《有理数的混合运算》教学设计(通用11篇)

发布者:永爱善良小天使 时间:2024-2-2 09:40

《有理数的混合运算》教学设计(通用11篇)

作为一无名无私奉献的教育工作者,就有可能用到教学设计,借助教学设计可以让教学工作更加有效地进行。写教学设计需要注意哪些格式呢?以下是小编整理的《有理数的混合运算》教学设计,希望对大家有所帮助。

《有理数的混合运算》教学设计(通用11篇)

《有理数的混合运算》教学设计 1

教学目标

1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;

2.培养学生的运算能力及综合运用知识解决问题的能力。

教学重点和难点

重点:

有理数的运算顺序和运算律的运用

难点:

灵活运用运算律及符号的确定

课堂教学过程设计

一、从学生原有认知结构提出问题

1.叙述有理数的运算顺序

2.三分钟小测试

计算下列各题(只要求直接写出答案):

(1)32-(-2)2;

(2)-32-(-2)2;

(3) 32-22;

(4)32×(-2)2;

(5)32÷(-2)2;

(6)-22+(-3)2;

(7)-22-(-3)2;

(8)-22×(-3)2;

(9)-22÷(-3)2;

(10)-(-3)2·(-2)3;

(11)(-2)4÷(-1);

二、讲授新课

例1 当a=-3,b=-5,c=4时,求下列代数式的值:

(1)(a+b)2;

(2)a2-b2+c2;

(3)(-a+b-c)2;

(4) a2+2ab+b2

解:

(1) (a+b)2

=(-3-5)2 (省略加号,是代数和)

=(-8)2=64; (注意符号)

(2) a2-b2+c2

=(-3)2-(-5)2+42 (让学生读一读)

=9-25+16 (注意-(-5)2的符号)

=0;

(3) (-a+b-c)2

=[-(-3)+(-5)-4]2 (注意符号)

=(3-5-4)2=36;

(4)a2+2ab+b2

=(-3)2+2(-3)(-5)+(-5)2

=9+30+25=64.

分析:此题是有理数的混合运算,有小括号可以先做小括号内的,=1.02+6.25-12=-4.73

在有理数混合运算中,先算乘方,再算乘除、乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写例4 已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值

解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2

所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

=x2-x-1

当x=2时,原式=x2-x-1=4-2-1=1;

当x=-2时,原式=x2-x-1=4-(-2)-1=5

三、课堂练习

1.当a=-6,b=-4,c=10时,求下列代数式的值:

2.判断下列各式是否成立(其中a是有理数,a≠0):

a2+1>0; (2)1-a2<0;

四、作业

1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:

2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:

3.计算:

4.按要求列出算式,并求出结果

-64的绝对值的.相反数与-2的平方的差

5.如果|ab-2|+(b-1)2=0,试求

课堂教学设计说明

1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练。

2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径。

《有理数的混合运算》教学设计 2

学习目标

1、掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算;

2、在有理数的混合运算中,能合理地使用运算律简化运算。

教学重点和难点

重点:有理数的混合运算

难点:在有理数的混合运算中,能合理地使用运算律简化运算。注意符号问题。

突破:从 小学四则混合运算出发, 采用以旧引新,课本示范,学生讨论,教师点拨。

教学过程

环节1 、温故知新

1、计算 ( 三分钟练习 ) :

( 1)(-2) 3 ; (2)-2 3 ; ( 3)-7+3-6 ; ( 4)(-3) × (-8) × 25 ;

( 5)(-616) ÷ (-28) ; (6)0 21 ; ( 7)3.4 × 10 4 ÷ (-5)、

2、说一说我们学过的有理数的运算律:

加法交换律:

加法结合律:

乘法交换律:

乘法结合律:

乘法分配律:前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?本节课我们学习有理数的混合运算

环节2、自主学习:

师:请同学们先阅读完预习要求,再用15分钟时间进行预习。

预习要求:

请同学们利用15分钟的自学时间完成学习内容中的三个模块, 自学中保持自学环境的安静,认真高效的完成自学任务。

自学内容要求:

1 、完成法则自学模块,理解 掌握有理数混合运算的法则;

2 、法则的`运用。完成例1 、例2 的二个自学模块。

自学模块(一)

仔细阅读课本66 页第一段,完成下列内容。

1、 计算:

(1) -2 ×32=

(2) (-2 ×3 )2 =

2、 运算顺序有什么不同?

