找次品教学设计(精选17篇)
找次品教学设计(精选17篇)
作为一名教职工,编写教学设计是必不可少的,借助教学设计可以提高教学质量,收到预期的教学效果。优秀的教学设计都具备一些什么特点呢?以下是小编帮大家整理的找次品教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
找次品教学设计 1
教材分析:
《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的"次品"有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
“找次品”的教学,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以"找次品"这一操作活动为载体,让学生通过观察,猜测,试验等方式感受解决问题策略的多样性,在此基础上,通过归纳,推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。
学情分析:
每一册教材都会编排《解决问题的策略》单元,所以学生已经不是第一次接触,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。此外,本节课中会涉及到的 “可能”、“一定”等知识点,学生已学过。
新课程实施以来,小组的合作交流、自主探究的学习方式大部分学生都已接受,普遍成为学生比较喜爱的学习方式。在小组合作学习过程中,学生能够较好地分工、合作、交流,较好地完成探究任务。
教学目标:
1、能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
2、以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:
经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。
教学难点:
脱离实物,借助纸笔帮助分析“找次品”的问题。
教学准备:
教师用具:
3盒口香糖、课件。
学生用具:
若干圆片。
教学过程:
一、创设情境,生成问题。
1、初步认识“找次品”的基本原理
师:我这有3瓶口香糖,其中有一瓶被我吃掉了3片,另外两瓶是没吃过的,只有一瓶少了3片,有什么办法把这瓶少的找出来?
[设计意图:在这一环节中,要引导学生根据次品的特点发现用天平"称"的方法最好,知道并不需要称出每瓶口香糖的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]
生:数一数或掂一掂。
生:天平称一称。
师:天平?大家见过没有?出示课件1。
天平的两端有两个……(托盘),若果两个托
盘上的物体一样重的话,天平会怎么样?
(平衡),假如不一样重的话?(天平会一边高一边低),高的那边物品?(轻)。低的那边物品?(重)。
2、引导学生探索用天平找次品的方法。
同学们想一想,如果利用“天平”怎样找出少的这一瓶?
师:(生纷纷举手)聪明的同学真是非常多,想到的同学小声的把你的方法跟同桌或小组之间介绍一下!
生讨论中……
师:现在把你的方法跟全班分享一下!
生1:随意拿2瓶,如果天平平衡,说明另一瓶是少的那一瓶。(师重复学生的话,并问学生答,加深学生印象。)
师反问:随意拿2瓶,这两瓶一定会在天平上平衡吗?
生2:随意拿2瓶,天平也可能一边高一低的,高的那边就是少的那一瓶。
(师重复学生的话,并问学生答,加深学生印象。)
师小结:随意拿两瓶放在天平上,可能出现几种情况?(2种)。
可能天平会?(平衡)。那说明什么?(天平上的这两瓶一样重)。还说明?(剩下的那瓶就是吃了3片的)。
如果天平不平衡?那说明什么?(其中有一瓶是吃了3片的)。哪一瓶是吃了3片的?(升高的那一瓶)。
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究,推理活动才能顺利进行。]
师小结:我们的同学真的是非常的聪明!看来从三瓶中找出少了3片的方法有数一数,掂一掂,用天平来称,你觉得那个方法好?为什么?(天平还有什么优点?)
3、揭示课题。
师:其实在生活中,就有这样一些问题,有一些物品外观看似完全一样,但其中常常混着一个重量不同的,要么轻一点,要么重一点,要把它找出来,我们最好的工具是什么?(天平)。我们把这一类问题都叫做“找次品”的问题。这节课我们一起来研究如何使用天平来“找次品”。(板书课题:找次品)。
二、“找次品”的解决方法。
1、从5个物品中找次品。
师:接下来,我的问题有难度啦!现在我们这儿有几瓶口香糖?(5瓶)。其中有一瓶是老师吃过3片的,要从这5瓶中把这瓶吃过的找出来,有没有办法?(有)。什么办法?(使用天平称)。
2、课件出示问题,引导学生利用学具自主探索:拿出5个圆片代替5瓶口香糖,思考一下,怎样找出次品?
师:好,现在拿出我们的学具:5片圆片,代替我们5瓶口香糖。想象一下怎样使用天平找出那一瓶少的`口香糖。在动手的同时思考一下这几个问题:
(1)把物品分成几份?每份是多少?
(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品在哪里?
(4)至少称几次,能保证找出次品来?
生说师板演。
师小结:老师把生1的话记录了下来,他把5平口香糖分成3份,分别是:2瓶,2瓶,1瓶。把其中前两份放在天平的两端(左边2瓶,右边2瓶),(生说师板演:5(2.2.1))
如果天平平衡说明什么?(剩下的就是吃了的那瓶)。
还有可能发生什么情况?(天平不平衡)。
那又说明什么情况?(升高的这2瓶中肯定有吃过了的)。
可是到底是哪一瓶呢?再怎么办?(升高的这2瓶在称一次)。
好,升高的这2瓶在称一次,这时,天平左边几瓶?(1瓶)。右边几瓶?(1瓶)。升高的这一瓶就是吃过的了。好,要从这5瓶口香糖中找出吃过的那一瓶,至少要称几次就一定能找出来?(2次)。
3、寻求不同的称法。
其他小组有别的称法吗?(生说师板演:5(1.1.1.1.1))
师小结:这种方法至少要称几次就一定能找出来吃过的那一瓶?(2次)。看来要利用天平来找次品,方法还真是多种多样的。我们可以用学具帮助我们思考,也可以像老师这样画图的方法进行分析。
[设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解"至少称几次就一定能找到这个次品" 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。]
三、探索最优策略。
1、从9个物品中找次品。
师:在接下来的问题中这两种方法大家都可以使用。下面的问题就更难啦。
出示课件2:在9个零件里有 1 个是次品(次品重一些),你能用天平把次品找出来吗?
现在拿出我们的学具:9个圆片当到做零件摆一摆,边摆边思考这几个问题:
(1)把物品分成几份?每份是多少?
(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品在哪里?
(4)至少称几次,能保证找出次品来?
2、学生自主探索。
师巡视:老师在巡视时发现有很多同学都能把次品找出来,而且他们的法都不一样,小组可以互相交流一下,看看你的方法和别人一样不一样。
生交流。
师:经过大家的交流,我们会发现自己能够想到一种,还能从同学那儿听到不一样的方法,说明你非常善于学习。接下来,把你的好方法跟全班同学分享一下。
3、学生汇报称法。
生叙述:把9个零件分成3组:4,4,1。先在天平两边各放4个,如果平衡,那单独的一个就是次品;如果天平不平衡,重的那一边的4个再份成2份,每份2个,再称,一定会不平衡,重的那一边2个再份成2份,每份1个,再称,沉下去的就是次品。师板书:9(4,4,1)
师质疑:把9个零件分成3组,分别是4,4,1。至少再称几次,就一定能找出次品来?(3次)还有不一样的方法吗?
生:9(1,1,1,1,1,1,1,1,1)
师:还有不一样的方法吗?
生:9(3,3,3)
生:9(2,2,2,2,1)
师小结:好,看黑板上一共有几种不一样的分法?(4种)。9呢,有很多种分法,不同的分法可能导致最终称的次数不同。
[设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]
4、对比称法,找出规律。
师:我们观察哪种分法称的次数最少?是怎么分的?平均分成了3份,只需要称两次,就一定可以找到次品。那我们猜想是不是在其他的所有的找次品问题中,只要把物体平均分成3份,称的次数就最少?(不一定)。为什么呢?
5、学生思考后汇报猜想。
6、验证猜想。
师:要验证猜想我们再来试一下。如果有12个零件,其中一个是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?
学生汇报:3次。
师:我们再来看看别的分法能不能让称的次数更少。还有哪些分法?(2 ,2 ,8),(3 ,3 ,6),(5 ,5 ,2)(6 ,6,3)……
学生选择一种分法在纸上进行分析。
全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?
四、与学生一起小结。
师:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少。(板书:待测物品分三份,能均分的要均分)。
师质疑:如果待测物体的个数不能平均分呢?比如:10个,11个……
[设计意图:设计待测物品数量由3个到5个再增加到9个,10个,11个……,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法,也为下节课教学埋下伏笔]
五、巩固应用、内化提高。
1、完成P136练习二十六的第1题。
学生独立完成后找几名学生分析:因总数为9筐,故可平均分成3份,只称2次就能把吃过后那筐松果找出来。如果天平两端各放4筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的
那筐松果;但这种方法是不能保证一次就
能称出来的,也不能保证2次就能称出来,只能保证3次就一定能称出来,所以该方法不是最优的。
2、完成P136练习二十六的第2题。
有15盒饼干,其中的14盒质量相同,另有一盒少了几块,如果能用天平称,至少几次可以找出这盒饼干?独立思考后在纸上进行分析。
全班汇报。教师指导学生在汇报时重点阐述:均分成几份?每份是多少?
至少需要几次就可以找出这盒饼干?
师对练习做一个小结:在解决找次品问题的时候,我们把待测物品分成3份,并且平均分的方法能够准确快捷地找出次品。
六、回顾整理,反思提升。
师:这节课我们研究了什么问题?怎样找方法最好?通过实验、操作和观察,你发现 “找次品”的最优方法了吗?
找次品教学设计 2
一、教学目标
(一)知识与技能
利用天平,结合观察、猜测、图示、推理等活动,理解“找次品”问题的基本原理,发现解决这类问题的最优策略。
(二)过程与方法
以“找次品”活动为载体,经历由多样到优化的思维过程,培养学生的优化意识。
(三)情感态度和价值观
感受数学在日常生活中的广泛应用,发展学生的应用意识和解决实际问题的能力。
二、教学重难点
教学重点:探究解决“找次品”问题的最优策略。
教学难点:用图示或文字表示找次品的过程。
三、教学准备
天平,多媒体课件。
四、教学过程
(一)创设情境,引入原理
1.情境导入,揭示课题。
(1)课件出示例1:有3瓶钙片,其中一瓶少了3片。你能设法把它找出来吗?
(2)理解题意。
学生可能会说:倒出来数一数,或掂一掂、称一称……
教师根据学生的回答解释:生产或生活中有时需要从几个物体中找特别重或特别轻的一个,在数学中我们把这类问题称为“找次品”问题。
如果两个物体的差异很大、很明显,可以用数一数或掂一掂的方法。如果差异不明显或物体数量很多(例如有30瓶钙片),用数一数或掂一掂的方法可能不准确或不方便,此时可以用天平帮助我们快速找到“次品”。
【设计意图】理解问题是分析问题和解决问题的前提,当学生面对例1,首先想到的肯定是数一数或掂一掂,因为他们缺少使用天平的生活经验,所以让他们了解“数”和“掂”的局限性是非常有必要的。
2.合情推理,理解原理。
(1)了解天平的使用方法。
教师出示天平,并让学生想象:如果在天平的左边放一支粉笔,在天平的右边放一本数学书,天平会怎么样?为什么?
学生回答:天平的左边高,右边低。因为数学书比粉笔重。
教师继续追问:如果在天平的左边放一本数学书,在天平的右边也放一本数学书,现在天平会怎么样?为什么?
学生回答:天平会平衡,因为左右两边一样重!
