九年级数学反比例函数知识点
数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。下面是小编整理的九年级数学反比例函数知识点,仅供参考希望能够帮助到大家。
九年级数学反比例函数知识点
(1)反比例函数:如果(k是常数,k≠0),那么y叫做x的反比例函数。
(2)反比例函数的图象:反比例函数的图象是双曲线。
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小。
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大。
③反比例函数图象关于直线y=±x对称,关于原点对称。
(4)k的两种求法
①若点(x0,y0)在双曲线上,则k=x0y0。
②k的几何意义:若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB。
(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数,则
当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称。
初中数学有理数知识点
1、正整数、负整数和零统称整数;正分数和负分数统称分数;整数和分数统称有理数。
2、规定了原点、正方向和单位长度的直线叫做数轴。在数轴上的数,左边的比右边的大,从左到右分别为负数、零、正数。
3、正负号不同,值相同的数叫相反数,零的相反数是零。
4、数轴上表示的数a到原点的距离叫做数a的绝对值,记作|a|。
正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值零。
5、两个负数比较,绝对值大的反而小。
6、有理数加减法法则:
①同号两数相加,取相同符号,绝对值相加。
②绝对值不同的异号两数相加,取绝对值大的数的符号,并用较大数绝对值减去较小数绝对值。
③互为相反数的两个数相加得零。
④一个数与零相加,仍得这个数。
7、有理数加法运算律:
①交换律:a+b=b+a
②结合律:(a+b)+c=a+(b+c)
8、有理数减法法则:
减去一个数等于加上这个数的相反数。
9、有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与零相乘,都得零。
10、有理数乘法法则:
①乘法交换律:ab=ba
②乘法结合律:(ab)c=a(bc)
③乘法分配律:a(b+c)=ab+ac
④几个不为零的数相乘,积的正负号由负因数个数决定,当负因数个数为奇数时,积为负。当负因数个数为偶数时,积为正,
⑤几个数为零,有一个因数为零,积为零。
11、有理数除法法则:
两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数都得零。
初中数学一元二次方程的解法
①、直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。
②、配方法
配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
③、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。