数学八年级下册十六章知识点
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。下面是小编整理的数学八年级下册十六章知识点,仅供参考希望能够帮助到大家。
数学八年级下册十六章知识点
1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。
2.分式有意义、无意义的条件:
分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:
分式AB =0的条件是A=0,且B≠0.
(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。)
4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为 (其中A、B、C是整式 ),
5.分式的通分:
和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点:
(1)“各分母所有因式的最高次幂”是指凡出现的`字母(或含字母的式子)为底数的幂选取指数最大的;
(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;
(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:
和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;
(2)找公因式的方法:
① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;
②当分子、分母都是多项式时,先把多项式因式分解。
7.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
初中数学整式的加减
1、代数式:由数和字母用运算符号连接所成的式子,称为代数式。单独一个数或字母也称为代数式。如:1/2b、a+b、5m-2n、9.6、x
2、代数式的值:用数值代替代数式里的字母,计算的出结果,叫做代数式的值。
3、多项式:几个单项式的和叫多项式。其中每个单项式叫多项式的项,不含字母的项叫常数项。单项式与多项式统称整式。
4、升幂排列:-1+3x+5x2-2x3
降幂排列:-2x3+5x2+3x-1
5、整式的加减:合并同类项,把同类项系数相加,所得的结果作为系数,字母和字母的指数保持不变。
6、去括号法则:
①括号前面是“+”号,把括号和前面“+”号去掉,括号里各项不变。
②括号前面是“-”号,把括号和前面“-”号去掉,括号里各项都改变正负号。
7、添括号法则:
①所填括号是“+”号,括到括号里的各项都不改变正负号。
②所填括号前面是“-”号,括到括号里的各项都改变符号。
7、整式的加减步骤:先去括号,再合并同类项。
数学基础知识点
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示