九年级下册数学教学反思

发布者:横竖有理 时间:2023-1-10 00:19

九年级下册数学教学反思

身为一名到岗不久的老师,我们要有很强的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,那么问题来了,教学反思应该怎么写?以下是小编整理的九年级下册数学教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

九年级下册数学教学反思

九年级下册数学教学反思1

新人教版九年级数学第二十二章《二次函数》是学生学习了正比例函数、一次函数进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数单元教学反思。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。

下面是我通过本单元对《二次函数》教学内容的分类后的几点反思:

九年级下册数学教学反思2

二次函数的应用是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它是本章的难点。新的课程标准要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题,而最大值问题是生活中利用二次函数知识解决最常见、最有实际应用价值的问题,它生活背景丰富,学生比较感兴趣。本节课通过学习求水流的最高点问题,引导学生将实际问题转化为数学模型,利用数学建模的思想去解决和函数有关的应用问题。此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的基础。

由于本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。二次函数应用的教学后,比我预想的效果要好一些,出现了几个点引人深思:

1、精心设计问题,引发学生思考建立数模

在《二次函数的应用》的教学过程中,复习旧知后,主要安排了一道例3—水流最高点问题:人工喷泉有一个竖直的喷水枪ab,喷水口a距地面2m,喷水水流的轨迹是抛物线。如果要求水流的最高点p到喷水枪ab所在直线的距离为1m,且水流的着地点c距离水枪底部b的距离为2.5m,那么,水流的最高点距离地面是多少米?以此题为契机,培养学生的分析问题、解决问题的能力。本节课重点放在分析问题,将实际问题转化为数学问题,建立数学模型解决问题。所以在教学时,教师应有意锻炼学生从读题开始,分析题意,搜索与问题有联系的数学知识,运用知识和技能使问题获得解决。在备课中,我发现学生对例题的理解存在困难,采用设计小问题,铺设小台阶,引导学生探究,突破教学难点,带领学生寻找解决的方法。我设计的问题如下:

(1)读题,检索有用信息;

(2)分析已知,他们讲的是什么含义?根据题意画出图形;

(3)分析所求,是让我们求什么?将实际问题可转化为什么知识来解决?

(4)如何求二次函数的最大值?

学生根据老师提出的问题,小组讨论,同学间互相交流与补充,在教师的引领下,发现本题就是转化为求二次函数的最大值问题,逐步将难点突破,帮助学生建立数模解决问题。学生在动手画图、讨论的基础上找到解决的方法与步骤,先求二次函数的解析式,再求二次函数的最大值。学生在理解题意后画图形,又加深了对题目的理解,为解决问题奠定了基础,进一步体会运用数形结合的思想方法求解二次函数的问题,将数学思想与方法渗透到整个教学过程中。

2、为学生提供思考的空间,注重一题多解

学生在建立平面直角坐标系后,根据题意知道,对称轴是x=1,a点坐标(0,2),b点坐标(0,0),c点坐标(0,2),确定二次函数解析式时,出现了一个小插曲。学生用一般式确定二次函数解式后,有同学想用其他的方法求解想法,我马上鼓励学生去寻找新的方法。四班学生思维活跃,有个学生想用两根式求解析式,让这个学生说出自己的思路,其他学生帮助他进行分析与补充。该同学将a、b、c三点坐标带入两根式求解,发现求得解析式与用一般式求得解析式不同,很疑惑,不知道问题出在哪里?我并没有否定该同学的方法,而是让其他学生帮助纠正,在大家的分析图形中发现,b点坐标不在抛物线上,不能将其带入。