3、 小组交流:

回顾小学学过的四则混合运算顺序,有理数混合运算的顺序是怎样规定的?

有理数混合运算法则:―――――――――――――――――――――

―――――――――――――――――――――

自学模块(二)

例1计算:6 1 1 5

—×(-—-—)÷—

5 3 2 4

根据以下提示分析例1 计算

1、例1 中是一些什么样的运算?像含有这样运算的习题与在小学时的运算顺序一样吗?

观察运算:题目中有乘法、除法、减法运算,还有小括号.

思考顺序:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.

动笔计算:按思考的步骤进行计算,在计算时不要“跳步”太多。

检查结果:是否正确.

2、写出例1计算过程

3、巩固练习

试用两种方法计算:

16×(-3/4+5/8)÷(-2)

① ;

②、

使用运算律,解题步骤是怎样的?能计算出相同结果吗?但哪种方法更简便?

4、小组交流

自学模块(三)

例2计算:(-4) 2 ×[( -1) 5 +3/4+ (-1/2) 3 ]

1、根据以下提示分析例2计算

仿照例1.

观察运算:

思考顺序:

动笔计算:

检查结果:

2、写出例2计算过程

3、巩固练习

( 1 )(-4 × 3 2 )-(-4 × 3) 2、

(2)(-2) 2 -(-5 2 ) × (-1) 5 +87 ÷ (-3) × (-1) 4、

3、小组交流

环节3、达标检测

( 1)1÷(-1)+0÷4-(-4)(-1) ;

( 2)18+32÷(-2) 3 -(-4) 2 ×5、

(3)计算( 题中的字母均为自然数) :

[ (-2) 4 +(-4) 2 · (-1) 7 ] 2m · (5 3 +3 5 )、

以小组为单位计分,积分最高的组为优胜组.

环节4、课堂小结

今天我们学习了有理数的混合运算,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.

教师引导学生一起总结有理数混合运算的规律.

1、先乘方,再

2、同级运算

3、若有括号

在有理数的混合运算中,能合理地使用运算律简化运算,并注意符号问题。

环节5、课后作业

课本67页习题

《有理数的混合运算》教学设计 3

一、学习目标

1.能确定有理数加、减、乘、除、乘方混合运算的顺序;

2.掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;

3.偶次幂的非负性的应用

二、知识回顾

1.在2+ ×(-6)这个式子中,存在着3种运算

2.上面这个式子应该先算乘方、再算2 、最后加法

三、新知讲解

1.偶次幂的非负性

若a是任意有理数,则(n为正整数),特别地,当n=1时,有

2.有理数的混合运算顺序

①先乘方,再乘除,最后加减;

②同级运算,从左到右进行;

③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

四、典例探究

1.有理数混合运算的顺序意识

【例1】计算:-1-3×(-2)3+(-6)÷

总结:做有理数的混合运算时,应注意以下运算顺序:

先乘方,再乘除,最后加减;

同级运算,从左到右进行;

如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.

练1计算:-2×(-4)2+3-(-8)÷ +

2.有理数混合运算的转化意识

【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25

总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算.

练2计算:

3.有理数混合运算的.符号意识

【例3】计算:-42-5×(-2)× -(-2)3

总结:

在有理数运算中,最容易出错的就是符号.

符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数

要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯

练3计算:

4.有理数混合运算的简算意识

【例4】计算:[1 -( )× ]÷5

总结:对于较复杂的一些计算题,应注意运用有理数的运算律和一定的运算技巧,从而找到简便运算的方法,以便有效地简化计算过程,提高运算速度和正确率.

练4计算:[2 -( )×2]÷

5.利用数的乘方找规律

【例5】瑞士中学教师巴尔末成功地从光谱数据……中得到巴尔末公式从而打开了光谱奥妙的大门

题中的这组数据是按什么规律排列的?

请你按这种规律写出第七个数据.

总结:

这是一道规律探索题.规律探索题是指给出一列数字或一列式子或一组图形的前几个,通过归纳、猜想,推出一般性的结论.