教师根据学生的回答,在课件中出示:天平平衡,两边一样重;天平不平,下沉那边重。
【设计意图】学生没有使用天平的经验,教师引导学生通过想象和观察丰富表象扫除学习障碍,为进一步学习找次品做好准备。特别地,对两种情况的概括有利于学生探究找次品的方法。
(2)如何利用天平找次品?
如果只有两瓶钙片,放在天平上称一次就知道哪一瓶少了3片,因为它会轻一点。现在有3瓶,那么要称几次呢?为什么?
学生:称一次。左右两边各放1瓶,如果天平平衡,剩下的.那瓶就是次品;如果天平不平衡,天平翘起的一端所放的是次品。
教师分别演示天平达到平衡和出现不平衡的两种情况,请同学进行判断并说明理由。
【设计意图】根据天平的情况推断出剩下一瓶的情况,是解决“找次品”问题的关键。此处将实验演示和语言表达结合起来,帮助学生理解原理。
3.交流图示,掌握方法。
你能想办法把用天平找次品的过程,清楚地表示出来吗?
(1)可以用一个“△”加一条短横线表示天平,用长方形表示钙片。
(2)为了方便,还可以给每瓶钙片加上编号。
学生完成后,将作品通过实物投影仪进行展示交流。
【设计意图】图示是对问题进行抽象、概括的一种方式,通过图示使找次品的方法具有概括性,同时也可以培养学生的抽象思维能力。在例1教学后及时进行方法的总结,可以分散本课的难点,有利于学生发现解决“找次品”问题的最优策略。
(二)探索规律,优化策略
1.理解题意。
(1)课件出示例2。
8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证找出次品?
(2)大胆猜测。
教师:至少称几次能保证找出次品?
学生:如果运气好一次就能找到次品,所以至少一次。
学生:一次不能保证找出次品,因为如果运气不好,就找不到次品了。
学生:每次称2个零件,4次保证找出次品。
教师:“至少称几次能保证找出次品”是什么意思?
学生:既要保证找出次品,又要次数最少。
【设计意图】这个讨论是非常必要的,学生第一次遇到这类问题,可能不能兼顾两端,说“一次”的同学忽视了“保证”,说“4次”的同学没有考虑到至少。通过同学间的互相交流,否定错误,澄清认识,确定研究方向,在探究、解决问题的过程中不走错路,少走弯路,有利于课堂教学目标的实现。
2.探索规律。
(1)分组探究,并将探索的情况填入下表。
(2)全班交流。
①分别请称4次、3次、2次的小组代表介绍本组的方法(此时学生对使用复杂的图示介绍方法可能还有困难,教师可以根据学生的回答帮助学生进行图示,为学生做出正确示范)。
②每次每边称1个的小组为什么需要的次数比较多?
学生:每次称的零件数量太少。
③每次每边称4个的小组为什么反而不如每次每边称3个的小组完成得快?
学生:每次每边称3个,称一次就可以将次品确定在更小的范围内。
【设计意图】问题②和问题③迫使学生去思考采用不同方法造成次数不同的原因,避免学生知其然而不知其所以然。因为偶然性因素的影响,学生不太容易发现“尽量三等分”这个最优化的策略。此时可以引导学生回顾例1,发现利用天平不仅可以对天平两端的零件进行判断,而且可以对没有称量的那一部分做出判断。
(3)概括最优化策略。
①如果9个零件中有1个次品(次品重一些),至少称几次能保证找出次品?怎么称?
学生:平均分成三份,每边3个,如果天平平衡,次品在剩下的3个零件中;如果天平不平衡,次品在天平下沉一端所放的3个零件中。然后再每边称1个,如果天平平衡,次品就是剩下的那1个零件;如果天平不平衡,次品就是天平下沉一端所放的那个零件。
②你发现什么规律?
学生:将所有零件平均分成三部分,保证找到次品需要的次数最少。
③用你发现的规律找出10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的?
先让学生小组讨论交流,并将找的过程用图示法记录下来,最后借助实物投影与全班进行交流。
【设计意图】通过两次操作得出结论属于不完全概括,属于猜测,而且在小学阶段也无法严密证明,只能通过大量的事实加以验证。验证的过程既可以加深理解,也可以提升学生的运用水平,并通过交流提高熟练程度。
(三)应用知识,解决问题
1.5瓶钙片中有1瓶是次品(轻一些),完成下面找次品的过程。
2.有15盒饼干,其中的14盒质量相同,另有1盒少了几块。如果能用天平称,至少称几次可以保证找出这盒饼干?
教师提示:将15盒饼干三等分,每份5盒,称一次可以确定那盒少了几块的饼干在哪5盒当中。然后参考前一题的方法找出这盒饼干。
3.有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
教师提示:将28瓶水按照9瓶、9瓶、10瓶分为三份,称一次可以确定这瓶盐水在哪一份当中。如果是在某个9瓶当中,则继续三等分找出这瓶盐水;如果在10瓶当中,可以考虑按照3瓶、3瓶、4瓶的方法继续分组,找出这瓶盐水。
【设计意图】这一环节中对练习二十七中的练习与“做一做”的顺序进行了微调,是为了体现由易到难的教学顺序。数量越大,操作和思考的过程就越复杂,对学生而言难度也越大。特别是例2后面的“做一做”对学生而言是有难度的,一是因为要称4次,二是因为28不能平均分成三等份,所以进行了调整。
(四)课堂小结,拓展延伸
1.课堂小结。
(1)今天研究了什么问题?
(2)找次品的最优化策略是什么?
2.知识拓展。
今天我们研究的问题都是已知次品比较重或比较轻,如果不知道它比较重还是比较轻,你还能找出次品吗?请有兴趣的同学回家思考。
【设计意图】教材中的“找次品”是一种理想化的问题,把不知次品轻重的问题留给学生思考,给学生更大的想象空间,可以使学有余力的学生思维能力得到更大的发展。
找次品教学设计 3
教学目标
1、初步理解找次品的含义,明确找次品的基本思路,探索找次品的一般方法。
2、经历观察、猜测、试验、推理等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。
3、经历解决简单问题的过程,初步培养学生的应用意识和解决实际问题的能力。
教学重点
寻找用天平原理找次品的最优方案。
教学难点
经历找次品的过程,掌握找次品的方法,体验最优方案的原理。
教学准备
课件,天平,3瓶未拆封的钙片,每名学生5张扑克牌,记录单。
教学过程
一、创设现实情境,生成问题
教师出示3瓶外观一样的钙片。
师:同学们,看看我手上有什么?它们是一样的吗?
【学情预设】从外观看,有的学生初步确定是一样的;也有的学生可能想到,仅仅从外观看,还不能确定是否一样。
师:看来同学们不仅会观察,还有批判性思维,真棒!
师:老师手中这3瓶钙片,看起来是一样的,但其实是有一瓶少了一些。生活中常常有一些看似完全相同的物品中混着一个质量不同的物品(重一点或轻一点),需要想办法把它找出来,我们把这类问题称为找次品问题。[板书课题:找次品(1)]
【设计意图】利用学生熟悉的物品,通过外观一样而里面不一样,激发学生的思维,引导学生用数学的眼光看问题。
二、经历探究过程,领会找次品的基本思路
1、认识天平。
教师出示实物天平,认识天平。
师:同学们,认识这个工具吗?你们会使用天平吗?如果天平平衡说明什么?
【学情预设】在此之前,学生已经接触过天平,认识了天平的组成部分。在这里教师应重点引导学生理解,天平两边平衡说明两边的物体同样重,哪边的托盘向下,就说明那边的物体稍重,反之则稍轻。
2、从3瓶钙片中找次品,感悟找次品的基本思路。
课件出示教科书P111例1。
◎教学笔记
【教学提示】
可以让学生用双手演示天平,表演重的一端向下。教师喊“右边重”“左边重”“一样重”等口令,学生演示。
师:运用天平,怎样才能很快地找出哪一瓶是次品呢?谁来说说你的想法?
师:大家觉得这种方法怎么样?还有别的方法吗?
师:那要怎么称?称几次就能找出这瓶次品呢?
师:谁明白他的意思?能上来再演示一下吗?
学生上讲台边说边演示。
师:你们的想法真好,因为天平有两个托盘,次品的位置只有两个托盘上和天平外三个地方,用天平称一次就能确定次品在什么位置,所以从三瓶钙片中找次品时平均分成三份,不仅天平左右两边的两瓶参与了比较,天平外的那瓶也参与了比较。
【学情预设】此时学生可能会想到用手掂一掂、倒出来数一数等方法。面对这些方法,学生也可能会提出用手掂并不准确,而倒出来数又不卫生,如果学生未能想到这些,教师要引导学生分析这些方法的不合理性。
师:你们还有别的方法吗?
【学情预设】有的学生可能会说用有砝码的天平一个一个去称,2次可找到,也有的学生可能会说用没砝码的天平来称,1次可找到。
【设计意图】让学生借助已有的生活经验去寻找找次品的方法,进而引出用天平称的方法,这样的设计既顺应了学生的思维,又调动了学生的积极性。
(2)用直观的方式表达推理过程。
师:同学们的推理过程很清晰,我们可以用直观图将这个过程表示出来。
师:为了能清楚地表述,我们分别用数字卡片1、2、3代表这3瓶钙片。
师:先把1、2放在天平的两边,会有几种情况呢?
【学情预设】学生会说有两种情况,平衡或不平衡;也有学生可能会说,有三种情况:第一种平衡,第二种左边轻一些,第三种右边轻一些,此时教师引导学生归纳,不管哪边轻一些,都是不平衡。
师:这两种情况,我们可以这样表示。[板书:]
师:如果平衡,能得到什么结论?如果不平衡,又能得到什么结论?
学生小组内交流后派代表发言。
结合学生的发言,教师完善板书:
师:同桌之间互相说说这个推理过程。
(3)梳理过程。
课件边呈现推理过程,学生边跟着一起说。
师:需要称几次才能找出次品?(称1次就可以找到次品。)
【设计意图】由简单的数据开始,让学生经历分析推理的过程,并掌握基本的思路和表达方法。
3、自主探索从5瓶钙片中找出次品,理解“至少”“保证”的含义。
(1)学生自主尝试。
师:如果5瓶钙片中有一瓶是次品(次品轻一些),用天平至少称几次能保证找到次品?
◎教学笔记
【教学提示】
从3瓶钙片中找出一瓶次品,相对比较简单,但其中的推理和表示方法很重要。所以一定要让每位同学都说清楚推理过程,掌握一定的表达方法。
请同学们独立思考,用手中的扑克牌摆一摆,并将找次品的过程清楚地表示出来。完成的同学同桌间交流一下找的方法。
师:能边说边将你找次品的过程在黑板上表示出来吗?
【学情预设】有了前面从3瓶中找次品的经验,学生会用天平的形式来表示。学生会想出多种找出次品的方法,并将从5瓶钙片中找次品的过程展示出来:5(1,1,1,1,1);5(1,1,1,2);5(2,2,1);5(1,1,3)。但是由于要考虑到多种可能,有的学生可能会考虑不全面。
预设1:分成3份。(2,2,1)
称2次
预设2:分成3份。(1,1,3)
称2次
预设3:分成5份再称。(1,1,1,1,1)
预设4:分成4份再称。(1,1,1,2)
(2)理解“至少”“保证”。
师:这里有的时候1次就能找出次品,为什么至少要称2次呢?
