
课前预热:
1、填空:(出示课件)
2、复习积的变化规律
师:第三单元我们学习了三位数乘两位数的乘法,知道因数变化,积也会发生变化,谁来说一说积有哪些变化规律?学生说
一、创设情境,导入新课
师:这一单元我们学习了除法,大家猜想一下,如果被除数或者除数发生变化,商有没有变化规律呢?有什么变化规律呢?今天老师带大家进行快乐一课游,咱们一起去数学大世界的游乐园去玩一玩,你们想去吗?但是大家要用自己的智慧赢得机会,大家有信心吗?(出示课件)
二、观察算式,找规律:课件出示:(体育用品店)
1、师:这是体育用品店,从这个画面中你知道了哪些信息?学生找图中的信息
2、学生列出算式,算出结果。
3、师:除号左边的叫什么?(被除数)除号右边的叫什么?(除数)等号后面的叫什么?(商)板书:被除数
除数
商
师:看看这三个算式,哪些没变?哪些变了?当被除数没变的时候,除数和商是怎样变的?下面请同学们结合我的提示,完成导学单第一题出示提示:
1、从上往下观察,任选两个算式比比看,除数和商分别发生了怎样的变化?
2、从下往上看,任选两个算式比较,除数和商分别发生了怎样的变化?生汇报交流。
第(1)组算式教师一定要从引导学生按一定的顺序观察,根据学生的回答,要随机的引导学生弄清楚是拿谁与谁比,紧紧扣住谁没
变?谁变了?怎样变的?
在分组讨论中,教师深入小组,引导学生探究:讨论:是不是可以乘或除以任何数?
师:综合这两个变化规律,你们能用一句话说一说,当被除数不便时,除数和商有什么变化吗?
【在除法中,被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。】
师:同学们表现好极了!第一关顺利通过。挑战第二关。出示课件:乘船问题
请一个学生读信息,师:你们能帮他们解决问题吗?学生列算式,算出结果
师:认真观察这三个除法算式你发现了什么?【完成导学单第二题】
结合刚才的探究方法,先自己想想,再把你的想法和小组里的伙伴探讨一下。
(小组讨论,汇报交流)
学生结合第一题的方法,有顺序的汇报。
师:谁能用完整的话说一说,当除数不变时,被除数和商是怎么变化的?师:小结:当被除数不变时,商会随着除数的变化而变化,当除数不变时,商会随着被除数的变化而变化。这就是我们这节课共同探究的内容板书:商的变化规律。
师:请你们同桌相互说一说,当被除数不变时,除数和商怎样变?当除数不变时,被除数和商怎样变?学生同桌相互说
三、巩固练习,应用规律
师:我们能把商的变化规律大声的告诉我吗?全班齐读
师:我们顺利闯过了两个关口,进入了游乐园,游乐园正在搞活动只要你顺利通过了三道关卡,你可以免费玩转整个游乐宫,高兴吗?想挑战吗?
四、课堂小结:
你今天最大的收获是什么?你能对自己或同学或老师用一句话来评价一下吗?
五、课后实践:
用今天学到的学习方法,思考以下题目有什么规律?
32÷4=816÷8=264÷2=32
《商的变化规律》教学设计 9
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级上册第93页。
教学目标:
1、通过计算引导学生发现商的变化规律;
2、巩固除法计算的知识,培养学生初步的抽象、概括能力以及善于观察,勤于思考、勇于探索的良好习惯;
3、在教学过程渗透函数的'思想。
教学重点:
通过计算引导学生总结商的变化规律。
教学难点:
全面理解和掌握商的变化规律以及运用商的变化规律进行计算。
一、旧知—铺垫
1.同学们,在第三单元我们已经学习了积的变化规律,谁来说说?(幻灯出示)现在请你运用规律分别求出这两组算式的积。(课件出示)
2=80=
200x20=40x4=
40=20=
2.学生结合积的变化规律进行汇报。
二、探究——建构
1、探究商随除数(或被除数)变化而变化的规律。
同学们的知识掌握得真牢固,现在老师把求积变为求商,商是多少呢?(课件出示)
2=10080=20
200÷20=1040÷4=10
40=520=5
a、这个200在除法算式里叫什么?(被除数)2呢?(除数)求的是(商)。
板书:被除数、除数、商
b、师:请同学们仔细观察,你发现了什么?(同桌互相说说)
c、各请一个同学上台汇报,师适时板书。
《商的变化规律》教学设计 10
教学内容:
教材第93页例5
教学目标:
1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。
2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。
3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。
教学重点:
发现规律,掌握规律
教学难点:
利用商的变化规律进行简便计算。
教学准备:
课件,实物投影
教学过程:
一、情境激趣,揭示新课
1、师:同学们,你们喜欢孙悟空吗?你们知道孙悟空有一项特别厉害的本领是什么呢?(生:七十二变)不管孙悟空怎么变,它还是谁?(生:孙悟空)
2、师揭示新课:
数学知识也有这些变与不变的现象,今天我们就一起来探讨这些变化规律。
二、探究体验,建构新知
(一)探究商随除数(或被除数)变化而变化的规律。
1、课件出示情境-:星期天,谭老师到体育用品商店去买球,乒乓球每个2元,足球每个20元,篮球每个40元,用200元买其中一种球,可以分别买多少个?
