初中年级数学中考复习知识点模板

发布者:隔水望伊人 时间:2023-8-4 12:13

初中年级数学中考复习知识点模板(8篇)

相信很多人都在为数学中考复习知识点发愁,在我们的学习时代,大家都背过各种知识点吧?知识点在教育实践中,是指对某一个知识的泛称。下面是小编给大家整理的初中年级数学中考复习知识点模板,仅供参考希望能帮助到大家。

初中年级数学中考复习知识点模板篇1

平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

中被开方数的取值范围:被开方数a≥0

平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。③负数没有平方根

开平方;求一个数的平方根的运算,叫做开平方。

平方根与算术平方根区别:

1、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

联系

2、二者之间存在着从属关系。2、存在条件相同。3、0的算术平方根与平方根都是0

含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

求正数a的算术平方根的方法;

完全平方数类型

①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

三个重要的非负数:

求正数a的平方根的方法;完全平方数类型

①想谁的平方是数a。②所以a的平方根是多少。③用式子表示=。

公式:(a≥0)∣a∣=

初中年级数学中考复习知识点模板篇2

对某些知识点概念理解不清,很容易造成做题时拿不定主意,模棱两可而造成错误。在中考数学的复习中怎么有效改善这种问题呢?

自己应该先分析自己。自己对自己最了解,知道自己的学习中哪个环节最薄弱最需要帮助,只要把这个环节打通了剩下的工作就可事半功倍了。

其次,制定学习计划。包括时间计划、学习内容和形式等等。因为中学生已经经过了多年的学习过程,有些问题累积的过多,需要系统的来解决,不能只是头疼医头脚疼医脚,只是解决了表面问题,真到综合训练和考试的时候,问题依然会存在。

最后,要从思想上下定决心,努力实施。解决自己沉积的问题,不是一朝一夕的事情,需要有恒心、耐心,切忌耍小聪明,敷衍了事。无论采取什么方案,都要扎扎实实的去做。

初中年级数学中考复习知识点模板篇3

第二章 代数式

重点代数式的有关概念及性质,代数式的运算

☆内容提要☆

一、重要概念

分类:

1。代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

的一个数或字母也是代数式。

整式和分式统称为有理式。

2。整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3。单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,

=x, =│x│等。

4。系数与指数

区别与联系:①从位置上看;②从表示的意义上看

5。同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

6。根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。

7。算术平方根

⑴正数a的正的平方根( [a与平方根的区别]);

⑵算术平方根与绝对值

①联系:都是非负数, =│a│

②区别:│a│中,a为一切实数;中,a为非负数。

8。同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9。指数

⑴ ( 幂,乘方运算)

① a0时, ②a0时, 0(n是偶数), 0(n是奇数)

⑵零指数: =1(a0)

负整指数: =1/ (a0,p是正整数)

二、运算定律、性质、法则

1。分式的加、减、乘、除、乘方、开方法则

2。分式的性质

⑴基本性质: = (m0)

⑵符号法则:

⑶繁分式:①定义;②化简方法(两种)

3。整式运算法则(去括号、添括号法则)

4。幂的运算性质:① ② ③ = ;④ = ;⑤

技巧:

5。乘法法则:⑴单⑵单⑶多多。

6。乘法公式:(正、逆用)

(a+b)(a-b)=

(ab) =

7。除法法则:⑴单⑵多单。

8。因式分解:⑴定义;⑵方法:A。提公因式法;B。公式法;C。十字相乘法;D。分组分解法;E。求根公式法。

9。算术根的性质: = ; ; (a0); (a0)(正用、逆用)

10。根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. 。

11。科学记数法: (110,n是整数=

三、应用举例(略)

四、数式综合运算(略)

初中年级数学中考复习知识点模板篇4

一概述

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

二常用的相等关系

1.行程问题(匀速运动)

基本关系:s=vt

⑴相遇问题(同时出发):

⑵追及问题(同时出发):

若甲出发t小时后,乙才出发,而后在B处追上甲,则

⑶水中航行:;

2.配料问题:溶质=溶液浓度

溶液=溶质+溶剂

3.增长率问题:

4.工程问题:基本关系:工作量=工作效率工作时间(常把工作量看着单位“1”)。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

三注意语言与解析式的互化

如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……

又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

四注意从语言叙述中写出相等关系。

如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算

如,“小时”“分钟”的换算;s、v、t单位的一致等。

初中年级数学中考复习知识点模板篇5

五大知识点:

1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用

2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)

3、根的判别式

4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)

5、一元二次方程根与系数的关系(韦达定理)

【课本相关知识点】

1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。

2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)

3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。其中ax2是 ,a是 ,bx是 ,b是 ,c是常数项

初中年级数学中考复习知识点模板篇6

1.有理数的加法运算:同号相加一边倒;异号相加大减小,符号跟着大的跑;绝对值相等零正好。【注】大减小是指绝对值的大小。

2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

4.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

5.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

6.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

7.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

8.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

9.代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)

10.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

11.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

初中年级数学中考复习知识点模板篇7

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标②第二象限的点:横坐标 0,纵坐标③第三象限的点:横坐标 0,纵坐标④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标 0,纵坐标②x轴负半轴上的点:横坐标 0,纵坐标③y轴正半轴上的点:横坐标 0,纵坐标④y轴负半轴上的点:横坐

标 0,纵坐标⑤坐标原点:横坐标 0,纵坐标 0。(填、或=)

8、点P(a,b)到x轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于x轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点P(2,3) 到x轴的距离是 到y轴的距离是 点P(2,3) 关于x轴对称的点坐标为( ,点P(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与x轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直 。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQy轴。

12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b) 在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即 a = b ;如果点P(a,b) 在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按左减右加、上加下减的规律进行。如将点P(2,3)向左平移2个单位后得到的点的坐标为( , );将点P(2,3)向右平移2个单位后得到的点的坐标为( , );将点P(2,3)向上平移2个单位后得到的点的坐标为( , );将点P(2,3)向下平移2个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。

初中年级数学中考复习知识点模板篇8

一、数与式

易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。

易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。填空题必考。

易错点4:求分式值为零时学生易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!

易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。

二、方程(组)与不等式(组)

易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带X公因式要回头检验!

易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解

易错点6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。

易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

三、三角形

易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。

易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。

易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。

易错点4:全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等。

易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。

易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。

易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。

易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。

易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。

易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。

易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。