【学情预设】学生会说,1次是运气比较好,不能保证找出次品。
师:同学们用不同的方法找出了5瓶钙片中的次品,老师看见这些方法的不同主要是因为一开始分的份数不同。如果每次画天平,都很麻烦,我们可以这样简洁表示。
教师边说边板书:5(1,1,1,1,1)2次;5(1,1,1,2)2次;5(2,2,1)2次;5(1,1,3)2次。
师:整体观察,应该怎么分保证能找到次品称的次数最少?至少应称几次?
师:分的份数不同,但都是至少称2次就能保证找到次品,谁能解释这其中的道理?
【学情预设】面对这样的问题,可能有的学生在理解上会有些困难,教师要让学生说出自己的想法,如果学生实在无法解释,教师要引导学生继续去感受和理解:当天平左右两边各放1瓶钙片时,无论分成5份还是4份,天平外都是3瓶钙片,和5(1,1,3)这种情况是一样的,次品的`位置同样只有两个托盘和天平外三个地方。
【设计意图】呈现不同的解决策略,在多样的方法中找到共同的规律。加深对“至少”“保证”的理解。通过不同方法的交流、对比,让学生感受到解决问题的方法的多样性,初步感悟分成的份数与称的次数之间的关系。
4、探索从8瓶钙片中找次品,掌握找次品的最优策略。
课件出示教科书P112例2。
师:同桌之间研究一下,看能不能也用刚才的符号或方法来解决,将探索情况填在记录单上,如果实在有困难的话也可以摆一摆。
◎教学笔记
【教学提示】
学生的方法有很多,教学时要照顾到不同的方法,特别是错误的方法,要引导学生分析,错在哪里,为什么错,该如何更正。
【学情预设】有了前面找次品的经验方法,学生会很自然地将之前的方法迁移过来,但不排除还有部分学生存在困难,所以教师提醒学生实在有困难的话也可以摆一摆,尽可能让每一位学生都能掌握基本的方法。
师:哪个组来说说你们研究的情况?
学生汇报,教师完善表格。
师:现在我们静下心来,静静地观察表格并回顾刚才的研究过程,你能发现什么?
师:师:从8个零件中找1个次品时很多同学都分成了3份,但只有分成3个、3个和2个时才能保证找出次品称的次数最少,结合表格中的数据,谁能分析一下?
学生交流反馈。
教师根据学生反馈板书:8(1,1,1,1,1,1,1,1)4次;8(2,2,2,2)3次;8(3,3,2)2次;8(4,4)3次。
师:如果9瓶钙片中有1个是次品(次品轻一些),至少称几次能保证找到次品?是怎么称的?
学生思考,小组交流。
【学情预设】学生会发现将8瓶钙片分成3份,每份分别为3瓶、3瓶和2瓶时,保证找出次品称的次数最少。同样是分成三份,为什么这种分法保证找出次品称的次数最少呢?
【设计意图】本环节是在学生动手操作的基础上,将学习的主动权继续交给学生,让学生将自己的研究成果展示在同伴面前。在学生汇报的过程中,可能又会有不同的意见出现:对于从8瓶中找一瓶次品时很多同学都分成了3份,但只有分成3瓶、3瓶和2瓶时,保证找出次品称的次数最少。这将会再次引发学生的二次研究,促使学生对研究成果不断进行修正。
5、验证发现。
师:用你发现的方法算一算,要找出10个、11个、12个零件中的1个次品(次品重一些),看看是不是平均分成3份保证找出次品称的次数也是最少的。
学生独立验证并交流。
师小结:经过研究、验证,我们发现,平均分成3份找次品,保证找到次品称的次数最少,不能平均分成3份的,要把余下的平均分到各组。
师:回头想想,我们是用了哪些方法得出了这样的结论?
【设计意图】学生只有在经历知识形成的过程中所掌握的知识和方法才是鲜活的、可迁移的,学生的数学素质才能得到质的飞跃。所以在本环节教师需要引导学生进行了数学学习方法的小结,让学生感受到结论的得出依托于数学学习方法,将这些学习方法也可以渗透到学生今后的数学学习中。
三、实践应用,加深理解
1、课件出示教科书P113“练习二十七”第1题。
学生独立解答后小组内交流。
2、课件出示教科书P112“做一做”。
◎教学笔记
【教学提示】在教学时,教师要设计问题,引导学生进行推理。
学生独立完成,交流反馈。
【学情预设】在学生掌握了基本方法后,很多学生直接运用规律,不进行推理。
四、课堂小结
师:同学们,这节课就要结束了。你今天学了些什么?
师:学了今天的知识能帮我们解决什么问题呢?
板书设计
5(1,1,1,1,1,)2次8(1,1,1,1,1,1,1,1)4次
5(1,1,1,2)2次8(2,2,2,2)3次
5(2,2,1) 2次8(3,3,2) 2次
5(1,1,3) 2次8(4,4)3次
教学反思
教学设计中,考虑到学生通过操作过程总结出方法比较困难,而从3瓶中找次品,称一次就可以找到,从8瓶中找次品数据相对又比较大,所以增加了从5瓶中找次品这个环节,分解难点,在较小数据中理解思路,掌握方法。所以到后来找8瓶中的次品时,直接填表格,学生相对比较容易接受。
另外,从3瓶中找出1瓶次品,对于学生来说,得到这个结论不是很难。但是在表述时,因为出现了“如果……”,这个跟以前的单一性结论和过程有很大的区别的说法,所以学生在理解上还是有一定难度,特别是后面的从5瓶钙片中找出1瓶次品时,学生很难表述清楚,之后还需要加强学生的语言表达能力,帮他们理顺思路。
作业设计
见“状元成才路”系列丛书《创优作业100分》对应课时作业P68第一、三题。
一、有3个零件,其中1个是次品,比其他零件略重,请你用天平称量的方法找到次品,并记录下来。
二、有4瓶同样的降压药。
1、 用天平称一称,找出已经吃了的那一瓶,用表示称的过程。(可以用①、②、③、④代表这4瓶降压药)
2、至少称几次可以保证找出吃了的那一瓶?
找次品教学设计 4
【课前思考】
“找次品”是人教版教材五年级下册(数学广角)的内容,旨在通过“找次品”渗透优化思想,培养推理能力,让学生葱粉感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。教材以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理等方式体会运用优化策略解决问题的有效性,感受数学的魅力。
“找次品”问题是学生从未接触过的、需要重新建构的内容,学生会有新鲜感和探索求知的欲望。但对于大多数同学而言,它又是一个高难度的充满挑战的内容,因此部分同学在学习时会有一定的困难。
本课的教学内容比较多,学习这些内容需要比较高的思维水平。如何让学生正在地参与课堂的探究活动、解决问题并在此过程中感悟发现规律呢?我做了如下的教学设计进行实践探索。
【教学目标】
1.通过观察与操作,猜想验证和推理,体验找次品方法的多样化和最优化,发现和理解“把物品总数平均分成三份来称,保证找出次品的次数会最少”。
2.通过找次品的探究活动,渗透“化归”和“优化”的数学思想,培养合情推理能力,提高表达交流的能力,养成全面思考的习惯。
3.经历由直观演示操作逐步到逻辑推理抽象概括,体会数学的简洁美和神奇魅力,激发学习数学的兴趣。
【教学重点】
探索出找次品方法的多样化和最优化方法,理解和体会最优方案的特点。
【教学难点】
1.能够用简明的方法记录找次品的'思维过程。
2.在观察、比较中初步体会找次品最优方案的特点。
【课前准备】
纸质天平、棋子、操作记录单、课件
【课前游戏】
摸奖游戏
1.课件:从8个笑脸中摸一个奖品(从8个中摸中一个真不容易)
师:要使中奖容易些,你会增加笑脸的个数,还是减少笑脸的个数?
2.从4个笑脸中摸奖(体会更容易中奖)。
3.从2个笑脸中摸奖(体会“保证”意义)。
师:要保证中奖,我们得摸几次?
【设计意图:数学教学要考虑学生的认知发展水平和已有的经验。逐步逼近缩小范围的数学思想是有生活原型的,通过这个游戏,激活了学生生活经验,同时调动了学生上课的积极性。】
【教学过程】
一、情境导入
师:你知道3月15日是什么日子吗?(消费者权益保护日)
师:在315晚会上老师看到这样一则新闻:(课件出示)
一些不法商人往黄金里加金属铱冒充千足金来销售,加铱后的黄金用肉眼无法辨别,但重量会增加。
(你了解了哪些信息?)
【设计意图:用生活情境引出学习课题,感受数学源自生活。】
过渡:像这种不合格的产品,我们称之为次品,数学中有一类经典的智力问题叫“找次品”,这节课我们就一起来学习找次品。(板书课题)
二、新知探究
1.在2个物品中找次品
(课件出示题目)现在有2个外形和颜色一样的金元宝,其中有一个是加了金属铱的次品(次品重一些),现在请你当黄金检测师,你有什么办法找出这个次品?
(预设:用天平称,天平左右各放1个,往下沉的那个就是次品。)
师:(课件出示天平)能根据重量的轻重,用天平来找次品。在2个金元宝中找一个次品,只要称1次就能找出次品。
【设计意图:明确用天平来找可在重量方面检测出次品的问题。】
2.在3个物品中找次品
(课件出示题目)现在有3个这样的金元宝,有一个是次品(次品重一些),你也会用天平找出这个次品吗?需要称几次?
预设1:需要2次,我在天平两边各放1个,如果平衡,拿下一个再换另外一个,就会下沉,下沉的那个就是次品。
预设2:需要1次,我在天平两边各放1个,如果不平衡,下沉的那个就是次品;如果平衡,那没称的那个就是次品。
(1)你会更欣赏谁的方法?为什么?
【设计意图:感受检测出次品需称的次数可以尽可能少。】
(2)统一记录方法
为了便于交流和记录,我们可以这样记(结合操作步骤):
3个物品,可以用一根横线来表示天平,(板书:)
可以先在天平两边任意各放1个,(板书:1,1),剩下1个在天平外面。(补充板书:3(1,l,1))
这时天平可能会平衡,也可能不平衡(板书:平不平),如果是平衡,天平外那个就是次品,需称一次就找出了次品;如果不平衡,次品就是下沉的那一个,也只需要称一次就找出了次品。3(1,1,1)
不平1次
【设计意图:能够用简明的方法记录找次品的思维过程。】
3.在5个物品找次品
(1)想一想:5个金元宝中找一个次品(次品重一些),需要称几次才能找出这个次品?你会怎么称?
(2)小组合作,把称的方法记下来。
(3)小组汇报称法
预设1:在天平的左盘放1个,其余4个逐个放在右盘,直到找到次品为止。
预设2:在天平的左右两边各放2个,如果平衡剩下那个就是次品,1次找出了次品;如果不平衡,次品就在较重的那2个里面,再把较重的那2个放在天平的左右两边再称一次,这样2次就找出次品了。
记录:5(2,2,1)
不平2(1,1)2次
预设3:5(1,1,3)
不平1次
直观演示:课件演示称法
(4)理解“保证”“至少”的意义:我们找出了多种称法。要保证找出这个次品,至少要称几次?