情境二:在学校举行的冬季趣味运动会“定点投篮”项目中,每8人一组,16人可以分成多少组?160人呢?320人呢?
(实物投影)展示:a200÷2=100b16÷8=2
200÷20=10160÷8=20
200÷40=5320÷8=40
2、组织小组讨论:在刚才两组算式中,藏着很有价值的数学知识,仔细观察,你发现了什么?每一小组可选择自己感兴趣的一组算式进行研究。
小组讨论:
(1)仔细观察被除数、除数、商,你发现了什么?
(2)从上到下任选两个式子比较,什么相同,什么不相同,什么发生了变化?
(3)从下往上看,任选式子比较,什么相同,什么不相同?什么发生了变化?怎样变化?
3、汇报交流,总结归纳商随被除数(或除数)娈化的规律。
研究a组题的学生汇报:
研究b组算式的`学生汇报:
4、师:通过刚才大家的发现与交流,我们看到在被除数不变时,商随着除数的变化而变化;在除数不变时,商又随着被除数的变化而变化,假如要使商不变,同学们猜一猜被除数、除数该怎样变化?
(二)探究商不变的规律。
1、情境三:故事“猴王分桃”引入探究商不变的规律。
花果山风景秀丽,气候宜人,那里住着一群猴子。有一天,猴王给小猴分桃子。猴王说:“给你4个桃子,平均分给2只小猴吧。”小猴听了,连连摇头说:“太少了,太少了。”猴王又说:“好吧,给你40个桃子,平均分给20只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你400个桃子,平均分给200只小猴,你总该满意了吧?”这时,小猴子笑了,猴王也笑了。
师:谁的笑是聪明的一笑?为什么?
2、学生交流,口述算式:
4÷2=240÷20=2400÷200=2
3、师:认真观察这一组算式,当商不变时,你发现被除数是怎么变化的,除数又是怎么变化的?验证一下你刚才的猜想。
4、引导学生交流,学生之间互相补充。
(1)生结合算式说出商不变的规律
(2)用准确的语言表述这一规律
(三)对比观察小结商的三个变化规律
1、引导观察三组算式,商有在什么情况下变,在什么情况下不变呢?
2、生边汇报,师边将表补充完整。
出示表:
被除数除数商
不变变变
变不变变
变变不变
师:他们的变与不变是有规律的。正如我们刚才总结的那样。在今后运用规律解决一些实际问题时一定要注意。同时乘(或除以)相同的数,在商不变时还应注意“0”除外。
三、应用练习,拓展提升
1、口算(根据每组第1题的商,口算出下面各题的商)
100÷515÷372÷9
100÷1060÷3720÷90
100÷50120÷37200÷900
2、填空。
120÷30=(120×3)÷(30×□)
60÷12=(60÷2)÷(12○2)
200÷40=(200×□)÷(40○5)
150÷50=(150○□)÷(50○□)
3、看谁算得又对又快?
6300÷700=□8100÷300=□200÷25=□
四、课堂小结
1、这节课你有什么收获?
2、课后拓展:你能把今天所学的商的变化规律与积的变化规律对比,看看它们之间有什么联系和不同点?
《商的变化规律》教学设计 11
一、教学目标
(一)知识与技能
引导学生理解和掌握商不变的规律,并能运用这个规律进行相关的计算。培养学生初步的观察、概括的能力。
(二)过程与方法
引导学生经历提出猜想、举例验证、得出结论、实际应用的学习过程,使学生理解商不变的规律的同时获得研究问题的方法。
(三)情感态度和价值观
在主动参与数学活动的过程中获得成功的体验,渗透“变与不变”的函数思想和科学的研究态度。
二、教学重难点
教学重点:理解和掌握商不变的规律,获得探索规律的经验和方法。
教学难点:用数学语言表达思考的研究过程,归纳概括商不变的规律。
三、教学准备
课件
四、教学过程
(一)创设情境,建立知识网络
1.创设数学情境,复习旧知
师:做个小游戏,看看谁算得又快又好?
6×2=6×20=6×200=6×2000=
师:你们算得可真快,用到了我们学过的什么知识?
(一个因数不变,另一个因数乘或除以一个数,积同时乘或除以相同的数。)
师:咱们还学过什么相关的知识?
(积不变的规律)
师:怎样可以保证积不变呢?