探索规律的时候,要结合学过的知识仔细分析数据特点,乘方经常出现在有理数的规律题中,所以要从乘方的角度出发考虑.

《有理数的混合运算》教学设计 4

【学习目标】

1.掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;

2.通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的`重要性;

【学习方法】

自主探究与合作交流相结合。

【学习重难点】

重点:能熟练地按照有理数的运算顺序进行混合运算

难点:在正确运算的基础上,适当地应用运算律简化运算

【学习过程】

模块一预习反馈

一、学习准备

1.四则(加减乘除)混合运算的顺序:先算xx,再算xx,如有括号,就先算xx。同级运算按照从xx往xx的顺序依次计算。

2.有理数的运算定律:

3.请同学们阅读教材p65—p66,预习过程中请注意:

⑴不懂的地方要用红笔标记符号;

⑵完成你力所能及的习题和课后作业。

《2.11有理数的混合运算》课后作业

用符号“>”“<”“=”填空

42+32xx_2×4×3;

(-3)2+12xx_2×ok3w_ads("s002");

《2.11有理数的混合运算》同步练习

5、小亮的爸爸在一家合资企业工作,月工资2500元,按规定:其中800元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过500元的部分按5%的税率;超过500元不超过2000元的部分则按10%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?

《有理数的混合运算》教学设计 5

教学目标:

知识与技能:初步会用有理数的加、减运算法则进行混合运算,并会用运算律进行简便计算。

过程与方法:利用有理数的加减混合运算解决一些简单实际问题,使学生初步了解类比学习的思想方法。

情感态度与价值观:通过有理数的混合运算解决实际问题,培养学生浓厚的学习兴趣,体会有理数混合运算的意义和作用,感受数学在生活中的价值。

教学重点:

利用有理数的混合运算解决实际问题。

教学难点:

用运算律进行简便计算。

教材分析:

本节内容是本章重点之一,《标准》中强调:重视对数的意义的理解,培养学生的数感和符号感;淡化过分“形式化”和记忆的要求,重视在具体 情境中去体验、理解有关知识;注重过程,提倡在学习过程中学生的自主活动,培养发现规律、探求模式的能力;注重应用,加强对学生数学应用意识和解决实际问题能力的`培养,因此本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。本节内容也为后继学习数学知识作必要的基本运算技能,虽注重应用,加强对学生数学应用意识和解决实际问题能力的培养;但基本的运算技能也是学习数学必不可少的。因此本节内容对学生学习数学有着非常重要的作用。

教具:

多媒体课件

教学方法:

启发式教学

课时安排:

一课时

复习引入(课件出示)

1、叙述有理数加法法则。

2、叙述有理数减法法则。

3、叙述加法的运算律。

4、符号“”和“—”各表达哪些意义?

5、—9(6);(—11)—7

(1)读出这两个算式。

(2)“、—”读作什么?是哪种符号?“、—”又读作什么?是什么符号?

把两个算式—9(6)与(—11)—7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算

探索新知讲授新课讲评(—9)(6)—(—11)—7

省略括号和的形式

教师针对学生所做的方法区别优劣

对此类题目经常采用先把减法转化为加法,这时就成了—9,6,11,—7的和,加号通常可以省略,括号也可以省略,即:

原式=(—9)(6)(11)(—7)

=—9 6 11—7

虽然加号、括号省略了,但—9 6 11—7仍表示—9,6,11,—7的和,所以这个算式可以读成……(教师纠正)

学生自己在练习本上计算。

先自己练习尝试用两种读法读,口答。(负9正6正11负7的和或负9加6加11减7)

让学生尝试,给了学生一个展示自己的机会,学生自己就会寻找到简单的、一般性的方法。

教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。

《有理数的混合运算》教学设计 6

教材分析:

为体现新课标的要求,减少运算的繁琐,增加学生探究创新能力的培养,混合计算的步骤锐减,增加学生喜闻乐见的“二十四”点游戏。

教学目标;

[知识与技能]

1.掌握有理数混合运算法则,并能进行有理数的混合运算的计算。

2.经历“二十四”点游戏,培养学生的探究能力

教学重点:有理数混合运算法则。

教学难点:培养探索思维方式。

教学流程:运算法则→混合运算→探索思维。

教学准备:多媒体

教学活动过程设计:

一、生活应用引入:

从学生喜爱的“开心辞典”中王小丫做节目的图片入手引学生进入学习兴趣

[师]我们已学过哪种运算?