天平有平衡和不平衡两种情况,我们不能保证一定衡,所以要保证找出我们就要考虑不平衡的情况,也就要做最坏的打算。并且在能保证找出次品的情况下,称的次数可以尽可能的少。
(板书擦出不能保证,也不是最少次数的情况,写上“保证找出,至少2次”)
【设计意图:感知称法的多样化,理解“保证”“至少”的意义。】
4.在8个物品中找次品
(1)想一想:8个中有1个次品(次品重一些),有几种称法?至少要称几次才能保证找到次品?(2)猜一猜:
①猜一猜,会有哪些称法?
(4,4)(2,2,2,2)(1,1,6)(2,2,4)(3,3,2)
②猜一猜:哪种称法保证找出次品的次数会最少。
(3)同桌合作合作验证猜想。
(4)汇报交流
(5)优化选择:多种称法,如果让你来选择,你会选择哪种称法?为什么?
(3,3,2)(保证找出次品的次数最少)
(6)反思:是不是分的组越多就越好?或者越少就越好?
【设计意图:优化称法。】
5.在9、10个物品中找次品
学生自主选择从“9个中找一个次品(次品重一些)”或“10个中找一个次品(次品重一些)”进行再次实践。
预设:学生能较快找到具体的答案9个(3,3,3)称2次;10个(3,3,4)或(2,2,6)(4,4,2)均为称3次。
【设计意图:较为开放的环节,学生按照自己的认识和理解自主选择方法,从而更好地引导学生发现规律】
6.发现规律,发现数理
(1)观察思考:结合几次称量的情况进行对比,这些不同的情况之中有什么共同之处吗?
预设:都是分成三组,每组中的数据都很接近,而且都有两个以上的数据是相同的。
(2)继续观察:称8个、9个的最佳办法都是唯一的,而称10个出现了三种分三组的办法,再观察,这三种方法哪一种和称8个、9个的办法更相似?
(3)发现规律:你认为以后不管遇到怎样的数,怎样称就能很快找到答案?
预设:只要尽可能平均分三组就行了。
为什么每次不多不少总是分三组好?
【设计意图:发现规律,总结方法,形成解决问题的策略。】
三、规律应用
有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
【设计意图:巩固理解,体验成功。】
四、总结
(1)都说数学都思维的体操,相信这节课同学都有收获说说你都收获了什么?
(2)你还有什么疑问吗?(可看书质疑)
板书设计:
找次品
3(1,1,1)
不平1次8(1,1,6)8(2,2,4)
8(3,3,2)2次
5(2,2,1)
不平2(1,1)2次9(3,3,3)2次
5(1,1,3)五年级下找次品教学心得体会共2
在一批产品中,有16个零件,其中有一个是次品,用一架天平来检查出那个次品,最少用3次可以称出,为什么?
满意回答
找次品的问题是有规律的。
一般都是分成aab三份。b可以等于a。b也可可能等于a+1或者a到1,根据总数决定。
把两个a放在天平两端,如果天平平衡,次品就在b里头,如果天平不平衡,则根据次品和正品的差别找出次品在哪一份。找到之后继续往下分三份。
这样一次就能排除掉三分之二,是最快的。1到3个,一次就可以搞定。4到9个,需要两次。10到27个。需要3次。28到814次82到243
5次
244到729
6次
16个的话第一次分成5个5个6个
可以找出是在某5个还是在某6个再找两次就保证找出了
找次品教学设计 5
教学目标
知识目标
能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
能力目标
让学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
重点能够借助纸笔对“找次品”问题进行分析。绿色圃中小学教育网
难点解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学过程
目标导学复习激趣目标导学自主合作汇报交流变式训练
创境激疑(一)情境导入、激发兴趣。
1.生产中多少会产生次品,这就需要质检员找出次品,今天就请你们来充当质检员,上岗前要对大家进行简单测试,看看你们的观察力和分析能力怎么样?
出示3组图片,前两组图中有一个次品,找出来,说根据。
2.师:在我们的日常生活中,也常常有这样的情况,有些物品看起来完全一样,但事实上重量不同,要么重一点要么轻一点的次品,混在合格产品里面。这节课我们就一起来研究如何“找次品”。(板书:找次品)
合作探究(二)初步认识“找次品”基本原理。
1.出示钙片提出问题:这里有3瓶钙片,其中有一瓶少了3粒,你能用什么办法把它找出来吗?
师:对,我们可以用天平来帮忙找出次品。
2.让生根据讨论题同桌互相说说方法。
3.学生汇报方案并上台边讲边在天平演示。师据生回答板:3(1,1,1)1次
(三)初步认识“找次品”的基本解决方法。
1.老师又拿来了两瓶钙片,和前面的三盒混在一起,你还能用天平将那盒少了两粒的钙片找出来吗?小组讨论:
(1)你把待测物品分成几份?每份是多少?
(2)假如天平平衡,次品在哪里?
(3)假如天平不平衡,次品又在哪里?
(4)至少称几次就一定能找出次品来?
2.老师在投影上演示,边演示边讲。
(四)从多种方法中,寻找“找次品”的'最佳方案。
“刚才大家都很聪明,都能在几盒钙片里找出轻的那盒次品来,那如果有的次品是比较重一些的,那你又能不能把它找出来呢?”
1、课件出示例2,有8个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
2、让学生分析讨论。(1)让学生以四人为一小组,讨论,然后把结果填在表中。零件个数分成的份数保证能找出次品的次数(2)汇报交流。
总结这样看来在利用天平找次品的时的最好方法:一是把待测物品分成三份;二是要分得尽量平均。
作业布置第113页练习二十七,第1题、第2题、第4题。
第114页练习二十七,第5题、第6题。
板书设计数学广角
找次品最好方法:
一是把待测物品分成三份;
二是要分得尽量平均。
找次品教学设计 6
一、教学内容
人教版《义务教育课程标准实验教科书数学》五年级下册第134页—135页。
二、教材分析:
《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
“找次品”的教学,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以“找次品”这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。
三、学情分析:
五年级的孩子普遍具有求知欲高、模仿能力强、喜欢动手操作的特点,正处于从形象思维向逻辑思维过渡的阶段。本节课是一节思维训练课,具有一定的难度。学生的探究活动需要用到天平,在上学期学习等式性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。
通过前面相关知识的学习,学生已经具有了一定的分析概括能力、思维能力、归纳总结的能力、发现事物隐含的规律的能力,对简单的优化思想等也有一定的了解。因为本节课学习内容难度比较大,所以不要求所有同学都能够理解和灵活运用。
四、教学目标
(一)知识技能目标:
1、能用简洁的方法记录找次品的过程,并能有条理地进行交流。
2、能够准确的从多个测品(只含有一个次品)中找出一个重一些或轻一些的次品。
(二)数学思考目标:
1、学生通过观察、猜测、试验、推理等活动,经历严密的推理过程,让学生感悟到从多个测品中找一个重一些或轻一些的次品的方法;
2、体会到解决问题策略的多样性及运用优化的方法解决问题的有效性,同时重在培养学生的推理能力。
(三)问题解决目标:
1、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。
2、初步培养学生的应用意识和解决实际问题的'能力。
(四)情感态度目标:
1、积极参与找次品的活动中,体会学习数学的快乐,感受数学的魅力。
2、体验获得成功的乐趣,不断提升自我成功感,建立学习数学的信心。
3、通过不断引领,鼓励学生质疑。
五、教学重、难点
教学重点:在找次品过程中,经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。
教学难点:
1、突破学生对“至少”“保证”的理解:在保证找到次品的前提下再考虑用最少的次数;
2、发现“分成三份,尽量平均分”是最快的方法。
六、教学准备:
多媒体课件、学具
七、教学程序
一)、课前活动、营造氛围、吸引学生
随机导出课题并板书:找次品。
老师这边有2块奖牌,其中就有1瓶次品,次品比较轻。各位同学有哪些办法能够找出这瓶“次品”?这个问题同学们先独立思考一下,有办法的同学举手。
师:天平有两个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,轻的一端就会怎么样(上扬),重的一端就会怎么样(下沉)。
师:在生活中常常有这样一些情况,在一些看起来完全相同的物品中混着一些不合格的物品。它们质量不同,轻一点或者是重一点,我们习惯把这类物品称之为“次品”。(板书课题:次品)
(设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解“至少称几次就一定能找到这个次品” 的含义,在此基础上让学生明白:当我们选用一种方法来分析研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略做好准备。)
二)、初步认识“找次品”的基本解决手段和方法
1.设疑:
师:刚才3个盒子中有一盒是次品,利用天平来称,至少几次就一定能找出次品?
2、学生上台展示
生:天平两端各放1瓶,(是任意拿的吗)如果天平两端平衡,那次品就在天平外的那瓶;如果天平两端不平衡,那次品就在上扬的一端。
三)、解决9件物品中有一件是次品的问题,归纳出找次品的最优方法。
1、出示问题:9瓶中有一瓶是次品,用天平秤来称,至少几次可以保证找到次品?教师引导分析方法:你可以用圆片摆一摆,也可以像老师这样做记录,看看至少需要几次就一定能找出次品。
2、自主探索。(设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。))
3、学生汇报称法:
生1:(3,3,3)→(1,1,1)2次
生2:(4,4,1)→(2,2)→(1,1)3次
生3:(2,2,5)→(2,2,1)→(1,1)3次
4、教师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?
提示:这种方法一开始就怎么分的?分成了几份?
5、小结:把9瓶口香糖分成3部分,并且平均分,能够保证找出次品而且称的次数最少。板书:平均分成3部分(设计意图:小组汇报时将学生的实验记录表展示出来,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其他任何一种分法都比2次要多,这样便于学生发现规律。)
四)、验证规律、感悟内化
如果有12瓶,(板书:12)其中有一瓶是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(生:平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?
我们再来看看别的分法能不能比3次更少。还有哪些分法?
请同学们选择一种分法在纸上进行分析。
全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?
与学生一起小结:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少,这说明我们刚才的猜想是对的。
五)、交流比较、总结提升、思考延续
分析:为什么平均分成3份称量次数是最优的方案。
六)、实践练习,巩固提高
师:让我们运用这个规律来解决生活中的一个实际问题。
出示习题:有15盒饼干,其中有一盒吃了几块,你能把这一盒从中找出来吗?
(学生练习,交流汇报解题方法。)
(设计意图:数学源于生活并服务于生活。把课堂学习与实践运用紧密结合起来,培养学生应用意识和解决实际问题的能力,既是本节课的主要目标之一,又进一步让学生体会数学与生活的紧密联系。)
师:通过这节课的学习,你有哪些收获?对你自己的学习还满意吗?