(一个因数乘或除以一个数,另一个因数除以或乘相同的数(零除外)积不变。)
师:大家还想到了我们学过的什么知识?
学习除法时,我们又发现了商变化的规律,这种情况下,商是怎样变化的呢?
(被除数不变,除数乘或除以一个数(0除外),商反而除以或乘相同的数。)
除数不变,被除数乘或除以一个数(0除外),商也乘或除以相同的数。
【设计意图】以数学知识本身的联系为载体,创设数学情境。对前面学习的知识进行了归纳和整理,建立知识网络,帮助学生整体把握知识,沟通了知识间的内在联系。通过类比、联想,学生初步感悟了“变化中的不变”“不变中的变化”的函数思想。
2.依托知识网络,激发联想
师:这是我们已经掌握的积变化的规律、积不变的规律、商变化的规律,根据这些你想到了什么?
(商也可以不变)
师:怎么会想到商有不变的规律呢?
(积有不变的规律,商就应该有不变的规律。)
师:还可以怎样想?
师:看来我们的猜想需要一定的依据,到底怎样使商不变,今天我们就一起来研究商不变的规律。
板书:商不变的规律
【设计意图】以知识间的内在联系为依托,培养学生推理能力和提出问题的能力。
(二)积累经验,掌握研究方法
1.依据联系,提出猜想
(1)遇到新问题或不会的,我们怎么办呀?——想会的。
咱们一起再来看看已经掌握的这些知识。
(2)想一想,我们学过的这些规律,有什么共同的特点?
(都是三个量两个量变,一个量不变)
今天研究的就是商不变,那两个量呢?
板书:被除数?除数?商不变
师:被除数和除数是随便变吗?
(要有规律的变)
(3)师:根据你前面学习的经验,具体地说说被除数、除数怎样有规律的变化,才能保证商不变?
板书:被除数乘一个数,除数除以相同的数,商不变
被除数除以一个数,除数乘相同的数,商不变
被除数乘一个数,除数同时乘相同的数,商不变
被除数除以一个数,除数同时除以相同的数,商不变
【设计意图】根据以往的知识基础和数学学习经验,引导学生更加具体的猜想,培养合情推理能力和提出问题的能力。
2.自主探究,举例验证
(1)举例方法指导
师:这么多种猜想,到底哪种猜想成立呢?有点儿难,怎么办呢?
(举些例子来验证猜想。)
板书:验证
师:怎么验证?
(举一些例子。)
师:举什么样的例子?然后怎么办呀?
【设计意图】列举出了这么多种猜想,学生知道要证明猜想是否成立需要列一些算式来进行举例验证,但是如何列算式对于学生来说是比较困难的,在举例验证前,设计了问题串,给学生提供了举例方法的指导。
(2)自主探究,填写研究报告
学习建议
师:同学们手里都有一个研究报告单,先选一条猜想,然后再举例子来验证,最后看看你验证的猜想是否成立?
【设计意图】充分挖掘学生的潜力,以研究报告为抓手,培养学生自主学习、自主探究的学习能力。为今后探究这类问题提供研究方法。
(3)个人汇报,合作交流
①先验证不成立的猜想
师:他验证的是哪一条?看懂他的意思了吗?请这位同学来讲一讲。
谁也验证的是这一条?成立吗?一个反例够吗?
②再验证成立的猜想
师:他验证的是哪一条?看懂他的意思了吗?说说你是怎样验证的?
师:一个例子能证明猜想一定成立吗?
再看看他的例子?
还有谁也验证的是这一条?说明什么?
师:这些例子符合这个规律,说明猜想成立。
师:咱们用黑板上的这组算式来验证,应该怎么看呢?谁愿意像老师这样标一标?讲一讲?还有机会吗?
【设计意图】培养推理能力、表达能力和严谨科学的研究态度,学生在动态的举例中感知商不变的规律,这个过程就是函数动态的过程,渗透函数思想。
学生体会到“证明一个猜想不成立的时候,我们只需要举出一个反例就可以了”,“证明一种猜想成立的时候,我们就需要举出大量的例子来验证,这样得到的结论才具有普遍性。”使学生的思想得到了进一步升华。
3.归纳概括,得到结论
(1)把成立的两条猜想小声地读一读。
能把这两句话合成一句话吗?
同桌同学互相说说。(板书归纳)
(2)追问为什么0除外呢?
在什么地方应用到了商不变的规律呢?
4.应用练习
(1)780÷30,可以怎样解答?
预设:用除数是整十数的笔算方法解决的.。
师:有同学是这样做的。
出示:
师:这样做对吗?为什么?
学生讨论反馈
预设:可以,因为利用了商不变的规律,被除数和除数同时除以10,商不变,这样做可以使计算更简便。
(2)120÷15
师:这道题我们可以怎样解决?