[生]乘方、乘、除、加、减五种;复习各种运算的法则;

例计算:

① ②(教师板书)

③ ④(学生计算)

二、混合运算举例。

1.(生口答)下列计算错在哪里?应如何改正?

(1)74-22÷70=70÷70=1

(2)(-112)2-23=114 -6 = -434

(3)23-6÷3×13 =6-6÷1=0

2.计算:(学生上台做,教师讲评)

(1)(-6)2×(23 - 12)-23;

(2)56 ÷23 - 13 ×(-6)2+32

解:

(1)(-6)2×(23 -12)-23=36×16 -8=6-8=-2。

(2)56 ÷23-13 ×(-6)2+32

=56 ×32-13 ×36+9。

=54-12+9=-74

三、合作学习1

请看实例:

如图:一圆形花坛的半径为3m,中间雕塑的底面是边长为1.2m的正方形。你能用算式表示该花坛的.关际种花面积吗?这个算式有哪几种运算?应怎样计算?这个花坛的实际种化面积是多少?

[生]列出算式3.14×32-1.22

包括:乘方、乘、减三种运算

[师]原式=3.14×9-1.44

=28.26-1.44=26.82(m2)

[师]请同学们说说有理数的混合运算的法则

(生相互补充、师归纳)

一般地,有理数混合运算的法则是:

先算乘方,再算乘除,最后算加减。如有括号,先进行括号里的运算。

四、合作学习2

例2:如图,半径是10cm,高为30cm的圆柱形水桶中装满了水,小明先将桶中的水倒满2个底面半径为3cm,高为6cm的圆柱形杯子,再把剩下的水倒入长、宽、高分别为50cm,30cm和20cm的长方体容器内,长方体容器内水的高度大约是多少cm(π取3,容器的厚度不计)?

分析:如下图所示

解:水桶内水的体积为π×102×30cm3,倒满2个杯子后,剩下的水的体积为

(π×102×30-2×π×32×6)cm3

(π×102×30-2×π×32×6)÷(50×30)

=(9000-324) ÷1500 = 8676÷1500≈6(cm)

答:容器内水的高度大约为6cm。

五、分组探索(见ppt)

下面请同学来玩“24点”游戏

从一副扑克牌(去掉大、小王)中,任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次)使得运算结果可能为24或—24,其中红色扑克牌代表负数,黑色扑克牌代表正数,j、q、k分别代表11、12、13。

(1)甲同学抽到了,a、8、7、3,他运用下列算式凑成24,=24。

(2)乙同学抽到了,q、q、-3、a,他能凑成24或-24吗?=24。

(3)丙同学抽到了,a、2、2、3,他能凑成24或-24吗?=24.

(4)某同学如抽到下列一组牌6、5、3、a,你帮她设计一下算式使之能凑成24或-24。或-12×3-12×(-1)=-24

(5)老师抽到下列四张牌,1、-2、2、3,你认为能凑成24或-24吗?

(6)老师抽到下列四张牌,9、2、4、10,你认为能凑成24吗?

试一试,你自编两组可凑成24或-24的牌,请邻座同学帮你设计算式。

六、作业:课本第54页,作业题。

教学反思:

对于有理数混合运算,关键要把握好两点,运算次序和符号,不必让学生训练太繁琐、太复杂的计算,而多应该增加探索计算题(编不同的“二十四”点题就很好)。

《有理数的混合运算》教学设计 7

教学目标

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力,数学教案——有理数的加减混合运算。

教学建议

(一)重点、难点分析

本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算。

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的'算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。

(二)知识结构

(三)教法建议

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

2.关于“去括号法则”,只要学生了解,并不要求追究所以然。

3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。

《有理数的混合运算》教学设计 8

一、素质教育目标

(一)知识教学点

1.了解:代数和的概念.

2.理解:有理数加减法可以互相转化.

3.应用:会进行加减混合运算

(二)能力训练点

培养学生的口头表达能力及计算的准确能力.

(三)德育渗透

通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想

(四)美育渗透点

学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美

二、学法引导

1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.