板书设计: 找次品
9(3,3,3)→3(1,1,1) 2次 保证 至少
9(4,4,1)→(2,2)→(1,1) 3次
9(2,2,5)→(2,2,1)→(1,1) 3次
找次品教学设计 7
教材内容分析
《找次品》是人教版数学五年级下册第七单元“数学广角”的内容。在现实生活中“次品”的情况各不相同,有的是外观与合格品不同,有的是所用质量不合格等。这节课的学习中要找的次品就是外观完全相同,但是质量有所差异,并且知道次品比合格品轻(或重),在所有待测物品中只有唯一的一个次品。
教学目标
1.知识和技能:通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,能够借助抽象记法对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。
2.过程与方法:经历用天平测次品的过程,体验实验探究、发现运用的学习方法。
3.情感态度与价值观:在学习活动中,体会数学的优化思想,感受数学知识的魅力,激发学习探究的欲望,培养学生的逻辑思维能力。
学情分析
五年级学生的思维水平总体上还处在具体运算操作的发展阶段,形象思维是他们的优势。由于在前段的学习中,学生已积累了探索数字规律的基本方法与策略,使学生学会灵活地、有序地思考,及时引导学生归纳出解决这类问题的最优策略,经历由
多样到优化的思维过程。
教学策略选择与设计
“找次品”的教学,旨在通过“找次品”渗透优化思想,引导学生充分感受到数学与日常生活的密切联系。通过本节课的教学培养学生用数学的能力。提高学生数学思维能力和解决问题的能力。本节课以“找次品”的一系列操作活动为载体,让学生通过动手操作、观察等方式感受生活中解决问题方法的多样性,在此基础上,通过归纳、推理的方法体会运用最优化策略解决问题的有效性,感受数学的魅力。
教具学具:
12个小方块课件
教学过程
课前交流
视频(美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零件(橡皮圈)引起的。同学们有什么要说的吗?(不合格产品又叫次品,次品虽小,可危害巨大。而在我们的生活中常常有一些看似完全相同的物品中混着一些质量不同轻一点或重一点的次品伤害着我们。如果我们提前发现他们就能避免一些伤害。)
说到次品老师想起了一位世界名人?你们想认识吗?
生:(想)
出示比尔盖茨的图像,让学生说说对他的了解。
师赞美(同学们知识真丰富一定是一群喜欢读书喜欢学习的好孩子。老师给你们点个赞。)
看到比尔盖茨那充满自信的笑充满智慧的笑我希望我们同学和比尔盖茨一样时刻充满自信的.笑智慧的笑,同学们能做到吗?同学们准备好了吗?上课
一、创设情景生成问题
1.出示情景生成问题
这节课我们一起学习如何去寻找外观相同,只有轻重不同的次品。
比尔盖茨公司在招聘员工的时候出过一道找次品的题目,想看吗?
生:想
出示课件:这儿有81瓶口香糖,其中有一瓶比其他的稍轻。如果只能用没有砝码的天平来测量,至少要称多少次才能保证把它找出来呢?
读完题目你知道了什么?有什么不明白的地方?
生(没砝码的天平怎么用)引导学生自己解决。
师小结用没有砝码的天平去称的时候次品可能在左边,也可能在右边,还可能在旁边,刚才同学们提的问题没砝码天平怎么使用现在明白了吗?生(明白)谁还有问题吗?
师:保证这两个字是什么意思?
生:自由回答,师小结保证找到就是一定找到,那怕最坏的情况下也要找出来,不考虑运气好的情况,要考虑运气最坏的情况。
师:现在题目的意思理解了吗?
谁来大胆的猜测猜测。学生自由回答。这只是我们的猜测,那怎样验证我们的猜测呢?是不是感觉有点难啊?
当我们遇到困难时该怎么办呢?(课件展示)老子的话
老子告诉我们从容易的开始,从容易的研究解决过程之中找到规律发现方法然后再去研究解决难的问题。那你们认为从几瓶找一瓶次品最好找呢?
生:有的说2瓶有的说3瓶那就从2瓶开始可以吗?
2.探索规律
(1)从2瓶中找1瓶次品
如果从两瓶中找出一瓶次品请问怎么用没有砝码的天平去把它称出来呢?
生:两端各放一瓶上翘的那瓶就是次品。再找一名学生汇报(回答的真好,掌声鼓励)
【设计意图(从2瓶中找一瓶次品巩固学生对没砝码天平的运用。】
(2)从3瓶中找1瓶次品
二、瓶好了接下来我们研究三瓶行吗?(课件展示)生思考,那谁上来给大家演示一下掌声有请(学生边说边演示)看谁听的
认真,观察的仔细,谁再来说说?看一看电脑是不是这样做的,在数学上老师把它记录下来可以这样记录:(板书)
刚才交流的时候大家用了一个词特别好
如果
那么
如果天平平衡那么剩下的那瓶是次品。天平不平衡那么上翘的那瓶是次品。
【设计意图:从3瓶中找一瓶次品巩固学生对没砝码天平的运用,初步感受找次品前先把待测物品分一分。】
称一次就知道次品在哪份中,还知道那两份中没次品。接下来研究从5瓶中找一瓶次品,独立思考,同桌交流,全班汇报。
比较从3瓶、5瓶中找次品让说发现?师生共同总结。带着我们的发现接下来我们增加点难度,同学们你们敢去挑战吗?从你们回答的声音中老师听到了你们的信心。
(3)从8、9、11、12瓶中找1瓶次品那我们以小组为单位来研究(课件)找学生读提示。我希望我们同学在小组内能够发挥团队的力量,开始(学生操作交流)。
老师巡视时非常感动,同学们很会合作学习,分工明确,认真研究,发挥了团队的力量,找到了找次品的不同方法,我们找一组上来分享他们的成果。这个小组研究的是从九瓶糖中找一瓶次品,让学生说一说每种方法是怎么分的?怎么称的?用了几次?仔细观察这组数据你认为哪种方法最好保证找到次品所用
的次数最少?为什么?
(4)总结规律小组交流汇报结论分成三份,并且平均分保证找到次品所称的次数最少用十二验证。通过验证我们知道分成三份的,并且平均分保证找到次品所称的次数最少。那不能平均分的又有什么规律可寻那?让研究八瓶的小组上前面和大家一起分享,仔细观察这组数据你认为哪种方法最好保证找到次品所用的次数最少?我们就来研究研究这种方法。这种方法怎么分的?怎么称的?
学生汇报的基础上,得出不能平均分的也分成三份,并且尽量平均分保证找到次品所称的次数最少呢?用十一去验证。通过验证我们知道不能平均分的也分成三份,并且尽量平均分保证找到次品所称的次数最少。通过我们同学的共同努力我们在找次品的行程中完成了一次飞跃找到了找次品的最优方法。
【设计意图:让学生自主探索找次品的方法,共同优化出最优方法,感受优化过程,并且明白为什么这种方法最优化。】
三、巩固应用内化提高
现在我们找到了找次品的技巧,那么我们应用我们刚才学到的知识去比尔盖茨的公司应聘好吗?八十一能平均分成三份吗?我们应该怎么办?自己完成。呼应猜测。
【设计意图:应用回归】
四、回顾整理内化提升
让学生说收获,生自由说。老师总结:
【设计意图:让学生明白数学学习方法,数学思想,探究思路是一生的财富。】
找次品教学设计 8
学情分析:
学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课中涉及到的 “可能”、“一定”、“可能性的大小”等知识点学生在此之前都已学过的。小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的'合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
学习目标:
1、能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
2、以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决
实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
学习重点:
寻找用天平找次品的“最优化”方案。
学习难点:
知识的拓展及用最优方法解决生活中的问题。
教、学具准备:
卡片、多媒体课件
教学过程:
一、 创设情景,生成问题
(播放视频)你从中了解到了什么信息?猜猜看,有可能是什么原因造成的。
二、 自主探索、合作交流
1.教学例1
师:(出示天平)同学们,老师给大家带来了一个老朋友,他是?(天平)记得吗?我们在学习方程的时候就已经认识他了。他在今天我们的学习中起到了重要的作用。
(1)初步认识天平
(2)学习例1
师:大家平时愿意帮助别人吗?老师遇到一个问题,你们愿意帮忙吗?
2.师:有个小朋友身体缺钙,买了3瓶钙片,(出示三个钙片)其中有1瓶吃掉了几粒,这瓶比其他的要怎么样?(轻一些)这个小朋友不注意将这瓶药和另外两瓶混在了一起。怎样才能帮我把这个次品找出来?。
学生介绍各种方法。(可以数数,用手掂一掂,用天平称)
3.师:大家帮忙找到了这么多方法解决问题,你认为哪种方法好,为什么?
(1)学生利用学具自主探索:现在有3瓶钙片,其中有一瓶比较少,我们可以拿出3个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。指导学生在交流中比较方法。
(3)师质疑:不进行实际称,你能利用天平的平衡原理表示出找次品的过程吗?
在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的。如果天平平衡,说明剩下的一瓶就是少的;如果天平不平衡,说明上扬的一端是少的。
(4)小结:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)
找次品教学设计 9
教学目标
1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。
2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。
学情分析
解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
重点难点
教学重点:
发现解决这类问题的最佳策略。
教学难点:
理解并认可最佳策略的有效性。
教学过程
活动1【导入】创设情境、激发兴趣
1、看视频,谈感受。
播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?
2、发现次品。
生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。
今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)
活动2【讲授】初步感知、寻找方法
1、出示例题。
有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?
数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。
2、天平的'原理。
如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。
3、华罗庚的数学思想。
让学生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!
活动3【活动】自主探究、方法多样
1.研究2瓶
师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)
2.讨论3瓶的问题
如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)
注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。
3.研究4-8瓶的问题
如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?
学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。
课件出示小组活动要求。
(1)把待测物品分成了几份?每份几个?
(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?
4.重点汇报8瓶的设计方案。
(1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?
(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。
(3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?
(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。
5.研究9瓶
学生根据总结的方法直接说出次数,小组验证。
活动4【练习】拓展提高,优化方案
1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?
2.举一反三: 从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。
3.发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
找次品教学设计 10
教学目标:
1.让学生初步认识“找次品”这类问题的基本解决手段和方法。
2.学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。 3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:
让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:
观察归纳“找次品”这类问题的最优策略。
教学准备:
多媒体课件、天平、5瓶钙片、学生准备圆形学具10个。
教学过程:
一、情境导入
课前谈话:随着生活水平的不断提高,我们家里的家用电器也越来越多。说说你们家都有哪些家用电器?各是什么品牌的?为什么选这个品牌呢? 播放电影片断:海尔砸冰箱事件。 看了这段影像,你有什么感想?
“不合格的产品流入市场,不但会侵害消费者的权益,也会损毁一个企业的声誉,可见质量检测是多么重要”。今天我们就一起来当小小质检员,用我们的智慧找出不合格的产品。
出示3瓶外观完全一样的钙片,说明:在这3瓶钙片中有一瓶少装了几颗,你能帮我找出是哪一瓶少装了吗? 学生自由发言。
在同学们说的这些方法中,你认为哪一种方法最好?为什么? 出示天平。怎样利用天平来找出这瓶钙片呢?
学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。
揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点的物品,需要想办法把它找出来,像这一类问题我们把它叫做“找次品”,这节课我们就一起来研究如何“找次品”。 板书课题:找次品
二、“找次品”的解决方法
小组合作:从5瓶钙片中找出少装了的那瓶次品。
(合作要求:用手模拟天平,用5个学具当钙片。你们是怎样称的?称了几次?组长负责作好记录。) 指名汇报,根据学生的回答同步用图示法板书学生的操作步骤: 平衡:
11次 5(2,2,1){
不平衡:2(1,1)
2次
5(1,1,1,1,1) 1次或2次
从这儿我们可以看出,用天平找次品的方法是多种多样的`。 观察思考:至少称几次就一定能找到这个次品呢?