预设:用除数是两位数的笔算方法解决的。
师:利用今天学习的商不变的规律能不能解决这道题?
出示:
120÷15
=(120×4)÷(15×4)
=480÷60
=8
师:被除数和除数为什么都乘4?
生:根据被除数和除数的特点以及商不变的规律,可以直接口算解决。
5.讨论余数
840÷50
师:利用商不变的规律,我们可以列这样的竖式。
出示
师:有的同学认为余数是4,有的同学认为余数是40,到底是多少?为什么?
生:是40,根据商不变的规律,把这道题转化为84个十除以5个十,所以余下的是几个十。
【设计意图】在对比中使学生切实了解到计算过程既有一般方法,又有灵活处理之处,怎样简便就怎样算。
(三)巩固练习,深化认识理解
1.口算应用,加深理解
下面的题你会算吗?怎么算的?
120÷30=6300÷700=
通过今天的学习,你知道这样做的道理了吗?
商不变的规律在除法口算中已经用过,在今后的学习中还会继续应用。
2.顺应结构,建立模型
(四)回顾历程,产生新的思考
1.咱们回顾一下研究的过程。
2.是什么引发了我们今天的猜想?
因为知识之间的内在联系,引发了我们今天的猜想。
3.把四个规律放在一起看,他们有什么共同的特点?
4.补充知识网络(商不变的规律)
乘法、除法里存在这样的规律,你又想到了什么?
今天的学习,使同学们产生了新的思考,老师真为你们高兴。回去后可以用今天研究问题的方法,自己去探究新问题。
《商的变化规律》教学设计 12
教材分析
本节课是人教版课标实验教材小学数学四年级上册第五单元中的一个知识点,它是在学习了比算乘法和笔算除法的基础上进行教学的。与旧教材相比,本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律,这就使是这一部分知识更加系统、更加全面。
教材利用学生已有的计算技能,通过计算填表,提出问题引导学生自己思考发现商的`变化规律。这部分内容渗透函数思想。这部分内容的教学可以巩固所学的计算知识,同时培养学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好习惯。
学情分析
本节课从而激起学生一探究竟的兴趣。
关于商的变化规律,主要包含了商变和商不变两个内容,以前面掌握了乘法运算和除法运算为基础,从乘法变化规律入手,利用乘除法的密切关系,使学生不由自主的想到:在除法中是否也存在着这样的变化规律?它们可能是什么?但只有猜测是不够的,要想证明猜测是否正确,就必须予以事实证明,通过对三次验证过程不同角度的指导,促使学生在理解、掌握本课知识点的同时,经历猜测——验证——结论——应用的数学研究过程,尝试大胆合理猜测、举例加以验证的数学研究方法。学生比较难理解被除数不变,除数和商之间的变化规律。
教学目标
1.通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。
2.引导学生经历猜测验证结论应用的一般研究过程,培养学生研究问题、解决问题的能力。
3.培养学生善于观察、勇于发现、积极探索的好习惯。
教学重点和难点
重点:引导学生发现并理解商的变化规律。
难点:正确理解被除数不变,除数和商之间的变化规律。
《商的变化规律》教学设计 13
一、教材分析:
《商的变化规律》这部分内容是在学生熟练掌握除数是两位数商一位和两位的笔算除法的基础上教学的,让学生掌握这部分知识,既为学习简便运算作准备,也有利于以后学习小数除法、分数和比的有关知识,是小学数学中十分重要的基础知识。
二、学情分析:
学生能运用已有的计算技能,通过计算,发现商随着被除数或除数的变化而变化,教师应充分利用学生已有的知识和经验基础,放手让学生通过计算、观察、比较等活动去发现规律,同时,注意发挥教师的引导作用。
三、教法学法:
基于以上的认识,遵循“知识与技能的学习必须以有利于其他目标(数学思考、解决问题、情感与态度)的实现为前提”的.重要理念。为了完成以上目标,突出教学重点:发现规律,掌握规律;突破教学难点:利用商的变化规律进行简便计算。
因此,本节课主要采用了发现式教学法,小组讨论式教学法。教师以组织者、引导者和合作者的身份创设和谐的教学环境,实现教与学的和谐多元化互动,通过启发、引导学生积极参与到整个教学中去。学生一方面尝试发现,体验创造的过程;另一方面也可以增强合作意识,在小组交流,全班交流过程中相互学习、相互借鉴,逐步归纳出商的变化规律。
四、教学设计:
从四个环节进行,首先,谈话导入,揭示新课。在这环节没有创设情景,我认为这种探究规律课,直接进行探究要好些,另外,本课内容较多如果创设过多情景,可能难以上完。所以我直接安排学生快速抢答九道题,然后由学生分类,教师顺势提问:你是怎么分类的?由学生说出:按被除数不变、除数不变、商不变分类。这样直接为后面探究进行铺垫。
