三年级《笔算乘法》的优秀教案

发布者:求真痴者 时间:2022-11-15 17:20

作为一位杰出的老师,就难以避免地要准备教案,教案有助于顺利而有效地开展教学活动。那么教案应该怎么写?下面小编给大家整理了三年级《笔算乘法》的优秀教案,希望大家喜欢!

三年级《笔算乘法》的优秀教案1

教学内容:

教材第46页例1及相关内容

教学目标:

1、掌握两位数乘两位数的不进位乘法的笔算方法。

2、理解用第二个因属十位上的数乘第一个因数的多少个十,乘得的数的末位要和因数的十位对齐。

教学重点:

掌握笔算方法并正确计算。

教学难点:

解决乘的顺序和第二部分积的书写位置问题。

教学准备:

多媒体课件 例1主题图 彩笔

教学过程:

一、学前准备

1、口算。

5210=答案

4330=答案

1240=答案

3120=答案

1720=答案

2、笔算并说出计算过程。

417=答案

二、探究新知

1、学习教材第46页例1.

出示图,让学生说一说,这幅图所展示的情景是什么。

(王老师去书店买书,买了12套,每套书有14本,她在想一共买了多少本)

让学生说一说,这道题如何列式。引导学生去想这是一道什么样的乘法算式。(两位数乘两位数的乘法算式)

指导:你能不能运用以前学过的知识,来探究今天摆在我们面前的这个问题呢?

组织学生用充足的时间进行讨论,把讨论的结果记录在练习本上,然后各组选代表说出本组的想法,展示各组不同的计算过程和结果。

例:1410=140(本) 142=28(本)

140+28=168(本)或1412=168(本)

有些学生会想到把12看成10和2的和,先用1410,再用142,然后把两次乘得的结果相加,

有些学生可能由两位数乘一位数的竖式乘法,想到两位数乘两位数也可以用笔算,但学生们在写竖式时不一定能写对,或其中的道理也不是很清楚,所以教师要在这里重点指导。

先让学生说他是如何写的,在这过程中针对学生说得不对或不清楚的地方,教师要加以指导,也可以让写得对的组给同学讲一讲。

教师在指导分析过程中,要把每步板书详细列出。

教师归纳总结,板书强调每步难点。

在总结过程中提问

(1)两位数乘两位数一种是口算方法,一种是笔算方法,你认为哪种方法好?

三年级《笔算乘法》的优秀教案2

【教学内容】

笔算乘法(教材第46页例1及“做一做”,第47页练习十第1~5题)。

【教学目标】

1.使学生在笔算两位数乘一位数和口算两位数乘整十数的基础上,初步理解和掌握两位数乘两位数的笔算乘法的计算方法。

2.能正确地进行计算,培养学生的分析归纳能力。

3.在实践操作活动中学会思考,学会解决问题,培养学生良好的学习习惯。

【重点难点】

初步理解和掌握两位数乘两位数的笔算乘法的计算方法,能正确地进行计算。

【教学准备】

挂图

【情景导入】

1.计算。提问:用一位数乘多位数,我们该怎样计算?

小结:在计算一位数乘多位数时,用这个一位数依次去乘第一个因数的哪一位,满几十就向前一位进几。

2.口算。

27×20 82×40 52×60 12×90 18×30 24×50 19×70 53×20提问:两位数乘整十数你是怎样口算的。

【新课讲授】

1.谈话导入:口算在日常生活中有很广泛的应用,但有时也需要我们计算出准确的结果。例如到商店里买东西,要付多少钱是不能估算的,不能给大概的钱,必须算出准确的结果,所以我们还必须掌握笔算乘法。

板书课题:笔算乘法(不进位)

2.出示教材第46页的例题1。

(1)出示主体图以及例题1:

王老师到书店买了一套书,共14本,王老师买了12套,一共买了多少本?

(2)分析:题目的已知条件和问题分别是什么?要求一共买了多少本?该怎样列式?

14×12(为什么用乘法计算?)

师:14乘2,我们已经会算,14乘12我们还没学过,这是用两位数乘的乘法,这就是我们今天要学的内容。

提问:谁能把14乘12转化成我们已学过的知识呢?以4人为一小组讨论。

(3)汇报:一种方法可以把12本书分成10本和2本两部分,我们可求出10本书多少钱,再求出2本书多少钱,然后把这两部分的钱加起来就是王老师要付的钱。

板书:

师:刚才我们求一共买多少本书,计算时一共用了3个竖式,大家想一想,我们能不能把这3个竖式给并起来写成一个竖式呢?