2.学生写法:练习→寻找简单的`一般性的方法→练习巩固

三、重点、难点、疑点及解决办法

1.重点:把加减混合运算算式理解为加法算式

2.难点:把省略括号和的形式直接按有理数加法进行计算

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.

七、教学步骤

(一)创设情境,复习引入

师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:

-9+(+6);(-11)-7.

师:(1)读出这两个算式.

(2)“+、-”读作什么?是哪种符号?

“+、-”又读作什么?是什么符号?

学生活动:口答教师提出的问题.

师继续提问:

(1)这两个题目运算结果是多少?

(2)(-11)-7这题你根据什么运算法则计算的?

学生活动:口答以上两题(教师订正).

师小结:减法往往通过转化成加法后来运算.

【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.

《有理数的混合运算》教学设计 9

教学目标

1、知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;

2、会用计算器进行较繁杂的有理数混合运算。

教学重点

1、有理数的混合运算;

2、运用运算律进行有理数的混合运算的简便计算。

教学难点

运用运算律进行有理数的混合运算的简便计算。

有理数的'混合运算的运算顺序

也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:

先乘方,再乘除,最后加减。如果有括号,先进行括号内的运算。

你会根据有理数的运算顺序计算上面的算式吗?

2、8有理数的混合运算:同步练习

1、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,—2,7,这称为第一次操作。做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,—11,—2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是。

《2、8有理数的混合运算》课后训练

1、兴旺肉联厂的冷藏库能使冷藏食品每小时降温3 ℃,每开库一次,库内温度上升4 ℃,现有12 ℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?

《有理数的混合运算》教学设计 10

一、知识回顾

(1)有理数的加、减法法则;

(2)特别值得注意的.问题(同号、异号、相反数)

二、新课导入

计算:-5-(+3)+(-7)-(—15)

解:原式=(-5)+(-3)+(-7)+(+15)=0

另解:原式=-5-3-7+15=0

强调:

①省略“+”

②省略“()”

③更简化

读法:

①读代数和;

②直接读+、-

板书课题:有理数的加减混合运算

三、例题讲解

例计算下列各式略

小结:

有理数加减混合运算的步骤:

⑴写成代数和;

⑵观察有无相反数;

⑶运用交换、结合律达到同号相加或同分母运算或凑整

⑷写出结果

四、学生练习

可以在黑板的下方进行。

讲解评析、纠错订正。

数学思考:

计算:1-2+3-4+5-6+7-8+…+99-100

五、课堂小结

师生共同小结本节课的内容。

六、布置作业

A、B、c分层次布置。

《有理数的混合运算》教学设计 11

教学目标

1、让学生能进行包括小数或分数的有理数的加减混合运算。

2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。

教学重点与难点

重点:有理数加法和减法的混合运算。

难点:减法统一成加法再写成代数和的形式。

教学过程

一、复习引入

课本P56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?

可用两种方法回答这个问题。

第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。

第二个方法:利用有理数减法法则得算式:

12.5―(―0.3)=12.8(米)。

比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。

二、新课的进行

某地区一天早晨的气温是-9℃,中午上升了11℃,半夜又下降了6℃。半夜的温度是多少?

解法一:(-9)+11=2,2+(-6)=-4。

所以半夜的温度是-4℃。

解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。

比较以上两种解法,结果是一样的,而解法二中的`算式是有理数加减的运算。

议一议:P57议一议

通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:

4.5+(-3.2)+1.1+(-1.4)

=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)

此时飞机比飞点高了1千米。

注意运算顺序是从左到右的计算过程。

还可以这样计算:4.5-3.2+1.1-1.4

=1.3+1.1-1.4=2.4-1.4=1(千米)

此时飞机比飞点高了1千米。

比较以上两种算法,你发现了什么?

(1)我们可以把有理数的加减法的混合运算统一成加法运算,使加减法的混合运算化为单一的加法运算。

(2)有理数的加减混合运算统一为加法运算以后,保留各加数的性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。

例1 计算(P58例1)

例2 计算:(1) (2)

解:(1)

(2)

三、课堂练习

1、课本P58随堂练习1、(1),(2),(3)

2、计算:(1) (2)

四、课堂小结

根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的形式。

五、作业设计

1、P58 习题2.7 1,3

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。