第二环节,探究规律,建构新知。从三个方面进行。
1、被除数不变,商的变化规律。这个规律要强细讲解,先要学生整体观察什么变了?什么没变?被除数不变,除数从上往下变大了,商从上往下反而变小了,反之除数从下往上变小了,商反而变大了。然后再详细讲解从上往下怎么变化,由学生总结规律;从下往上又怎么变化,又由学生总结规律。最后要求学生把以上两个规律用一句话表达出来。及时练习,在这我设计了231÷11=21231÷33=231÷77=这组题学生不可能直接口算,必须要用以上学习的规律才能简便运算,所以,计算后要学生说理,这有利于突破难点。另外,实物展示,把教材中枯燥、抽象的知识,编成学生亲身经历富有情趣的生活问题,使学生在真实的生活情景中,自觉、自主地完成学习的创新要求,体验到了学习的乐趣。
2、除数不变,商的变化规律。这个规律先通过计算、观察、比较、讨论等教学活动教师可以适当点拨,由学生总结规律,然后练习巩固。在这我也设计了一组练习:132÷12=11264÷12=1320÷12=做题过程同上。
3、商的不变规律,完全由学生先猜测规律,然后自己用计算、观察、比较、讨论等方法论证规律,最后用语言总结规律。这时教师要提醒学生注意同时乘几(或除以几),乘的数字或除以的数字一定要相同,并且问一问这个数字能不能是“0”?为什么不能为“0”?最后也象前面两规律一样练习巩固。
第三个环节应用练习,拓展提升。这环节有三题:
1、看谁算得又对又快。一共3题都是整十整百,设计此题有利学生运用商不变规律进行简便运算。也要求学生说说是怎么想的?
2、谁是它的朋友。学生通过计算就会发现320÷80与160÷40、3200÷800,1800÷600与180÷60是好朋友,而360÷60没有朋友,孤零零的请同学们帮助它找到朋友。开放性习题要开放性的练,才能真正拓展学生的思维,激活学生的思维,找朋友习题的设计一改以往“一对一”形式,让学生领悟到这种开放题的实质——不对应,激发了学生极大的参与意识和参与热情;这样“找”,为每个学生都创设了主动发展的空间。伴随学生情感参与的游戏练习,调动了学生学习积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
3、思考题,填空。即可以巩固新知,又可以发散学生思维。尤其是第四小题,可以同时填乘也可以同时填除以,后面正方形中可以填不为“0”的任何数。设计此题是为了更好的照顾每个学生,让学优生吃得饱,让学困生吃得好,让人人在数学学习中得到提高。
第四环节课堂小结。通过这节课,你学到哪些知识?
帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的体验。
在上新课时充分利用学生已有的知识和经验,放手让学生能过计算、观察、比较、讨论等活动去发现规律。该课的教学让我真正感到了学生是学习的主体,是创造的主体。为学生营造一个充分发挥思维能力和创造能力的氛围。给他们充足的时间和空间,就会收获希望,碰撞出思维的火花,达到真正感受数学的魅力。
《商的变化规律》教学设计 14
设计说明
“商的变化规律”是在学生掌握“积的变化规律”的基础上进行教学的,教学时引导学生由乘法中积的变化规律类推出除法中商的变化规律是本节课的关键。因此,本节课的设计主要体现以下两个特点:
1、紧抓学生知识的增长点,将学生的知识和能力有效延伸。
本节课是在学生已有的“积的变化规律”的知识基础上进行教学的,通过教学例8向学生渗透函数思想,同时初步培养学生的抽象思维和概括能力。让学生在初步感知被除数、除数、商之间存在着变化规律的基础上,抓住这个知识的增长点,然后从单纯的算式计算延伸到算式内部、算式之间的联系,扩大学生的知识范围。最后探究商的变化规律,使学生通过本节课的学习,经历发现数学规律的一般过程。
2、重视合作交流,实现师生互动、生生互动。
教师在教学活动中起到组织者、引导者、合作者的作用。学生在与同学合作交流时主动发表自己的'意见,同时接受同学的批评与建议,和同学一起探讨问题。在这个过程中既与他人分享了学习成果,又体验了合作的快乐,为达到会学、乐学和创造性学习的境界奠定了基础。
课前准备
教师准备PPT课件
学生准备画有表格的纸
教学过程
⊙情境激趣,揭示新知
师:同学们,今天老师带大家一起去数学王国的游乐园玩一玩。(课件出示游乐园的情境图)游乐园里有很多有趣的知识,也蕴涵很多规律,要想获得知识、发现规律,同学们就要运用自己的智慧,你们有信心吗?