三、探索最优策略
出示问题:在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢? 小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。
(合作要求:2名同学摆学具,2名同学用图示法作记录,2名同学分析填表。)注:因该网页不能显示表格,出示表格项目如下:
零件个数 分成的份数 每份的个数 至少称几次就一定能找到这个次品
指名汇报,根据学生的回答填表并板书: 平衡3(1,1,1) 9(3,3,3){
不平衡3(1,1,1)
2次 平衡1次
9(4,4,1){ 平衡2(1,1) 3次 不平衡4(1,1,2){ 不平衡 2次
平衡 2次
平衡(2,2,1){9(2,2,2,2,1){不平衡2(1,1)3次 不平衡2(1,1) 2次
引导观察:用哪一种方法保证能找出次品需要称的次数最少? 小结:平均分成3份去称,保证能找出次品所需的次数最少。 不能平均分成3份的应该怎样分呢?
全班合作:用图示法从10个和11个零件中找出一个次品。
(合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)
指名汇报,投影展示学生的分析过程。
引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。
你知道这是为什么吗?你能不能对这个规律作出解释?
四、拓展提高
猜测:这种方法在待测物品的数量更大时是否也成立呢?
第135页“做一做”:有( )瓶水,除1瓶是盐水略重一些外,其他几瓶质量相同。至少称几次能保证找出这瓶盐水?
请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。
《找次品》教学简评
四月10 日上午,听了闵娟老师执教的《找次品》这节课,很受启发。下面我就这节课谈谈自己的一些看法和体会。
纵观整节课,闵老师教得活泼生动,学生学得兴趣盎然。在学生学习知识的同时,闵老师很好的注意了数学思想方法的渗透,让学生在“找”的过程中,其思维过程充分地暴露出来。
1、重视操作活动,发挥主体作用。
本节课的活动性和操作性比较强,闵老师让学生借助圆片,以动手操作为手段,以思维训练为目的,把3个零件和5个零件作为学生研究的起点,放手让学生操作探索,让学生通过操作、思考、讨论、交流去获得数学知识,使学生得到主动发展。
2、重视小组合作,培养学生解决问题能力。
合作交流有利于培养学生良好的合作意识和积极的个性心理品质,在交往互动的过程中,使学生多思维,多实践,多表达,能更多地体验到成功的喜悦。因此我们在教学中应十分重视培养学生合作交流的意识,提供一些让学生相互合作、相互交流的机会,促使他们不断地自由参与,自主学习,让数学课堂呈现出活泼的情景,使 数学课堂教学充满生机和活力。闵老师在这节课上多次让学生小组合作学习,要求学生通过小组活动探究解决问题的方法,在活动过程中逐步养成合作、交流的习惯。
3、注重了数学思想方法的培养。
培养学生数学思想方法一直是我们数学教学学科的特色。无论是低年级还是高年级,简单的教材还是复杂难的教材,老师在教学时候都应该渗透一定的数学思考方法。闵老师在教学探讨待测物品数量为5个、9个时怎样找次品,并罗列出各种解决方案。让学生操作、推理、研究,设计出各种方案,然后从这些方案中寻找规律,总结、提炼出一般方法和优化策略.个人建议:
本节课的教学重点是9个待测物品的教学,在找到解决问题多种策略的同时,寻求最优的解决策略。而“12个”是最优方案的验证,教师可先让学生猜测,再列举出不同的分法,从而得出“没有比3次更少的分法”,来验证所寻找的最优策略。最后还可以用归纳出的最优方法去解决待测物品更多的问题(如27),让学生进一步体验运用优化方法解决问题的有效性。
找次品教学设计 11
教学目标:
1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。
2、学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。
3、通过解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重、难点:
让学生经历“比较——猜想——验证”的过程,寻求找次品的最优策略。
学情分析:
“找次品”的教学内容在“奥数”活动中时有出现,用图形帮助思考,对培养学生动手能力和思维能力都是比较好的,学生虽然是初次接触,但只要通过动手实践、小组讨论、探究等方式来解决问题,掌握一题多解的方法还是不难的。关键是最优化的解决策略,学生总结方法时有些难度,教师要适时引导。
教学过程:
一、弄清问题题意,激发探究欲望
师:今天这节课,我们就从某公司招聘员工的一道题目开始,假定你就是应聘者,想不想接受一下智慧的'挑战?(出示课件)
问题是:假如你有81个外观完全一样的玻璃球,其中有一个球比其它的球稍轻,属于次品,如果只能利用没有砝码的天平来断定哪一个球轻,请问你最少要称几次才能保证找到较轻的那个球?
(一分钟思考)学生汇报:1次丶2次…
师:请只用1次的同学说一说,你是怎样想的?
生1:
生2:
师:看来,1次虽少,但只是有可能,不能保证找到那个次品球,所以我们在思考这个问题的时候,不光要最少,还要以保证能找到为前提。
师:如果以“保证能找到”为前提,在同学们这么多的答案中,哪个次数是最少的呢?这一节课我们就一起来研究这个问题一一找次品。
二、简化问题,经历问题解决基本过程。
对于从81个小球中找次品的问题,比较复杂,那么怎样开始我们今天的研究呢?
生:可以从最少的试一试。
师:如果从最简单的入手研究,2个小球至少称几次?
生:1次。
师:如果是3个呢?
生猜测:2次?3次?1次?
师:老师这里有3瓶口香糖,其中有一瓶少了3粒,你觉得应该怎样称?
生汇报:先把其中的2瓶放在天平的两侧,如果左边下沉,就说明右边的是次品;如果右边的下沉,就说明左边的是次品;如果天平平衡,则没称的是次品。(学生边说老师边配合进行称量演示。)
师边演示课件边带领学生进一步感受推理过程:虽然有3瓶,而天平只有两个托盘,但是只需要把其中的2瓶放在天平的两侧,可能平衡,也可能不平衡,如果平衡如果不平衡不论是否平衡,利用推理,只要称1次肯定能将那个次品找出来。
师小结:看来2个和3个虽然数量不同,但是都只称1次就可以将次品找到。(将探究结果记录在表格中)
三、再次探究“关键数目”,初步感知、归纳规律
1、探究4个小球的情况。
(1)师:如果再增加一个球,现在有4个球,其中有一个是次品,一次可以保证找到次品吗?
生猜测:4次?3次?
师:纸上得来终觉浅,绝知此事要躬行。咱们还是亲自动手探究一下吧。请同学们与自己的同桌共同讨论一下。可以借用小方块摆一摆,也可以在纸上画一画,不论用什么样的方式,都要将思考过程简要记下来。
(生分组研究)
师:4个小球时,你们称了几次?
(生边汇报师边板书枝状图)
师:4个球有两种不同的测量方法,但结果测量的次数都一样,至少要2次才能保证找出次品。(把结果记录在表格中)
师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?请同学们用学具摆一摆,用笔画一画。
(生汇报师出示课件)
师:为什么把9个球分成(3,3,3)只要2次就可以找到次品呢?
(引导学生发现规律,把结果填入表格中)
师:4个球只需要2次就可以保证找到次品,9个球也只需要2次就能保证找到次品,那么大胆猜测一下,在4与9之间的5、6、7、8个球,至少需要几次就能找出次品呢?现在我们分组来研究一下:第1大组的同学研究5个小球的情况,依次研究6、7、8个球。
(生汇报,重点是8个球)(把结果填入表格中)
师:我们来比较一下,我们将8个小球分成(3,3,2)三组称2次,可是把8个小球分成(4,4)两组却称了3次,多称了1次,多称的1次多在哪儿呢?
生:小球数是2和3个时只用一次,把8分成(3,3,2)每组是3个或2个,3个或2个都只需要称1次就能找到次品。
师:你们明白他的意思吗?你们看,称(3,3)或(4,4),都只称1次就能确定次品在哪边,可是接下来,第一种是在3个或2个里找,只需一次,第二种要在4个里找,要用2次,所以会多一次。
师:大家最后称的次数不同,原因是什么呢?
生:分的组数不同,每组数量也不同。
师:那到底怎么分,才能既保证找到次品,又能使称的次数尽可能少呢?
(生分组讨论后汇报)
生1:应该分3组,因为天平有2个托盘
生2:每组的数目还要少。
生3:尽可能让每组数目比较接近,每次称完,次品就被确定在更小的范围内。
师:你们太了不起了,通过我们刚才的试验、讨论、交流,不仅解决了问题,而且发现了其中分组的秘密规律。
(师板书:分3组,尽量平均分。)
四、进一步发现规律
师:现在我们就应用分组的规律,再来一次实验,如果小球个数是10个(课件),该怎么分?称几次?
(生汇报,师板书:10(3,3,4)3次)(课件)
师:如果是27个呢?(课件)
(生汇报,师板书:27(9,9,9)3次(课件)
师:这位同学说的太好了,他先是分成了3组,然后用转化的思想把问题变成我们前面解决的9个小球的找次品问题了。
看来大家都掌握了分组规律。最开始的招聘问题,81个小球,大家能解决了吗?谁有了答案?把结果直接写在黑板上。
(生讨论并汇报结果)(课件)
师:你能发现它和前面我们解决的27个,9个,3个,有什么关系吗?
(小组研究)
生汇报:被测小球数目是几个3相乘就称几次,比如4个3相乘是81,81个小球就只需称4次。
师:你们很了不起,既解决了公司“招聘”问题,又发现了“被测物品数目与称的最少次数之间”神秘的规律。
五、课堂小结
随着招聘问题的解决,今天的课也即将结束,回顾我们整节课的经历,从最初的招聘问题,回归到解决2、3的问题,再到研究8、9发现分组规律,直至研究了更大的数目,像27、81这样的数目,发现了被测物品数目与称的最少次数之间的一些关系。
在这一路的探究过程中,我们不断思考,不断实践,不断发现,我想大家在收获知识的同时,一定收获了更多的智慧。最后有两句话与大家共勉:(课件出示)
探究问题,学会化繁为简
解决问题,要有优化意识
找次品教学设计 12
教学目标:
1、知识与能力:通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,感受优化思想。
2、过程与方法:尝试用数学的方法来解决实际生活中的简单问题。
3、情感、态度与价值观:培养数学的应用意识和解决问题的`能力,同时培养探索和创新精神。
教学重点:
通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,感受优化思想。
教学难点:
尝试用数学的方法来解决实际生活中的简单问题。
教具准备:
课件、小黑板等。
教学方法:
小组合作、交流的学习方法。
教学过程:
一、复习导入
了解天平的工作原理后,会正确使用天平解决问题。
二、新课讲授
1.提出问题
(1)出示教材第112例2:9个零件里有1个是次品(次品重一些),假如用天平称,至少称几次就保证一定能找出次品?
(2)独立思考。老师鼓励学生大胆假想,积极发言。
2.自主探索
(1)引导学生探索利用天平找次品的方法,大家猜猜,怎样利用天平找出零件里的次品?
(2)先独立思考,再小组交流。
(3)全班汇报
利用推理:把9个零件分成3份,每份分别是3个,3个,3个。天平两边各放3个,天平平衡,则次品在另3个零件中,再从3个中拿出2个,在天平两端各放1 个,天平平衡,剩下一个零件是次品;如果第一次称量中,天平不平衡,次品零件在重的3个当中,拿出其中两个,在天平两端各放一个。如果平衡,则剩下一个是次品,如果不平衡,则重的那个是次品。
(4)你还有什么其他方法吗?
三、课堂作业
1.完成教材112页做一做。
学生在小组中讨论交流,共同完成。
2.完成教材第113~114页练习二十七的第2~6题。
四、课堂小结
这节课我们学习了稍复杂的找次品问题,你收获是什么?