在教学中出现分歧时,要给学生空间去思考,发现问题的原因,从而确定解决得方法,避免今后出现类似错误。而六班学生善于思考,在用两根式求解析式时,我设计一个小陷阱,故意引导学生选用a、b、c三点求解析式,学生通过计算与观察,同样发现了这个问题:b点坐标不在抛物线上,不能将其带入求解。在这种情景下,追问:如何利用两根式确定解析式呢?学生积极性很高,小组讨论,学生根据抛物线的对称性找到它与x轴另一个交点d(—0.5,0),将a、d、c三点带入可求出二次函数的解析式。在教学中,要注重解题方法的灵活性,一题多解,开阔学生的思维,提高学生的发现问题,解决问题的能力。在教学过程中,层层设疑,激发学生求知欲,积极主动参与教学活动,大大提高了课堂效率。

3、数学来源于生活并运用于生活

例题3有较强的现实感,例题的选择增加数学教学的现实性,使学生体验数学知识与日常生活的密切联系,从而培养学生喜爱数学,学好数学的情感。课堂中,学生在解决数学情境问题的过程中,感悟数学来源于生活并运用于生活,激发学生学习数学的兴趣。在课上,学生因问题来自于身边而思维活跃,有强烈的探索欲望,这样才能充分发挥学生学习的积极性,进而提高课堂教学质量。

4、不足之处

?数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习探讨。在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。

教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。

九年级下册数学教学反思3

反思一学期的教学总感到有许多的不足与思考。从多次考试中发现一个严重的问题,许多学生对于比较基本的题目的掌握具有很大的问题,对于一些常见的题目出现了各种各样的错误,平时教学中总感到这些简单的问题不需要再多强调,但事实上却是问题严重之处,看来还需要在平时的教学中进一步落实学生练习的反馈与矫正。

在平时的教学过程中,我们要求学生数学作业本务必及时上交,目的是为了及时发现,及时设法解决学生作业中存在的问题,认真落实订正的作用,将反馈与矫正要落到实处,切实抓好当天了解、当天解决、矫正到位,也就是说反馈要适时,矫正要到位。另外我们还应注意反馈来的信息是否真实,矫正的方法是否得力,因为反馈的信息虚假或不全真实,那么我们就发现不了问题,就不能全面地了解学生的状况,也就不会采取及时、正确的矫正措施。我认为要注意以下几个方面:

一、注意反馈矫正的及时性。

课堂教学中应注意引导学生上课集中精力,勤于思考,用心动口、动手。可利用提问或板演等多种方式得到学生的反馈信息,一般我们应把提问、解答、讲评、改错紧密的结合为一体,不要把讲评和改错拖得太长。最好当堂问题当堂解决,及时反馈在一日为好。

二、注意反馈矫正的准确性。

在教学中我们务必经常深入到学生中去了解他们的困难和要求,用心热情地帮他们释疑解难,使他们体会到师长的温暖,尝试到因用心与老师配合、真实地带给信息而尝到学习进步的甜头。

三、注意反馈矫正的灵活性。

我们在教学中可采用灵活多样的反馈矫正形式。咳提前设计矫正方案,也可预测学生容易出错的地方,在获取信息后,认真分析其问题的实质,产生问题的原因,然后有针对性地实施矫正方案。在作业的检查过程中,要求进一步落实学生是否存在抄作业现象,是否认真订正作业。总之,反馈矫正必须要落在实处。

我们要主动辅导,及时令其矫正。进一步培养学生的主动性和自觉性,当然,如果我们只强调学生的主动和自觉,而不注意自身的主动和自觉,结果也会不如人意。

四、运用新的教学方法和现代教学理念。

新课程倡导自主、探究、合作的学习方式,追求平等、合作、对话的师生关系。在数学教学中,透过不一样的数学活动的教学,不断完成师生之间、学生之间交往互动与共同发展的过程。在数学课堂教学中,要创设有助于学生自主学习的生活情景,激发学生的探究欲望,引导学生透过实践、思考、探索、交流,从而获得知识,构成技能,培养学生的发散思维潜力,让他们学会学习,从中认识到学习的乐趣。

