高中数学知识点总结
总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以提升我们发现问题的能力,因此,让我们写一份总结吧。下面是小编给大家带来的高中数学知识点总结大全,以供大家参考!
高中数学知识点总结1
一、直线与方程高考考试内容及考试要求:
考试内容:
1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;
2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;
考试要求:
1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;
二、直线与方程
课标要求:
1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;
2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;
3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;
4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。
要点精讲:
1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴平行或重合时,规定α= 0°.
倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.
2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα
(1)当直线l与x轴平行或重合时,α=0°,k = tan0°=0;
(2)当直线l与x轴垂直时,α= 90°,k 不存在。
由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。
3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:
(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。
4.两条直线的平行与垂直的判定
(1)若l1,l2均存在斜率且不重合:
①;②
注: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。
(2)
若A1、A2、B1、B2都不为零。
注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。
两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。
5.直线方程的五种形式
确定直线方程需要有两个互相独立的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。
直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。
6.直线的交点坐标与距离公式
(1)两直线的交点坐标
一般地,将两条直线的方程联立,得方程组
若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行。
(2)两点间距离
两点P1(x1,y1),P2(x2,y2)间的距离公式
特别地:轴,则、轴,则
(3)点到直线的距离公式
点到直线的距离为:
(4)两平行线间的距离公式:
若,则:
注意点:x,y对应项系数应相等。
高中数学知识点总结2
简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为__X;在整个抽样过程中各个个体被抽到的概率为__。
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等。
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础。
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法。
(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率。
高中数学知识点总结3
一、求导数的方法
(1)基本求导公式
(2)导数的四则运算
(3)复合函数的导数
设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即__
二、关于极限
1、数列的极限:
粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:
2、函数的极限:
当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作
三、导数的概念
1、在处的导数。
2、在的导数。
3、函数在点处的导数的几何意义:
函数在点处的导数是曲线在处的切线的斜率,
即k=,相应的切线方程是__
注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A—1B—2C1D
四、导数的综合运用
(一)曲线的切线
函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:
(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=__
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
高中数学知识点总结4
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
一、求动点的轨迹方程的基本步骤。
1、建立适当的坐标系,设出动点M的坐标;
2、写出点M的集合;
3、列出方程=0;
4、化简方程为最简形式;
5、检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
求动点轨迹方程的一般步骤:
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高中数学知识点总结5
一、集合、简易逻辑
1、集合;
2、子集;
3、补集;
4、交集;
5、并集;
6、逻辑连结词;
7、四种命题;
8、充要条件。
二、函数
1、映射;
2、函数;
3、函数的单调性;
4、反函数;
5、互为反函数的函数图象间的关系;
6、指数概念的扩充;
7、有理指数幂的运算;
8、指数函数;
9、对数;
10、对数的运算性质;
11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)
1、数列;
2、等差数列及其通项公式;
3、等差数列前n项和公式;
4、等比数列及其通顶公式;
5、等比数列前n项和公式。
四、三角函数
1、角的概念的推广;
2、弧度制;
3、任意角的三角函数;
4、单位圆中的三角函数线;
5、同角三角函数的基本关系式;
6、正弦、余弦的诱导公式;
7、两角和与差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函数、余弦函数的图象和性质;
10、周期函数;
11、函数的奇偶性;
12、函数的图象;
13、正切函数的图象和性质;
14、已知三角函数值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法举例。
五、平面向量
1、向量;
2、向量的加法与减法;
3、实数与向量的积;
4、平面向量的坐标表示;
5、线段的定比分点;
6、平面向量的数量积;
7、平面两点间的距离;
8、平移。
六、不等式
1、不等式;
2、不等式的基本性质;
3、不等式的证明;
4、不等式的解法;
5、含绝对值的不等式。
七、直线和圆的方程
1、直线的倾斜角和斜率;
2、直线方程的点斜式和两点式;
3、直线方程的`一般式;
4、两条直线平行与垂直的条件;
5、两条直线的交角;
6、点到直线的距离;
7、用二元一次不等式表示平面区域;
8、简单线性规划问题;
9、曲线与方程的概念;
10、由已知条件列出曲线方程;
11、圆的标准方程和一般方程;
12、圆的参数方程。
八、圆锥曲线
1、椭圆及其标准方程;
2、椭圆的简单几何性质;
3、椭圆的参数方程;
4、双曲线及其标准方程;
5、双曲线的简单几何性质;
6、抛物线及其标准方程;
7、抛物线的简单几何性质。
九、直线、平面、简单何体
1、平面及基本性质;
2、平面图形直观图的画法;
3、平面直线;
4、直线和平面平行的判定与性质;
5、直线和平面垂直的判定与性质;
6、三垂线定理及其逆定理;
7、两个平面的位置关系;
8、空间向量及其加法、减法与数乘;
9、空间向量的坐标表示;
10、空间向量的数量积;
11、直线的方向向量;
12、异面直线所成的角;
13、异面直线的公垂线;
14、异面直线的距离;
15、直线和平面垂直的性质;
16、平面的法向量;
17、点到平面的距离;
18、直线和平面所成的角;
19、向量在平面内的射影;
20、平面与平面平行的性质;
21、平行平面间的距离;
22、二面角及其平面角;
23、两个平面垂直的判定和性质;
24、多面体;
25、棱柱;
26、棱锥;
27、正多面体;
28、球。
十、排列、组合、二项式定理
1、分类计数原理与分步计数原理;
2、排列;
3、排列数公式;
4、组合;
5、组合数公式;
6、组合数的两个性质;
7、二项式定理;
8、二项展开式的性质。
十一、概率
1、随机事件的概率;
2、等可能事件的概率;
3、互斥事件有一个发生的概率;
4、相互独立事件同时发生的概率;
5、独立重复试验。
必修一函数重点知识整理
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(—x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;
4、函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5、方程k=f(x)有解k∈D(D为f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符号由口诀“同正异负”记忆;
(4)a log a N= N(a>0,a≠1,N>0);
8、判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13、恒成立问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解。
拓展阅读:高中数学复习方法
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
高中数学知识点总结6
简单随机抽样
(1)总体和样本
①在统计学中 , 把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分: x1,x2 , …,__ 研究,我们称它为样本。其中个体的个数称为样本容量。
(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随
机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:
①抽签法;
②随机数表法;
③计算机模拟法;
③使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:
①总体变异情况;
②允许误差范围;
③概率保证程度。
(4)抽签法:
①给调查对象群体中的每一个对象编号;
②准备抽签的工具,实施抽签;
③对样本中的每一个个体进行测量或调查
(5)随机数表法
高中数学知识点总结7
集合的分类:
(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集
关于集合的概念:
(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:
含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N。
在自然数集内排除0的集合叫做正整数集,记作N+或NX。
整数全体构成的集合,叫做整数集,记作Z。
有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)
实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)
1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。
有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。
无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。
2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”
而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。
一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中数学知识点总结8
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;
(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
高中数学知识点总结9
1、命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
3、函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
4、反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
5、反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
6、函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)
高中数学知识点总结10
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型。
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目。
考点五:立体几何与空间向量
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
考点六:解析几何
一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。
考点七:算法复数推理与证明
高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问。