(4)讲解14乘12竖式。

刚才我们是先算什么?怎样算?教师讲评时用纸把第二个因数十位上的“1”盖住。那计算2乘14先算什么?再算什么?

(先算2乘4表示8个一,再算2乘1表示2个十,合起来是28,在28的旁边注明14×2的积)

此时,教师揭去盖在第二个因数十位“1”的纸,并问:

第二步要再算什么?怎样算?(第二步算的是10本书一共多少钱,用10乘14,得140,在140的旁边注明14×10的积)

教师对着竖式说明:十位上的1表示10,所以用十位的1乘14就是用10乘14,先用10乘4得40,4要写在十位上,个位写0,再用10去乘1,得10,但这个1不是表示1个十,10乘1得到的10应该表示10个十,10个十就是100,所以这个1必须写在百位上,因此,要在140的旁边注明1×10的积。

第三步算的是什么?(把10本书的钱和2本书的钱加起来,也就是把28和140加起来,得168)

说明:在把两个乘积加起来的时候,个位上是计算8加0,0只起占位作用,为了简便,这个零可以省略不写。(边说边把0擦掉)

请一个同学复述一遍竖式计算的过程。

3.提问:这个竖式同前面的三个竖式有没有联系?哪种方法更简便?

4.议一议:怎样笔算两位数乘两位数?

5.引导小结,归纳笔算方法。

两位数乘两位数,用竖式计算时,先用第二个因数的个位上的数去乘第一个因数各数位上的数,得数的末位和第二个因数的个位对齐;再用第二个因数十位上的数去乘第一个因数各数位上的数,得数的末位要和第二个因数的十位对齐,再把两次乘得的结果加起来。

【课堂作业】

1.完成教材第46页的“做一做”。

(1)先看23×13,提问,两个因数分别是多少?

(2)69是用哪位数与第一个因数相乘的积,下一步应该用哪位数去乘第一个因数?乘出的积是多少?

(3)23乘13得多少?

(4)其余的题目独立完成,要求列竖式,最后教师讲评。 2.完成教材第47页练习十第2题。

组织学生在小组中开展比赛:看谁算得对,算完后互相检查计算的过程和结果,评一评,谁完成的最好。

3.完成教材第47页练习十第1题。从题目中你知道哪些信息?(每排22个鸡蛋,共13排)要求一共有多少个鸡蛋,怎样算呢?

指名说一说。

【课堂小结】

本节课我们学习了什么?你有哪些收获?

(教师强调:两位数乘两位数,用竖式计算时,先分别用第二个因数的个位和十位分别同第一个因数相乘,乘得积的末位同第二个因数的数位对齐,再把两次乘得的结果加起来)

【课后作业】

1.完成教材第47页“练习十”第3~5题。 2.完成《创优作业100分》中本课时练习。

笔算乘法(不进位)

小结:两位数乘两位数,用竖式计算时,先分别用第二个因数的个位和十位分别同第一个因数相乘,乘得积的末位同第二个因数的数位对齐,再把两次乘得的结果加起来。

本节课的重点是让学生掌握两位数乘两位数的笔算方法。在教学新知时,我首先让学生重点分析情境图,找出今天所要研究的数学问题并列出算式14×12,再让学生利用刚刚学习的估算估一估大约需要多少钱,最后让学生先独立思考计算的方法,再在小组内交流。通过交流,学生很快就发现了口算方法,即14×10=140,14×2=28,140+28=168(本)。当学生用竖式计算时,我重点引导学生理解每一步计算的结果,尤其是理解为什么可以省略十位末尾的0不写。本节课特别重视让学生叙述计算过程,让学生在“说”中理解算理。

本节课从学生课堂反馈的情况看,多数学生已经掌握了两位数乘两位数(不进位)笔算乘法的计算方法,只有少数个别学生还需进行课后辅导。

三年级《笔算乘法》的优秀教案3

教学目标

知识与技能:

经历多位数乘一位数的计算过程,初步学会乘法竖式的书写格式。

过程与方法:

理解竖式计算的思路和方法。

情感态度与价值观:

使学生能够运用所学的知识解决日常生活中的简单问题。

教学重难点

教学重点:多位数乘一位数的计算法法。

教学难点:乘法竖式的书写格式,了解竖式每一步计算的含义。

教学工具

课件

教学过程

1.复习导入

口算 估算

20×3 = 97×4 ≈

300×4= 215×6≈

6×500= 489×7≈

7×800= 316×6≈

课件出题插图

三个小朋友正在准备画画,他们每人都有一盒彩笔,每盒12支,他们一共有多少支彩笔?

