2021数学重要知识点八年级上册

发布者:我是70后 时间:2022-11-15 13:41

学习不光要有不怕困难,永不言败的精神,还有有勤奋的努力,科学家爱迪生曾说过:“天才就是1%的灵感加上99%的汗水,但那1%的灵感是最重要的,甚至比那99%的汗水都要重要。”下面是小编为大家整理的有关数学重要知识点八年级上册汇集,希望对你们有帮助!

数学重要知识点八年级上册汇集

第十二章全等三角形

一、知识框架:

二、知识概念:

1.基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形.

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.

⑷对应边:全等三角形中互相重合的边叫做对应边.

⑸对应角:全等三角形中互相重合的角叫做对应角.

2.基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.

3.全等三角形的判定定理:

⑴边边边(SSS):三边对应相等的两个三角形全等.

⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.

⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.

⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.

⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.

4.角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等.

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.

5.证明的基本方法:

⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证.

⑶经过分析,找出由已知推出求证的途径,写出证明过程.

第十三章轴对称

一、知识框架:

二、知识概念:

1.基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

⑸等边三角形:三条边都相等的三角形叫做等边三角形.

2.基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.

②对称的图形都全等.

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等.

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.

⑶关于坐标轴对称的点的坐标性质

①点P(x,y)关于x轴对称的点的坐标为P'(x,y).

②点P(x,y)关于y轴对称的点的坐标为P"(x,y).

⑷等腰三角形的性质:

①等腰三角形两腰相等.

②等腰三角形两底角相等(等边对等角).

③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).

⑸等边三角形的性质:

①等边三角形三边都相等.

②等边三角形三个内角都相等,都等于60°

③等边三角形每条边上都存在三线合一.

④等边三角形是轴对称图形,对称轴是三线合一(3条).

3.基本判定:

⑴等腰三角形的判定:

①有两条边相等的三角形是等腰三角形.

②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).

⑵等边三角形的判定:

①三条边都相等的三角形是等边三角形.

②三个角都相等的三角形是等边三角形.

③有一个角是60°的等腰三角形是等边三角形.

4.基本方法:

⑴做已知直线的垂线:

⑵做已知线段的垂直平分线:

⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.

⑷作已知图形关于某直线的对称图形:

⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.

八年级上册数学知识点总结

因式分解

1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.

3.公因式的确定:系数的公约数?相同因式的最低次幂.

注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

4.因式分解的公式:

(1)平方差公式: a2-b2=(a+ b)(a- b);

(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

5.因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;

(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

(4)因式分解的最后结果要求每一个因式的首项符号为正;

(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式.

6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.

分式

1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式.

2.有理式:整式与分式统称有理式;即 .

3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.

4.分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

7.分式的乘除法法则: .

8.分式的乘方: .

9.负整指数计算法则:

(1)公式: a0=1(a≠0), a-n= (a≠0);

(2)正整指数的运算法则都可用于负整指数计算;

(3)公式: , ;

(4)公式: (-1)-2=1, (-1)-3=-1.

10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.

11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.

12.同分母与异分母的分式加减法法则: .

13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.

14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.

16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.

17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.

18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.

数的开方

1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.

2.平方根的性质:

(1)正数的平方根是一对相反数;

(2)0的平方根还是0;

(3)负数没有平方根.

3.平方根的表示方法:a的平方根表示为 和 .注意: 可以看作是一个数,也可以认为是一个数开二次方的运算.

4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0.

5.三个重要非负数: a2≥0 ,|a|≥0 , ≥0 .注意:非负数之和为0,说明它们都是0.

6.两个重要公式:

(1) ; (a≥0)

(2) .

7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为 ;即把a开三次方.

8.立方根的性质:

(1)正数的立方根是一个正数;

(2)0的立方根还是0;

(3)负数的立方根是一个负数.

9.立方根的特性: .

10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.

11.实数:有理数和无理数统称实数.

12.实数的分类:(1) (2) .

13.数轴的性质:数轴上的点与实数一一对应.

14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .

三角形

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

1.三角形的角平分线定义:

三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) 几何表达式举例:

(1) ∵AD平分∠BAC

∴∠BAD=∠CAD

(2) ∵∠BAD=∠CAD

∴AD是角平分线

2.三角形的中线定义:

在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)

几何表达式举例:

(1) ∵AD是三角形的中线

∴ BD = CD

(2) ∵ BD = CD

∴AD是三角形的中线

3.三角形的高线定义:

从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.

(如图)

几何表达式举例:

(1) ∵AD是ΔABC的高

∴∠ADB=90°

(2) ∵∠ADB=90°

∴AD是ΔABC的高

※4.三角形的三边关系定理:

三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)

几何表达式举例:

(1) ∵AB+BC>AC

∴……………

(2) ∵ AB-BC<ac< p="">

∴……………

5.等腰三角形的定义:

有两条边相等的三角形叫做等腰三角形. (如图)

几何表达式举例:

(1) ∵ΔABC是等腰三角形

∴ AB = AC

(2) ∵AB = AC

∴ΔABC是等腰三角形

6.等边三角形的定义:

有三条边相等的三角形叫做等边三角形. (如图)

几何表达式举例:

(1)∵ΔABC是等边三角形

∴AB=BC=AC

(2) ∵AB=BC=AC

∴ΔABC是等边三角形

7.三角形的内角和定理及推论:

(1)三角形的内角和180°;(如图)

(2)直角三角形的两个锐角互余;(如图)

(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)

※(4)三角形的一个外角大于任何一个和它不相邻的内角.

(1) (2) (3)(4) 几何表达式举例:

(1) ∵∠A+∠B+∠C=180°

∴…………………

(2) ∵∠C=90°

∴∠A+∠B=90°

(3) ∵∠ACD=∠A+∠B

∴…………………

(4) ∵∠ACD >∠A

∴…………………

8.直角三角形的定义:

有一个角是直角的三角形叫直角三角形.(如图)

几何表达式举例:

(1) ∵∠C=90°

∴ΔABC是直角三角形

(2) ∵ΔABC是直角三角形

∴∠C=90°

9.等腰直角三角形的定义:

两条直角边相等的直角三角形叫等腰直角三角形.(如图)

几何表达式举例:

(1) ∵∠C=90° CA=CB

∴ΔABC是等腰直角三角形

(2) ∵ΔABC是等腰直角三角形

∴∠C=90° CA=CB

10.全等三角形的性质:

(1)全等三角形的对应边相等;(如图)

(2)全等三角形的对应角相等.(如图)

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。