设计意图:从学生的兴趣出发,创设一幅生动形象的游乐园的情境图,吸引学生的注意力,激发学生的学习热情,使学生感受到数学就在身边。
⊙探究体验,建构新知
1、探究除数不变时,商随被除数的变化而变化的规律。[课件出示教材87页例8中的(1)题]
(1)课件出示导学要求。
①什么变了?什么没变?
②商随着谁的变化而变化?怎么变的?
③它们的变化有规律吗?
(2)学生观察,小组内讨论交流。
(3)汇报讨论结果。
除数不变,被除数乘几(或除以几),商也乘几(或除以几)。
2、探究被除数不变时,商的变化规律。
(1)我们再来观察教材87页例8中(2)题的算式,什么变了?什么没变?(被除数不变,除数和商变了)
(2)观察、比较,发现规律。
引导学生按照下列方式进行观察。
①从上到下观察被除数、除数、商。
②从下到上观察被除数、除数、商。
(3)学生自由交流,相互补充。
(4)师总结:被除数不变,除数乘几(或除以几),商反而除以几(或乘几)。
《商的变化规律》教学设计 15
教学目标
知识与技能:
1、学生通过观察,能够发现并总结商的变化规律。
2、会灵活运用商的变化规律。
3、培养学生用数学语言表达数学结论的能力
过程与方法:使学生经历引导学生思考发现商的变化规律的过程,灵活运用商的变化规律。
情感、态度和价值观:培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
重点引导学生自己发现并总结商的变化规律。
难点引导学生自己发现并总结商的变化规律。
教学过程
教师导学
一、故事导入
安排老猴子分桃子的故事
1、8个桃子分2天吃完,16个桃子分4天吃完,32个桃子分8天吃完,64个桃子分16天吃完。(将数字板书在黑板上)
2、提问:老猴子运用了什么知识教育了小猴子?今天我们一起来研究一下。
二、探究新知
1、提问:观察数字,你发现了什么?你怎么知道的?
学生说方法,教师板书。
8÷2=4
16÷4=4
32÷8=4
64÷16=4
2、我们分别用第2、3、4式与第1个算式进行比较,你发现了什么?
被除数、除数分别都乘以一个相同的数。(扩大)
3、教师带领学生分别比较。
4、提问:谁能给我们总结一下,你发现了什么?
5、学生讨论,并发现:
在除法里,被除数、除数同时扩大相同的倍数,商不变。(教师板书)
6、提问:为什么说是“同时”,“相同”?可以举例子来证明
7、我们分别用第1、2、3式与第4个算式进行比较,你又发现了什么?
被除数、除数分别都除以一个相同的'数。(缩小)
8、通过观察,谁能再给我们总结一下,你发现了什么?
在除法里,被除数、除数同时扩大(或缩小)相同的倍数,商不变。
板书课题:商的变化规律
三、总结:
提问:通过观察,我们发现了除法里有商的变化规律,那么谁能说说你觉得这个规律需要我们注意的有哪些?
你们看我这样写对吗?为什么?
48÷12=(48×0)÷(12×0)
让学生判断。
四、巩固练习:书P87“做一做”
五、总结
在运用商的变化规律时,一定要注意什么?(“同时”,“相同”。)
六、作业:练习十七第6题、9题。
《商的变化规律》教学设计 16
设计说明:
本节课是人教版课标实验教材小学数学四年级上册第五单元中的一个知识点,它是在学习了比算乘法和笔算除法的基础上进行教学的。与旧教材相比,本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律,这就使是这一部分知识更加系统、更加全面。
本节课从乘法变化规律入手,利用乘除法的密切关系,使学生不由自主的想到:在除法中是否也存在着这样的变化规律?它们可能是什么?从而激起学生一探究竟的兴趣。但只有猜测是不够的,要想证明猜测是否正确,就必须予以事实证明,通过对三次验证过程不同角度的指导,促使学生在理解、掌握本课知识点的同时,经历猜测——验证——结论——应用的数学研究过程,尝试大胆合理猜测、举例加以验证的数学研究方法。这既是本节课的教学设计目标,也是新课改所倡导的教学理念。
教学内容:
人教版课标实验教材小学数学四年级上册第93页例6。
教学目标:
1.通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。
2.引导学生经历猜测验证结论应用的一般研究过程,培养学生研究问题、解决问题的能力。
3.培养学生善于观察、勇于发现、积极探索的好习惯。
教学重点:
帮助学生发现并理解商的变化规律。
教学难点:
正确理解被除数不变,除数和商之间的变化规律。
教具准备:
实物投影、计算器。
教学过程:
一、利用迁移、大胆猜测。
师:在前面的学习中,我们已经学习了积的变化规律谁还记得?
生1:一个因数不变,另一个因数扩大或缩小若干倍,积也随之扩大或缩小相同的倍数。
生2:一个因数扩大若干倍,另一个印数缩小相同的倍数,积不变。
师:我们都知道乘法和除法有着密切的关系,现在我们发现了乘法中有这样的规律,大家有什么想法?