五、营造平等融洽、师生互动的教学氛围。

如何创造出一种无拘无束、和谐融洽的教学氛围:禁锢的要解放,潜在的要诱发,真正满足不一样层次的学生,以此来激发学生的求知欲,引发学生的创造潜能。本学期我除了完成教材资料以外,要把超多的时光用在补习学生基础知识及拓宽优秀生知识面上。尽量从学生实际出发,了解学生,研究学生,尊重他们的想法,承认他们之间的差异。只有这样做,才能让每一堂课都焕发出活力,以此降低学困率,提高优秀率。

总之,为了全面提高我校教学质量,我在本学期的教学工作中,要在“努力”二字上下功夫。教师们常说的一句话是:“功夫不负苦心人”,“有一分付出,就会有一分收获”。读书是这样,教书又何尝不是这样呢?凡是教了多年书的老教师都这样认为,“成绩是苦干出来的,学生是磨练出来的”。所以,要取得好成绩,必须要做“拼命三郎”,有首歌词不是说“爱拼才会赢”嘛。也不是说,只要蛮干就会出好成绩,当然,苦干还要加巧干才行。我想巧干除了使用新的教学方法和新的教学手段以外,更重要的是如何研究学生,研究教材,探索出一种适合本班实际的教学方式。

九年级下册数学教学反思4

关于“二次函数概念”教学中我的成功之处是:教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。

不足之处表现在:少数学生不能从函数本身的实际意义去正确判定一个函数是否是二次函数。

九年级下册数学教学反思5

在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、c与二次函数的图象的关系。根据反思备课过程和讲课效果,感受颇深,有收获,也有不足。

本章的教学是我对选题有了进一步认识,要体现教学目标,要有实际意义。要体现学生的`“最近发展区”,有利于学生分析。如为了帮助学生建立二次函数的概念,从学生非常熟悉的正方形的面积的研究出发,通过建立函数解析式,归纳解析式特点,给出二次函数的定义。建立了二次函数概念后,再通过三个例题的分析和解决,促进学生理解和建构二次函数的概念,在建构概念的过程中,让学生体验从问题出发到列二次函数解析式的过程。体验用函数思想去描述、研究变量之间变化规律的意义。

接下来教学主要从“抛物线的开口方向、对称轴、顶点坐标、增减性”循序渐进,由特殊到一般的学习二次函数的性质,并帮助学生总结性的去记忆。在学习过程中加强利用配方法将二次函数一般式化顶点式、判断抛物线对称轴、借图象分析函数增减性等的训练。这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。

本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。

二次函数中含有三个字母系数,因此确定其解析式要三个独立的条件,用待定系数法来解。学习确定二次函数的一般式,即的形式,这方面,学生的学习情况还是比较理想的,但方法没有问题,计算能力还有待加强。

在学习了二次函数的知识后,我们尝试运用于解决三个实际问题。问题1是根据实际问题建立函数解析式并学习如何确定函数的定义域;问题二是根据二次函数的解析式,分析二次函数的性质,并通过画函数图像检验作出的分析和判断是否;问题三是综合应用一次函数、二次函数的知识确定函数的解析式和定义域,并尝试解决销售问题中最大利润的问题;通过这三个问题的分析和解决,让学生初步体会二次函数在实际生活中的运用,再次感悟数学源于生活又服务于生活。虽然有部分学生尚不能熟练解决相关应用问题,但在下面的学习中会得到补充和提高。

但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。

总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

九年级下册数学教学反思6

关于“二次函数的图象和性质”在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。通过引导学生在坐标纸上画出二次函数y=ax的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。在性质的探究中我让学生观察图像自主探讨当a>0时函数y=ax的性质。当a

不足之处表现在:

1、课堂上时间安排欠合理。学生说的多,动手不够

2、学生作图速度慢。简单的列表、描点、连线。学生做起来就比较困难,作图中单位长度不准确,描点不准确,图象中的平滑曲线不够平滑

3、合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,学生的创新能力的培养不够。

4、少数学生二次函数图像平移变换能力差。不会进行二次函数图像的平移变换。

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。