师:怎么计算他们一共有多少支彩笔呢?今天我们一起学习笔算乘法。

板书课题:笔算乘法

2.探究新知

学习例1

指名读题目。

师:用什么方法计算?怎么列式?

自主探索,解决问题。

汇报交流:

12×3= 36 (枝)

师:为什么要这样列式呢?36这个结果是怎么得到的呢?

师:12×3表示什么意思?

这道题与我们以前学过的乘法计算有什么不同?

小组合作探讨。

教师巡视了解各小组的情况,尤其鼓励学习有困难的学生,要积极参与小组活动。对及个别的学生给予个别指导。

(1)进行乘法竖式计算时数位要注意怎样书写?

(2)应该从哪一位乘起?

(3)每一次乘得积的位置该怎样呢?为什么?

(4)每次乘得后的积表示的意义是什么?

小组汇报交流:

方法一:可以把12×3看成3个12相加。

方法二:把12分成10和2分别与3相乘,再把结果相加。

10×3=30(枝)

2×3=6(枝)

30+6=36(枝)

也可以用竖式

方法三:

师:考考大家,大家想一想,如果列竖式计算213×3,怎么计算呢?

小组讨论,汇报交流:

梳理小结:

计算多位数乘一位数竖式计算时:

1、相同数位要对齐,要从各位乘起。

2、从个位起,用一位数分别乘多位数的每一位

3、乘得的积写在横线的下面与相应的数位对齐。

火眼金睛

师:学校买了4个电水壶,一个122,一共用去多少钱?

指名读题。

独立完成。

一辆校车可载客21个学生,学校共有4辆这样的校车,可载学生多少人?

独立思考。

附答案:21×4=48(个)

小刚上学骑自行车,每分钟骑112米,他从家到学校需要骑4分钟,小刚家距离学校多少米?

3.拓展提升

共有6个单元,每个单元住11户,这栋楼房共住多少户人家?

丽丽看一本总共365页的连环画,每天看21页,连续看了4天,一共看了多少页?还剩多少页?

附答案:21× 4=48(页)

365-48=317(页)

课后小结

a提问:

这节课你学到了什么?

b师生总结

1、学会两位数乘一位数乘法竖式的书写与计算。

2、能够用运所学的乘法知识解决生活中的实际问题。

板书

笔算乘法(一)

个位:8×3=24,个位上填4,再向前一位进2。

5 4 十位: 1×3=3,3+2=5,十位上填5。

用多位数每一数位上的数分别乘这个一位数,再把所得的积相加。

乘的顺序:先从个位乘起,哪一位上的积满几十,就要向前一位进几。

三年级《笔算乘法》的优秀教案4

教学目标

1、让学生经历尝试、学习两位数乘两位数的笔算过程,理解算理,掌握笔算的方法。

2、通过合作学习的方式,相互评价,培养创新意识和实践能力,增强合作意识。

3、在探索算法与解决问题的过程中,体验成功的喜悦,体会数学在生活中的应用家价值。

教学重点

理解两位数乘两位数的笔算算理。

教学难点

在交流合作中,探索解决问题的多种方法。理解用第二个因数十位上的数乘第一个因数所得的积表示多少个“十”,因此乘得的数的末位要和因数的十位对齐。

教学过程:

一、触摸旧知,引入新课。

1、老师要买2套书,一共有多少本?

提问:怎样列式?

2、老师要买10套书,一共有多少本?

怎样列式?

提问:在解决这两个问题时,我们用到了什么旧知识?

3、如果老师要买12套书,一共有多少本?

生列式并说意义。

提问:这是一道什么样的算式?这就是我们今天要一块来解决的新问题。揭示并板书课题。

二、自主探究,理解算理。

1、探究14×12的笔算。

(1)、回忆2×14的计算过程,并说出意义

(2)、小组探究10套书在竖式中怎样表示

(3)、汇报展示。

2、错例辨析,突出重点。

师把在巡查过程中错的竖式板书到黑板上。

着重讲解竖式,学习笔算的算理。

当生指出错误的竖式出错点后,请一名基础较好的同学复述乘的顺序及第二个因数十位上的1去乘第一个因数的对位知识:先用第二个因数个位上的2分别去乘14,8写了对着个位,再用第二个因数十位上的1分别去乘14,10乘4得4个十,所以应把4写了对着十位,10乘1个十得1个百,所以1写在百位上。第二次乘其实是算10个14是140,140末尾的“0”在和8相加时写不写都不会影响个位上相加的结果,所以这里的“0”可不写。

引导学生把题目补充完整。

3、同学们自由说说笔算两位数乘两位数的计算过程

三、巩固练习

1、寻找位置(把相乘的结果放在正确的位置里)

2、火眼金睛

3、列竖式计算

23×13 33×31 43×12 11×22 12×44 32×13

四、总结学法。

这节课我们学了什么知识?我们是怎样学会这些知识的?