五、课后作业
完成练习册中本课时练习
板书设计:
稍复杂的找次品问题
找次品教学设计 13
教学目标:
1.通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。
2.学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。
3.通过解决实际问题中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重难点:借助实物操作、画图等活动理解并解决简单的“找次品”问题,在此基础上归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。
教学准备:
天平、3瓶口香糖、多媒体课件、学生每人3个圆纸片。
教学过程:
一、创设教学情境 提出数学问题
师:大家听说过次品吗?(板书:次品)你是怎样理解“次品”的?
师:考考你的眼力!(找次品)(课件)
师:次品有的是外观瑕疵,有的是成分不合要求,还有的是产品的质量与正常的不同……。 次品虽小,危害却大。今天我们要找的是众多外观一样的产品当中,隐藏的一个质量不合格的次品。(板书课题:找次品)
二、组织有效活动 探究数学本质
(一)初步体会“找次品”的原理
师:通过以前的学习,我们知道从简单问题入手容易发现规律。
师:(课件:3瓶口香糖)3瓶中有一个已经吃过了,质量较轻,不能作为正品,你有什么办法找到这瓶次品吗?
可能出现:掂一掂、数一数、称一称。(介绍天平:正常情况下,天平左盘称物品,右盘放砝码。不过我们今天是天平两边放相同数量的物体。伸出你的手示意,如果……说明;如果……说明。)
(1)板书出示:3瓶至少称几次能保证找出次品来?
“至少”、“保证”什么意思?你怎么理解?
(2)你觉得需要称几次呢?怎么称?试一试。
指名回答,可以引导学生加上动作体会,同时演示课件。
(3)师生共同小结(同时板书):
瓶数是3瓶(板书:瓶数),先在天平两边各放一瓶,也就是先把它们分成三份(板书:分法),每份1个。板书:3( 1,1,1) 需要1次。(板书:次数:1次) 这个环节总体板书如下:
瓶数 分法 至少要称的次数
3 3(1,1,1) 1
师:天平有几个托盘?2个托盘,3个物品,为什么称一次就找出次品了?我们来找找原因:
(因为天平有2个托盘,所以次品的位置无外乎左盘、右盘或天平外,称一次就能确定出次品在三个位置中的哪一个。)
(二)感悟“找次品”的方法
(1)师:刚才我们研究的是3瓶,现在有8瓶,还是其中一瓶轻一些,用天平称,至少称几次保证可以找出这一瓶次品?
(2) (操作提示) 同桌合作完成。
①你把待测物品分成几份?每份是多少?选哪些份量?
②假如天平平衡,次品在哪里?
③假如天平不平衡,次品又在哪里?
(3)反馈:你把它分成了几份?要称几次?(依次交流不同方法,板书)
瓶数 分法和过程 至少要称的次数
8 8(3,3,2) 3(1,1,1) 2
8 8(4,4) 4(2,2) 2(1,1) 3
8 8(2,2,4) 4(2,2) 2(1,1) 3
8 8(1,1,6) 6(1,1,4) 4(1,1,2) 2(1,1) 4
师:(指4,4和3,3,2)对比这两种分法,同样是称一次,8(4,4)排除1份,把次品锁定在4个之中,而8(3,3,2)排除2份,把次品锁定在3个或2个之中,看来要使称的次数最少,就要做到称一次把次品锁定在更小的范围内,这说明把待测物品分成3份比较好!
(4)师:如果要从9瓶中保证找出1瓶次品,至少要称几次呢?能不能脱离学具,直接用简洁的方法表示思路?
学生汇报,课件展示。
三、致力问题核心 建立数学模型
师:刚才我们知道了把待测物品分成3份,称一次就可以确定次品所在的位置,大家对比一下9(4,4,1)和9(3,3,3),同样是分成3份,为什么后一种需要称的次数少?(生交流)
(称一次就能确定出次品在三个位置中的.哪一个,因为要保证找出次品,就要考虑运气不好的情况,做最坏的打算;要使称量的次数最少,就应该使三个地方的个数尽量同样多。这样,每次称量后就把次品确定在更小的范围内。不管次品在三个地方中的任何一个,问题都能转化成“从总数的三分之一(左右)里找次品”。)
师:那你能试着总结一下找次品的最优策略吗?观察9(3,3,3)和8(3,3,2)(把待测物品尽量平均分成3份)
师:太了不起了!通过实验、讨论和交流,我们不仅解决了问题,还找到了解决问题的最优策略。
师:用我们发现的方法再来实验一次:从10瓶或11瓶中找次品,任选一题解决。(交流)
师:虽然待测物品的总数不同,但称一次后都转化成了从4个中找次品,所以都是至少称3次。
四、设计有效检测 解决实际问题
1、有15盒饼干,其中的14盒质量相同,另有1盒少了几块,如果能用天平秤,至少几次保证可以找出这盒饼干?
2、有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
3、有81枚金币,其中有一枚是假金币(比真金币轻一些),至少称几次保证能找出这枚假金币?(机动)
五、升华经验成果 深化数学内涵
师:我们所探究出的找次品的方法其实和四年级所探究的烙饼问题、田忌赛马问题等一样,就是寻找解决问题的最优策略,因为这样能够事半功倍!
师:其实待测物品的数量与至少要称的次数之间是有规律的(出示“你知道吗?”)大家课下预习一下,下节课我们再研究。
板书设计
找次品
瓶数 分法与过程 至少要称的次数
3 3(1,1,1) 1
8 8(3,3,2) 3(1,1,1) 2
9 9(3,3,3) 3(1,1,1) 2
找次品教学设计 14
一、教材简析:
“找次品”是人教版数学5年级下册第七单元数学广角的内容。这节课中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。 在教学内容上安排了两个例题:例1通过利用天平找出5件物品中的1件次品,让学生初步认识“找次品”这类问题基本的解决手段和方法。例2的待测物品数量为9个,在实验上具有承前启后的作用。便于学生与例1的结果进行对比,从而总结出解决该问题的一般思路。
二、目标设计:
1、通过用天平称,猜测,画图推理等活动,学习找次品的方法,体会解决问题的策略的多样性。
2、通过讨论、探究、逻辑推理等活动,寻找找次品的优化方法,解决身边的数学问题,感受数学在日常生活中的广泛运用,初步培养学生的运用意识和解决实际问题的能力。
三、学具准备:
天平6台、测量用的相关物品若干等。
四、设计思路:
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。一方面注意让学生进行合作学习,小组交流,经历找次品的过程;另一方面注意引导学生体会解决问题策略的多样性。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。
五、教后感想:
(一)情景的创设
通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。设计这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。
(二)难点转化、降低教学起点
按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3个药瓶中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
(三)层层推进、符合小学生的认知规律
本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
(四)、知识拓展、巩固提高
当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在集体备课后我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。总结出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。通过今天教学实际来看,效果更好一些。
(五)多种教学方法、提高效率
在教学过程中,充分的'运用了研究性学习的教学 方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
不足之处:
1、由于时间关系,在研究从9个和12个中找次品时,学生小组交流的时间不够充分,汇报时有些方法没有反馈。
2、板书设计不好设计、很抽象,不容易使孩子们理解,因此我在设计板书时,进行了简化。用下划线来代表天平,上面的两个数字代表托盘两边的物品数量,这样就更形象一些,让孩子们也更容易理解一些。但分析天平两边出现的两种情况,不很清楚、易懂。究竟什么方法更利于学生理解,还值得探讨。
3、学生对实验过称的表达能力还有待提高,一些学生说不明白,甚至所说的别人听不懂。
六、改进设想:
1、能不能把学生熟悉的、身边的生活实例用动画式课件播放出来做导入,引出问题会更加直观、形象,吸引学生眼球,更易提高学习兴趣。
2、能不能各小组用不同数量的物品做实验,减少合作探究实验环节,让各小组有足够的时间去探究、交流,以至于能把每一次实验的过称说清楚,说明白。 五教学过程
(一)导入
1.出示天平教具,提问:这是什么?(天平)你知道天平的作用吗?它的工作原理是什么?
学生介绍自己对天平的了解,阐述天平的工作原理和特点。
天平大家都见过吗?有两个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,重的一端就会......轻的一端就会......,老师在学生发言的基础上,进一步阐述天平的工作原理。
2.创设情景,自主探索。
(1)出示钙片,提出问题:这里有3瓶钙片,其是有一瓶少了3片,你能用什么办法把它找出来吗?
(2)独立思考。老师鼓励学生大胆设想,积极发言。
全班汇报。老师指导学生认真倾听并且积极评价各种方案:打开瓶子数一数、用手掂掂、用秤称(你选择用什么秤来称)、用天平称(老师不急于让学生说出最佳方案,给全班留出思考空间。)
3.自主探索用天平找次品的基本方法。
(1)引导学生探索利用天平找次品的方法:大家猜猜,怎么样利用天平找出这瓶少了的钙片。我们可以拿出3个学具代替钙片,想象一下,怎样找出少了的这瓶? (2)独立思考,有一定思维结果的时候组织小组交流。老师指引导学生探索利用天平找次品的方法:大家猜猜,怎么样利用天平找出这瓶少了的钙片。导交流方法:一个一个讲,声音不要太大,能让对方听到就可以了,也可以边讲边演示,让对方可以更清楚......
(3)全班汇报。一个一个地称出重量(利用硅码);利用推理(老师手托实物模拟天平帮助演示,强调全面考虑可能出现的结果:你说的是“如果”,那还可能出现什么情况?说明什么?......
老师小结:利用天平找到这瓶钙片有多种方法,可以在天平上用祛码称出每瓶的质量再进行比较。还可以在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的;如果天平平衡,说明剩下的一瓶是少的;如果天平不平衡,说明上扬的一端是少的。
4.揭示课题。
综合比较几种方法(打开瓶子数一数、用手掂掂、用盘秤称、用天平称......),哪一种更加快速、准确?(天平)在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点,利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。(板书课题:找次品)接下来我们再请天平来帮帮忙。
(二)教学实施
1.出示例1:这里有5瓶钙片,其中1瓶少了3片,设法把它找出来。
2.让学生思考后,说出自己的想法。
(1)出示问题,引导学生利用学具自主探索:现在有5瓶钙片,其中有1瓶比较少,怎样利用天平把这瓶钙片找出来呢?我们可以拿出5个学具代替钙片,想象一下,怎样找出少了的这瓶?
(2)独立思考,有一定思维结果的时候组织小组交流。老师指导学生在交流中比较方法。
(3)全班汇报。较复杂的方法老师帮助板书示意图。老师在引导语中强调全面考虑可能出现的结果:怎么找?可能出观什么情况?说明什么?
(4)对几种方法的梳理、比较:分成几份?每份数量是多少?至少需要称几次就一定能找出来?
