初三的数学知识点

发布者:穿越激流的人 时间:2023-12-22 14:46

初三的数学知识点大全

论起知识点来,初三的数学知识点分别又有哪些?不晓得朋友们都知道吗?咱们一起来看看以及了解下吧!以下是小编为大家带来的初三的数学知识点大全,欢迎参阅呀!

初三的数学知识点大全

1 圆、圆心、半径、直径、圆弧、弦、半圆的定义

2 垂直于弦的直径

圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;

垂直于弦的直径平分弦,并且平方弦所对的两条弧;

平分弦的直径垂直弦,并且平分弦所对的两条弧。

3 弧、弦、圆心角

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4 圆周角

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

5 点和圆的位置关系

点在圆外

点在圆上 d=r

点在圆内 d

定理:不在同一条直线上的三个点确定一个圆。

三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。

6直线和圆的位置关系

相交 d

相切 d=r

相离 d>r

切线的性质定理:圆的切线垂直于过切点的半径;

切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

7 圆和圆的位置关系

外离 d>R+r

外切 d=R+r

相交 R-r

内切 d=R-r

内含 d

8 正多边形和圆

正多边形的中心:外接圆的圆心

正多边形的半径:外接圆的半径

正多边形的中心角:没边所对的圆心角

正多边形的边心距:中心到一边的距离

9 弧长和扇形面积

弧长

扇形面积:

10 圆锥的侧面积和全面积

侧面积:

全面积

11 (附加)相交弦定理、切割线定理

第五章 概率初步

1 概率意义:在大量重复试验中,事件A发生的频率 稳定在某个常数p附近,则常数p叫做事件A的概率。

2 用列举法求概率

一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=

3 用频率去估计概率

初三数学上册知识点归纳

1、矩形的概念

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)具有平行四边形的一切性质

(2)矩形的四个角都是直角

(3)矩形的对角线相等

(4)矩形是轴对称图形

3、矩形的判定

(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

(3)定理2:对角线相等的平行四边形是矩形

4、矩形的面积:S矩形=长×宽=ab

圆的面积s=π×r×r

其中,π是周围率,约等于3.14

r是圆的半径。

圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。圆的面积公式为:S=πR2(R的平方).S代表圆的面积,r为圆的半径。

椭圆周长计算公式

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆面积计算公式

椭圆面积公式:S=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

数学最常用且非常实用的学习方法

1、预习很重要:

往往被忽略,理由:没时间,看不懂,不必要等。预习是学习的必要过程,还是提高自学能力的好方法。

2、听讲有学问:

听分析、听思路、听应用,关键内容一字不漏,注意记录。

3、做好错题本:

每个会学习的学生都会有。最好再加个“好题本”。发现许多同学没有错题本,或者是只做不用。这样学习效果都不好。

4、用好课外书:

正确认识网络课程和课外书籍,是副食,是帮助吸收的良药,绝对不是课堂学习的替代品。

5、注意总结和反思:

知识点、解题方法和技巧、经验和教训。

6、接受数学思想方法的指导:

要注意数学思想和方法的指导,站得高,才能看得远。

关于数学常见误区有哪些

1、被动学习

许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。

2、学不得法

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、不重视基础

一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

4、进一步学习条件不具备

高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。

如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

如何整理数学学科课堂笔记

一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。

二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

Copyright © 2022-2023 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

返回顶部