生:在除法中是否也存在着类似的规律呢?
师:对呀,我也有这样的疑惑。那么我们能不能大胆的猜测一下:除法中有没有类似的规律?如果有会是什么规律呢?
生1:我觉着除法中肯定有规律,因为乘除法个部分之间是有联系的。
生2:我同意。而且我觉着如果被除数扩大了,除数不变,商也会跟着扩大。
生3:我觉着如果被除数不变,除数缩小、商也跟着缩小,除数扩大、商也跟着扩大。
生4:我猜被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。
生5:我不同意。我觉着如果被除数不变,除数缩小、商会扩大,除数扩大、商会缩小。
(教师根据学生的猜测进行板书)
(评析:简简单单的复习提问,不经意间将乘、除法之间挂起钩来,打通了知识间的横向联系,巧妙的运用了正迁移,促使学生自己提出问题,从猜测入手启动整个教学活动。)
二、验证猜测、研究规律。
(一)、验证第一个猜测:除数不变,被除数和商的变化规律。
师:合理大胆的猜测是我们研究问题的重要的第一步,但仅仅停留在猜测上还不行,我们下一步应该怎么办?
生:验证。
师:你们打算怎样来验证?
生:可以列算式来试一试。
师:举例实验的方法,确实是个好方法,那么我们就来逐个的验证。先来验证“除数不变,被除数扩大或缩小,商是否也随之扩大或缩小呢?”同学们可以小组合作,把你们所举得算式和结论写在实验报告单上。
(学生小组合作验证)
汇报:
师:哪个小组愿意说说你们的发现?
生1:我们小组举的例子是:10÷2=5,如果2不变,10扩大2倍,商就会变成10,也扩大了2倍,所以我们小组的`结论是:除数不变,被除数扩大或缩小若干倍,商也随着扩大或缩小相同的倍数。
生2:我们小组举了3个例子进行验证,4÷2=2,80÷8=10,30÷5=6,每个例子都让除数不变,让被除数扩大、缩小,看商的变化,我们利用了计算器帮助演算,也得到了同样的结论。
师:对这两个小组的汇报大家有什么意见?
生1:我们也得到了同样的结论。
生2:我觉着第2组举了3个例子,更全面一些。
师:举例验证的方法确实应尽可能的多举例,这样才能更全面、正确率才更高,如果我们把全班的例子合在一起就更能说明问题。
(评析:猜测、验证是基本的数学研究方法之一,教师将这一研究思想作为整节课的核心贯穿始终,可见用心良苦。同时借助第一个层次的验证活动使学生体会到:列举法的应用要考虑它的全面性,仅靠一个例子是不能得结论的。)
(二)验证第二个猜测:被除数不变,除数扩大或缩小,商会随之缩小或扩大吗?
师:通过举例验证的方法,我们发现刚才的第一个猜想是正确地的!再来看第二个猜测:被除数不变,除数扩大或缩小,商真的会随之缩小或扩大吗?请大家继续验证。
(学生小组合作验证)
汇报:
生1:我们小组找了2个例子,并用计算器进行了验证:
发现被除数不变,除数扩大几倍,商反而缩小相同的倍数,除数缩小几倍,商就扩大几倍。
生2:我们小组也发现刚才的猜测不对,当被除数不变时,除数与商的变化方向是不一样的。
师:大家知道为什么会这样吗?
(学生茫然)
师:其实在我们生活中,有许多事例能够很好的体现出大家所发现的规律,比如:有一个蛋糕,如果平均分给10个人吃,每人只吃它的,是一小块,如果平均分给5个人吃,每人吃它的,是一大块,如果平均分给2个人吃,每人就会吃它的,更大的一块;这就像被除数不变,除数扩大商就缩小,除数缩小商就扩大的道理是一样的。
(评析:当被除数不变时,除数与商之间的变化规律是学生最难理解的,这与乘法中的一个因数不变,另一个因数与积的变化规律正好相反。教师巧妙的利用生活中学生熟悉的事例,变抽象为形象,突破了难点,起到了画龙点睛的作用。)
师:通过验证我们发现刚才的猜测不对,正确的结论应该是:被除数不变,除数扩大或缩小若干倍,商反而缩小或扩大相同的倍数(板书)。
(三)验证第三个猜测:被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。
师:同学们,咱们还有一个猜测呢,怎么办?继续验证。
(学生小作合作,继续验证。)
汇报:
生1:我们小组发现“被除数扩大或缩小若干倍,除数缩小或扩大相同的倍数,商不变”这个猜测也是错误的。比如:20÷10=2,如果变成40÷5商是8,不是2。
我们又按照另一种方法去实验:20÷10=2,如果被除数扩大2倍变成40,要想让商不变还是2,除数只能是20,也就是说也扩大了2倍。所以我们认为:被除数和除数同时扩大或缩小相同的倍数时,商才不会变。
生2:我们小组也是这样想的,只是我们组又举了几个例子验证了“被除数和除数同时扩大或缩小相同的倍数时商不变”是正确的。
师:这两个小组的研究思路真好,当他们小组发现有些猜测不正确时,能迅速做出合理的调整,而且还能主动地对新的调整再进行实验验证,这种研究思路值得大家学习。希望同学们在以后遇到类似的情况时,也能像他们一样,决不轻言放弃,及时调整思路,继续深入研究。
师总结:我要忠心的祝贺大家:通过合理的猜测、反复的验证,成功地发现了除法算式中,被除数、除数、商之间的变化规律,大家真了不起!