(5)老师小结:在天平的帮助下找到这瓶钙片有多种方法,可以......还可以......。除了利用学具,还可以画出示意图来帮助我们思考。
5.完成教材第1
36、137页练习二十六的第1-3题。学生独立完成,集体交流。
(l)第1题,因总数为9筐,故可平均分成3份,只称2次就能保证把吃过的那筐松果找出来。如果天平两端各放4筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的那筐松果;但这种方法是不能保证一次就能称出来的,也不能保证2次就能称出来,只能保证称3次就一定能称出来,故该方法不是最优的。
(2)第2题,把15盒平均分成3份,至多3次就可能保证找出较轻的那盒饼干。
找次品教学设计 15
教学目标:
1、通过观察、猜测、实验、推理等活动,探索解决问题的策略,渗透优化的数学思想方法。
2、利用图形、符号等直观方式,表示数学思维过程,培养观察、分析、推理的能力和解决问题的能力。
3、体会解决问题策略的多样性,感悟和运用数学思想方法,感受数学的魅力和数学学习的快乐。
教学重点:
体会解决问题策略的多样性,探求解决问题的优化策略,渗透数学思想方法。
教学难点:
从解决问题策略的多样化中发现最优策略。
教具准备:
瓶装口香糖、课件
学具准备:
圆片、纸笔。
教学过程:
一、借助直观,理清“找次品”的思路
1、创设情境。
同学们,在生活中你们或家人、同学有买过次品的经历吗?在我们的日常生活中,有许多产品,有的外观有瑕疵,有的成分不过关,还有的轻重不合格,我们称它们为次品。(板书:次品)
出示实物,提出问题:这里有3瓶口香糖,其中有一瓶少了3片,你能用天平把它找出来吗?
2、理解天平的.原理。(课件出示天平图)你们都知道天平吧!谁来说说天平原理?
3、在2瓶中找次品。(课件演示)看,次品在哪?
4、在3瓶中找次品。
全班汇报:怎么样利用天平找出这瓶少了的口香糖。
课件演示:随意拿两瓶放在天平上,可能会出现几种情况?
小结:看来从3瓶中找一瓶次品,我们称一次,通过天平的平衡与不平衡,就能准确找出次品。
5、在4瓶中找一个次品
提出问题:如果增加1瓶,有4瓶了。要怎么找出轻的这一瓶呢?可以怎样称?结合学生回答演示课件。
6、揭示课题。我们就用这个好方法,今天一起来研究——找次品。(板书课题:找次品)
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例题前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理;再从4瓶中找次品。在2个、3个和4个中找次品是基础,只有理清了这些“找次品”的思路,后面的探究、推理活动才能顺利进行。]
二、引导探究,体会方法的多样性
1、出示例题:5个乒乓球中有一个较轻的是次品,你想怎么称?
(1)收集称的方法。(一个一个称,两个两个称)
(2)同桌合作,摆学具,想一想:怎样称?需称几次?
(3)指名汇报:(教师随机课件演示:怎么找?可能出现什么情况?说明什么?教师帮助板书示意图。)
5(1,1,3)2次
5(2,2,1)2次
2、小结:同学们真是能干!从5个乒乓球中找到了轻的那一个。先分一分,想到了两种方法,再通过天平的平衡与不平衡,至少2次找到次品。
[设计意图:在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。为了便于学生操作和节省时间,所以让学生用学具模拟天平实验来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下基础。]
三、猜测实验,寻找规律
1、出示例题:有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?
2、枚举所有称法,学生分析、汇报。
(1)有几种分法?
(2)画图分析,有困难的可以摆摆学具帮助分析。
(3)汇报各种称法。
3、教师引导学生观察、比较:你有什么发现?
4、优化解决办法:分3份、平均分。
5、小结:同学们通过观察表格,比较这三种方法,发现只要把9个零件平均分成3份,就能最快找到次品了。
[设计意图:这一环节是本节课的重点也是难点,学生通过思考、分析,结合操作,尝试用图示法记录找次品过程,是完成由具体到抽象过渡中的重要一步。让学生在交流、对比中探索最简的方法,经历学习、发现和探索的过程。]
四、拓展延伸,优化策略
1、同学们,生活中有很多的“找次品”的问题并不能平均分成3份。“我们看看前面的5的例子,[师指黑板5(2,2,1)],我们要分成3份时要分得尽量怎样?”(要分得尽量平均)。
2、在8个中找次品。试一下,怎么分3份?(预设:2,2,4或3,3,2)
引导学生分析哪种分法好?板书:8(3,3,2)2次
3、小结:看来,没法平均分的数,我们只要“尽量”(试着让学生说出来)平均分。也就是分在三份里的数中,最大与最小份只相差1,也能既快又保证找到次品了。
补板书:尽量
同学们真了不起,能从刚才发现的规律推理到8个中找次品,并归纳出找次品的最优策略。
[设计意图:从5个中找次品类推到8个中找次品,引导学生探索发现不能平均分成3份的要尽量平均分成3份,完善找次品的最优方法,引发学生进一步学习归纳、推理等数学思考活动。]
五、巩固应用,深化认识
师:有了找次品的最优策略,想不想试试它的功效呢?
出示:有()瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?
让学生自主选择10或15,尝试解决这道题。
六、课堂总结,拓展延伸
1、这节课我们解决什么问题?怎样解决最优?
2、我们用了哪些方法发现了找次品的最优策略?
3、我们为什么要研究找次品?
找次品教学设计 16
教学目标:
1、知识与能力:尝试用数学方法解决实际生活中的简单问题。
2、过程与方法:通过观察、猜测、实验、推理等活动,指导学生体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、情感、态度与价值观:引导学生感受数学在日常生活中的广泛应用,尝试用数学的.方法来解决实际生活中的策略问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:
尝试用数学方法解决实际生活中的简单问题。
教学难点:
学生体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教具准备:
课件等。
教学方法:
小组合作、交流的学习方法。
教学过程:
一、情景导入
出示天平教具,提问:这是什么?(天平)你知道天平的作用吗?它的工作原理是什么?
二、新课讲授
1.自主探索。
(1)出示教材第111页例1:这里有3瓶钙片,其中有一瓶少了3片,你能用什么方法把它找出来吗?
(2)独立思考。老师鼓励学生大胆设想,积极发言。
方案:打开瓶子数一数,用手掂掂,用天平称。(板书课题:找次品)
2.自主探索用天平找次品的基本方法。
(1)引导学生探索利用天平找次品的方法:大家猜猜,怎样利用天平找出这瓶少了的钙片,我们可以拿出3个学具,代替钙片,想象一下,怎样才能找出少了的那瓶?
(2)独立思考,有一定思维结果的时候小组交流。
(3)全班汇报
①一个一个地称重量(利用砝码),最轻的就是少了的那一瓶;
②利用推理:在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的。如果天平平衡,说明剩下的一瓶就是少的;如果天平不平衡,说明上扬的一端是少的。
(4)小结并揭示课题。
①综合比较几种方法(数一数,掂一掂,盘秤称,天平称),哪一种更加快速,准确?
②在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点。利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。
找次品教学设计 17
教学目标
1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
3.培养学生的合作意识和探究兴趣。
教学重点:
让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:
观察归纳“找次品”这类问题的最优策略。
教学过程
(一)创设情境,导入新课
【课件播放有关次品的视频】
师:看了刚才那段视频,你们有什么想说的?
生自由回答。
师:生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板贴:次品。)
师:次品虽小,危害却大。今天咱们就一起去找轻重不合格的次品。(板贴:找。)
师:要找轻重不合格的次品,我们要用到什么工具?(天平)
(二)探究新课
1.有关比尔·盖茨与81个玻璃球的问题
【课件出示小比尔·盖茨的问题:这儿有81个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢?】
让生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,让我们从数量较小的来研究吧!
2.研究2个球
【课件演示:把2个球放在天平上】
师:有2个玻璃球,其中有一个球比正常的球稍重,如果只能利用天平来测量,怎样可以找出次品呢?
师:如果次品比正常的球稍轻呢?
3.讨论3个球的问题
【课件:这儿有3个玻璃球,其中有一个球比其他的球稍重,如果只能利用天平来测量,至少要称多少次才能保证找出来呢?】
生叙述称球的过程。
【课件再次演示过程,并板书枝状图。】
师:次品可能是这三个“1”中的任意一个,但无论哪一个是次品,都只需要一次就可以保证找出次品了。
师将探究结果填入记录表中。
4.研究4个球的问题
【课件:这儿有4个玻璃球,其中有一个球比其他的球稍重,如果只能利用没天平来测量,至少要称多少次才能保证找出来呢?】
师:如果再增加一个球,4个球,一次可以保证找出次品吗?
生自由回答。
师:我们还是动手去探究吧。
【课件出示如下小组活动要求。(1)四人一组,用棋子代替玻璃球,用尺子代替天平,摆一摆。(2)4个球被分成了几份?每份几个?(3)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?(4)想一想,你们组的方法是否既做到了“至少”,也做到了“保证”?】
生分组探究后,上实物展台汇报,师根据生的汇报板书枝状图,同时帮助生在此环节理解“至少”和“保证”的含义。
师小结:4个球,有两种不同的测量方法,但测量的结果都是一样的,至少需要2次才能保证找出次品。
把结果记录在表格中。
师:如果只测量一次,最多可以保证在几个球中找出次品?
5.讨论9个球
【课件:这儿有9个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢?】
师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?
【小组活动要求如下。(1)请同学们用学具摆一摆,试试看,有几种不同的方法。(2)9个球被分成了几份?每份几个?(3)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?(4)哪种方法符合题目中的“至少”和“保证”? 】
生在实物展台上汇报9个球的测量方法,师板书在黑板上。
生可能出现的方法如下。
引导学生观察、比较板书,哪种方法符合题意?
师:为什么把9个球分成(3,3,3)只要2次就可以找出次品?
引导学生发现:第一种方法每份分出的数量是3,次品一定在某一份的3个球里,不管是哪一份,3个球只需要一次就只可以找出次品来,所以9个球只需要2次;但第二种分法有2份分出的.数量是4,4个球需要2次才能找出次品,9个球就需要3次才能保证找出次品。
师:如果球的数量在9以内,你们觉得每份分出的数量是3好还是4呢?分的时候要注意什么?
引导学生发现:每份分出的数量不能超过3。
6.5~8个球的研究
师(出示记录表):4个球只需要2次可以保证找出次品,9个球也只需要2次就能保证找出次品来,那么大胆猜测一下,在4与9之间的5、6、7、8个球至少需要几次就能找出次品呢?
请生自由画图分析,然后汇报。(重点是8个球。)
将研究结果填入表格中。
(三)巩固应用,发现规律
1.10个球的研究
师:10个球,称2次还能保证找出次品吗?
请生试着自己画图分一分,然后汇报。(让生明确:10个球至少需要称3次,因为无论怎么分,至少有一份超过3个球。)
师将结果填入记录表。
师:2次最多可以在几个球中找出次品?(9个。)为什么?(利用板书中的枝状图让学生明白每份最多3个,3个3就是9。)
2.3次最多能在多少个球中找出次品?
师:3次最多可以在多少个球中找出次品呢?(引导生发现每份最多放9个,3份就是3个9,即3×3×3=27个。)
师:28个球至少几次可以找出次品?
3.4次最多能在多少个球中找出次品?
(引导学生说出每份最多27个,3份就是3个27,即3×3×3×3=81,最多81个。呼应前面的小比尔盖茨的问题。)
4.观察记录表,发现规律
师:我们来仔细观察记录表,5次、6次分别能保证在多少个球中找到次品?最多多少个?
师:以此类推,测量的次数增加,可保证在更多的球中找出一个次品来。
(四)总结提升
师:今天这节课你们有什么收获?还有什么问题吗?
师:我们为什么要探究找次品?
师:我们所探究出的找次品的方法其实和以前所探究的烙饼问题、田忌赛马问题等一样,就是一个最优化的方法。生活中解决问题的方法很多,如果你发现了解决问题的最佳策略,那么解决问题时一定能够事半功倍!