基本导数公式16个汇总
关于基本导数公式16个汇总
导数,也叫导函数值。是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。下面小编为大家带来基本导数公式16个汇总,希望对您有所帮助!
基本导数公式16个整理
16个基本导数公式(y:原函数;y':导函数):
1、y=c,y'=0(c为常数)。
2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。
4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x。
5、y=sinx,y'=cosx。
6、y=cosx,y'=-sinx。
7、y=tanx,y'=(secx)^2=1/(cosx)^2。
8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y'=1/√(1-x^2)。
10、y=arccosx,y'=-1/√(1-x^2)。
11、y=arctanx,y'=1/(1+x^2)。
12、y=arccotx,y'=-1/(1+x^2)。
13、y=shx,y'=ch x。
14、y=chx,y'=sh x。
15、y=thx,y'=1/(chx)^2。
16、y=arshx,y'=1/√(1+x^2)。
导数的几何意义是什么
导数的数学意义是:函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
导数的物理意义是:导数可以表示运动物体的瞬时速度和加速度(就直线运动而言,位移关于时间的一阶导数是瞬时速度,二阶导数是加速度),可以表示曲线在一点的斜率,还可以表示经济学中的边际和弹性。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
导数运算法则
减法法则:(f(x)-g(x))'=f'(x)-g'(x)
加法法则:(f(x)+g(x))'=f'(x)+g'(x)
乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2
常用导数公式
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna
y=e^x y'=e^x
4、y=logax y'=logae/x
y=lnx y'=1/x
5、y=sinx y'=cosx
6.y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x