(评析:教师借助这个层次,使学生体会到:科学研究并不都是一帆风顺的,它需要不断的修正、反复的实验,这有利于培养学生科学严谨、锲而不舍的优秀品质。)
三、运用规律、解决问题。
练习1:
师:这些规律在平时的计算中有什么作用呢?能不能对计算有帮助呢?我们来看这样一组题,(出示):
3420÷57=6076800÷240=320
34200÷57=76800÷24=
342÷57=76800÷2400=
(学生迅速口答出得数,教师记录答案。)
师:这么大的数,大家怎么做得这么快?
生:运用了刚才发现的规律……
师:到底算得对不对呢?规律在这里用的合理不合理呢?用计算器来验算一下。(学生运用计算器来验证。)
学生汇报:通过验证,发现正确。
练习2:(独立完成)
240÷30=8
(240×4)÷(30×?)=8
(240÷6)÷(30?6)=8
(240??)÷(30÷5)=8
四、全课总结。
今天这节课,我们不仅通过大胆合理猜测、举例加以验证的方法,研究发现了除法中的三条变化规律;而且更重要的是我们经历了科学研究的一般规律:猜测——验证——结论,这也是科学家们经常采用的一种研究方法,希望今后同学们能利用今天所学的方法,解决更多的数学问题。
[总评]
新课标中明确指出:“人人学有价值的数学”,而有价值的数学有显性和隐性之分,显性的数学包括:重要的数学事实、基本的数学概念和原理、必要的运用数学以解决问题的技能;隐性的数学包括:集中反映为具有元认知作用的各种思想意识,具有智能价值的数学思维能力,以及具有人格建构作用的各种数学品质。这两者的培养同等重要,尤其是后者,更是奠定学生终身学习的基础。本节课正是将这一原则较好的体现了出来。
一准确把握起点,合理的运用知识迁移,奠定了整节课的研究基调
本节课的变化规律是第五单元的教学内容,前边在第三单元中学生已经学习了“积的变化规律”,为这节课的教学打好了知识基础。教师巧妙地抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”一句话引起了大家的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,既准确地找到了新知的切入点,合理的运用了知识的正迁移,又为后边学习活动的开展奠定了一个探索研究的基调——这些大胆的猜测是否正确呢?需要我们进一步的验证。这就将整节课的落脚点定位在了培养学生解决实际问题的能力上,而非仅仅是知识点的掌握上。
二经历探索研究的全过程,借助规律的发现培养学生的探究意识和能力
全课共有三次验证过程,看似有些重复,但细品起来,每次的侧重点都有所不同:第一次是使学生知道例举法是一种行之有效的研究方法,使用此方法时应尽可能多的举例,这样才有可能避免偶然性,提高正确率;第二次是让学生有意识的经历挫折,我们的猜测不总是正确的,可以通过实验来修正猜测,得出正确结论;第三次是提醒学生当研究思路出现偏差时,应学会及时调整,积极寻找新的思路继续研究,直至得出结论。三个侧重点层层递进,紧紧围绕着培养学生的探究能力展开。
在这里,知识的掌握和运用不是最终目标(其实学生在这种积极主动地研究状态下、在经历“做”的过程中,自然理解掌握了被除数、除数、商这三者的变化规律,且会印象深刻),而引领学生经历研究问题的一般过程,并在过程中培养学生认真观察、大胆推测、勇于实践、科学严谨、不轻言放弃等良好的学习品质和数学素养,是教师的出发点和落脚点。这正是新课标所倡导的数学教育理念:“使学生经历数学活动过程,获得对数学的理解的同时,在思维能力、情感态度与价值观诸方面得到发展”。
总之,本节课在教学设计时牢牢地抓住了两点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习情趣和激情,提出猜测,展开教学;二是不仅仅将课堂教学的重点落在三个规律上,而是落脚到通过教学活动,培养学生的数学品质上,将这种“猜测、验证得出结论”的数学研究方法深入到每个学生之中,真正让学生成为一名数学知识的猜测者、研究者、发现者,从而获得学习数学的乐趣。