五、课堂作业

练习十(第5、6题)

六、板书设计。

三年级《笔算乘法》的优秀教案5

一、教学目标:

1、经历探索两位数乘两位数(不进位)口算和笔算方法的过程,理解算理,掌握方法。

2、通过自主探究、讨论交流等方式借助点子图,初步培养学生数形结合的思想,体验解决问题方法的多样性,渗透“转化”的数学思想。

3、培养学生运用转化方法主动学习新知识的能力,发展学生的问题意识和应用意识,体验学数学,用数学的乐趣。

二、教学重难点

重点:掌握两位数乘两位数竖式的算理和算法

难点:理解两位数乘两位数的算理。

三、教学准备:

课件、点子图

四、教学过程

(一)、情境导入

师:看,老师今天给大家带来了什么?

生:神奇的点子。

师:神奇在哪儿呢?请看点一下(变成苹果),再点一下(变成小熊),继续点(变成了书)。

师:看来,在数学当中,可以用点子图(板书:点子图)来代表任何东西。使我们要解决的问题更简便。

二、学习新知

师:昨天,我到书店买书,遇到这样一个问题,谁来读一读?

生:每套书有14本,钟老师买了2套,一共买了多少本?

师:我们知道点子可以代表书,那这里的1套书14本,就可以用一行14个点子来表示。2套就几行点子来表示呢?

生:2行点子(课件出示2行)

师:它表示几个几?

生:2个14。

师:怎么列式?

生:14×2。

师:你会用口算的方法计算出结果吗?

生:先算4×2=8,再算10×2=20,最后算20+8=28。

师:对,除了口算,我们还可以。

生:笔算。

师:列竖式计算时,我们要注意什么?(生;相同数位要对齐)

师:怎么算呢?

生:先用2去乘个位上的4等于8,再用2乘十位上的1等于2个十,所以2写在十位上。

师:刚才我们用口算和笔算的方法计算出14×2=28,哪种方法算起来更快?

生:笔算。

师:这是几位数乘几位数。

生:两位数乘一位数。

师:(指着口算):计算时,我们先把14怎么样?

生:分成10和4。

师:对,就是先把数分小了再进行计算,然后再把两步的积怎么样?

生:加起来。

师:对,这就是(板书:先分后合)的方法,把新知识(板书:转化)成旧知识来帮助我们解决问题。

师:现在每套书有14本,钟老师买了10套,用点子图该怎么表示?谁来说一说?

生:每行14个点子,一共有10行。

师:那这1 0行就表示几套?

生:10套。

师:怎么列式?

生:14×10=140。

师:这是两位数乘两位数中的什么数?

生:两位数乘整十数。

师:那要是钟老师现在买了12套,点子图又该画几行?

生:12行。

师:它表示求几个几?

生:12个14。

师:怎么列式?

生:14×12。

师:这是几位数乘几位数。

生:两位数乘两位数。

师:怎样计算呢?这就是我们今天研究的内容(板书:两位数乘两位数)

师:现在你们能不能估一估14×12大约等于多少?

生:大约等于140。

师:它到底等于多少呢?我们能不能通过点子图利用先分后合的方法把14×12转化成以前学过的知识计算出来呢。

师:好,我们来看一下活动要求,把12套书用先分后合的方法在点子图上分一分、圈一圈,然后列算式算一算。请大家4人为一小组,开始吧。

师:同学们分好了吗?分好的小组请用行动来告诉老师你们分好了。

师:谁来代表你们小组把你们的想法,展示给大家看看。

生汇报:① 14×10=140 14×2=28 140+28=168。

把12套书分成两部分,先算10套,14×10=140再算2套,14×2=28最后算140+28=168就是把两部分的积合起来。

师:哪些小组和他们的想法一样?哪些小组还有不同的想法?

②14×4=56 56×3=168。

把12套分成3个4套,先算4套,14×4=56,再算3组这样的4套56×3=168。

师:还有没有不一样的分法?

③14×6=84 84×2=168 。

师:(小结)这些作品虽然分的方式各有不同,但他们都有一个共同的特点是什么?

生:先把其中一个因数分小了,然后再合起来,(或者:用到了先分后合的方法)

师:对,就是通过点子图利用先分后合的方法把12套书先分成几部分,转化成两位数乘一位数或两位数乘整十数来计算,然后都是把几部分合起来。

师:我们再来看看这几种分法,你认为哪种分法计算起来比较简单?

生:先算10套,再算2套那种。

师:对,就是这种,因为这样分后更容易口算。

师:那请你和同桌的同学互相说一说这种分法是怎么分的?

师:好,说完的同学请快速的坐好。

师:刚才结合点子图,我们可以口算出14×12=168以外,还能列竖式计算吗?

生:能。

师:那现在我们一起来探究怎样列竖式计算吧。(板书:笔算乘法)

师:好,请大家结合这种分法先独立思考,再在草稿本上试着列竖式算一算,计算之后再和同桌的同学互相说一说你是怎么算的。

师:谁来说说你是怎么算的?

生:先算2乘4等于8。

师:8表示?(生:8个一)写在(生:个位上)

师:再算?

生:2乘十位上的1等于2个十。

师:2写在(十位上)。

师:也就是先用第二个因数个位上的2去乘第一个因数的每一位。

师:再怎么算?

生:先用十位上的1去乘个位上的4等于4

师:4表示?

生:4个十。

师:4就写在(生:写在十位上)。

师:那这里个位上的0还写不写呢?

生:可以不写(师板书:个位上的0不写)

师:接下来再怎么算?

生:十位的1去乘十位上的1。

师:等于?(生:100)表示?

(生:1个百)1写在(生:百位上)

师:对,也就是再用第二个因数十位上的1去乘第一个因数的每一位。

师:那接下来又该怎么算?

生:把二步的积加起来。

师:个位相加等于(8),十位相加等于(6),百位相加等于(1)。

师:这一步的28是怎么得到的?

生:28是14×2得到的,(师板书:14×2的积)。

师:(指着第二步)这一个数又是怎么得来的?

生:它是14×10的积。

师:最后怎么算的?

生:把二步的积加起来。

师:其实就买书这件事来说,28表示求几套书的本数?(2套)

师:140又表示几套书的本数?(10套)

师:看来,我们的竖式也是采用先分后合的方法,把14×12先转化成两位数成一位数和两位数乘整十数,再合起来得到最后得数。

师:在竖式计算过程中,我们第一步先用个位上的2去乘第一个因数个位上的几?(4)等于(8)

师:再用2去乘十位上的1,也就是用2乘的几?

生:2×10=20。

师:也就是什么乘什么?(10×4=40)

师:再用十位上的1乘十位上的1也就是什么乘什么?

生:10×10=100。

师:现在你们能不能在点子图上找一找每个乘法算式对应的位置呢?

生:能。

师:第一个2×4=8在点子图上表示求的哪个部分?

生:右上角。

师:2×10=20在图上又表示求的哪个部分?

生:左上角那个部分。

师:10×4=40,又表示哪个部分?

生:右下角那个部分。

师:最后10×10=100呢?

生:左下角那个部分。

师:最后我们再来看一下竖式计算的过程,我们第一步先算的什么?第二步再算的什么?最后又是怎么算的?

生:先用第二个因数的个位去乘第一个因数的每一位,再用第二个因数的十位去乘第一个因数的每一位,最后把两步的积加起来。

师:现在你们知道怎么算了吗?

生:知道了。

练习巩固:

师:那如果不是14×12,而是其他的两位数乘两位数,你们还能计算吗?

生:能。

师:好,现在大家练习一下答题单上的做一做这几道题吧。

师:请大家一大组算一道题,看哪个组的同学算的又快又准确。

师:哪些同学愿意上来算一算?

师生集体评价,选一题让孩子说说你是怎么算的?其余3题集体评价。

师:第一组做对的同学请举手。

师(小结):今天我们学会了什么?

生:两位数乘两位数的笔算乘法。

师:还用到了一个很重要的学习方法是什么?

生:先分后合转化的方法。

师:对,通过点子图利用先分后合的方法把新知识转化成旧知识来解决,这是一个很好的学习方法,希望大家下来以后能学以致用。

师:在竖式计算的过程中,你觉得有没有什么地方是我们最该注意的?

生:用第二个因数十位上的数去乘第一个因数的每一位时,结果的末位一定要与十位对齐。

师:咱们再来帮啄木鸟治一治病吧!请大家在答题单上判断一下下面的计算正确吗?把错误的改正过来。

师:敢不敢接受今天的终极挑战?

师:猜一猜水果下面藏着几?

Copyright © 2022-2023 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

返回顶部