三年级下册数学知识点
马克思曾经说过:“一门学科只有成功的应用了数学,才能真正达到了完善的地步。”这句话充分显示了数学知识的广泛应用及学习数学的必要性和重要性。因此,数学作为认识世界的基础性学科,它可以在思想上支持不同学科的深入发展。下面小编就和大家分享三年级下册数学知识点,来欣赏一下吧。
三年级下册数学知识点1
多位数乘一位数
1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
2、①0和任何数相乘都得0;
②1和任何不是0的数相乘还得原来的数。
3、因数末尾有几个0,就在积的末尾添上几个0。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数
5、(关于“大约)应用题:
①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)
②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)
③条件和问题中都有“大约”,求近似数,用估算。→(≈)
三年级下册数学知识点2
四边形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式。长方形的周长=(长+宽)×2正方形的周长=边长×4
除数是一位数的除法
1、只要是平均分就用(除法)计算。
2、除数是一位数的竖式除法法则:
(1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。
(2)除到被除数的哪一位,就把商写在那一位上。
(3)每求出一位商,余下的数必须比除数小。
顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。
3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)
4、笔算除法:
(1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;
的被除数=商×除数+的余数;
最小的被除数=商×除数+1;
(2)除法验算:→用乘法
没有余数的除法有余数的除法
被除数÷除数=商被除数÷除数=商„„余数
商×除数=被除数商×除数+余数=被除数
被除数÷商=除数(被除数-余数)÷商=除数
0除以任何不是0的数(0不能为除数)都等于0;
0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。
5、笔算除法顺序:确定商的位数,试商,检查,验算。
6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)
7、多位数除以一位数(判断商是几位数):
用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。
三年级下册数学知识点3
第一单元 位置与方向
1、① (东与西)相对,(南与北)相对,(东南—西北)相对,(西南—东北)相对。② 清楚以谁为标准来判断位置。③ 理解位置是相对的,不是绝对的。
2、地图通常是按(上北、下南、左西、右东)来绘制的。( 做题时先标出北南西东。)
3、会看简单的路线图,会描述行走路线。一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。同一个地点有不同的行走路线。一般找比较近的路线走。
4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5、生活中的方位知识:① 北极星永远在北方。② 影子与太阳的方向相对。③ 早上太阳在东方,中午在南方,傍晚在西方。④ 风向与物体倾斜的方向相反。
第二单元 除数是一位数的除法
1、口算时要注意:(1)0除以任何数(0除外)都等于0;(2)0乘以任何数都得0;(3)0加任何数都得任何数本身;(4)任何数减0都得任何数本身 。
2、没有余数的除法: 被除数÷除数=商,商×除数=被除数,被除数÷商=除数
有余数的除法:被除数÷除数=商……余数,商×除数+余数=被除数,(被除数—余数)÷商=除数
3、笔算除法顺序:确定商的位数,试商,检查,验算。
4、基本规律:(1)从高位除起,除到哪一位,就把商写在那一位;(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(位不够除,就看两位上商。)(3)哪一位有余数,就和后面一位上的数合起来再除;(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。
5、课外知识拓展:2、3、5倍数的特点2的倍数:个位上是2、4、6、8、0的数是2的倍数。5的倍数:个位上是0或5的数是5的倍数。3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。
6、关于倍数问题:两数和÷倍数和=1倍的数,两数差÷倍数差=1倍的数
7、和差问题(两数和-两数差)÷2=较小的数,(两数和 + 两数差)÷2=较大的数
第三单元 复式统计表
1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。
2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。
第四单元 两位数乘以两位数
口算乘法
1、两位数乘一位数的口算方法:(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加(2)在脑中列竖式计算。
2、整百整十数乘一位数的口算方法:(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。(3)在脑中列竖式计算。
3、一个数与10相乘的口算方法:一位数与10相乘,就是把这个数的末尾添上一个0。
4、两位数乘整十数的口算方法:先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。
笔算乘法
1、先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。
2、凡是问“够不够,能不能”等的题,都要三大步:①计算、②比较、③答题。→ 别忘了比较这一步。
3、相关公式:因数×因数 = 积,积÷因数 = 另一个因数。
4、两位数乘两位数积可能是( 三 )位数,也可能是( 四 )位数。
第五单元 面积
面积和面积单位:
1、常用的面积单位有:(平方厘米)、(平方分米)、(平方米)。
2、理解面积的意义和面积单位的意义。
面积:物体表面或封闭图形的大小,叫做它们的面积。边长是1米的正方形,它的面积是1平方米。边长是1分米的正方形,它的面积是1平方分米。边长是1厘米的正方形,它的面积是1平方厘米。
3、区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。
4、正确理解并熟记相邻的面积单位之间的进率。① 进率100:1平方米 = 100平方分米,1平方分米 = 100平方厘米② 相邻两个常用的长度单位之间的进率是( 10 )。相邻两个常用的面积单位之间的进率是( 100 )。
背熟公式1、周长公式:长方形的周长 = (长+宽)× 2,长 = 周长÷2-宽,或者:(周长-长×2)÷2= 宽,宽 = 周长÷2-长,或者:(周长-宽×2)÷2=长 ;正方形的周长 = 边长×4,正方形的边长 = 周长÷4
5、面积公式:长方形面积=长×宽,正方形的面积=边长×边长,长方形周长=(长+宽)×2,正方形周长=边长×4,已知面积求长:长=面积÷宽,已知面积求边长:边长=面积开平方,已知周长求长:长=周长÷2 - 宽。
第六单元 年、月、日
年、月、日
1、常用的时间单位有:(年、月、日)和(时、分、秒)。
2、熟记每个月的天数:知道大月一个月有31天,小月一个月有30天。平年二月28天,闰年二月29天,二月既不是大月也不是小月。一年有12个月(7大4小1特殊)
3、熟记全年天数:平年2月28天,闰年2月29天。平年365天,闰年366天。上半年多少天(平年181天,闰年182天),下半年多少天(所有年份都是184天)。
4、经过的天数的计算:公式:结束时间—开始时间 + 1
5、给出一个人出生的年份,会计算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。
6、通常每4年里有( 1 )个闰年, ( 3 )个平年。
24计时法
1、普通计时法又叫12时计时法,就是把一天分成两个12时表示,普通计时法一定要加上“上午”、“下午”等前缀。(如凌晨3时、早上8时、上午10时、下午2时、晚上8时)
2、24时计时法:就是把一天分成24时表示,不加前缀
3、普通计时法转换成24时计时法时,超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12,去掉前缀。
4、反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午,晚上等字在时刻前面。
5、计算经过时间,就是用结束时刻减开始时刻。结束时刻-开始时刻=时间段(经过时间)★(计算经过时间时,一定把不同的计时法变成相同的计时法再计算)
6、认识时间与时刻的区别:(时间是一段,时刻是一个点)
7、时间单位进率:1世纪=100年,1年 =12个月,1天(日)=24小时,1小时=60分钟,1分钟=60秒钟,1周=7天
第七单元 小数的初步认识
1、小数的意义:像3.45,0.85,2.60,36.6,1.2和1.5这样的数叫做小数。小数是分数的另一种表现形式。
2、小数的认、读、写:限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分每一位都要读,按读电话号码的方法读,有几个0就读几个零。
3、小数与分数的关系、互换。小数不同表示的分数就不同。
4、把“单位1”平均分成10份,每份是它的十分之一,也就是0.1,把“单位1”平均分成100份,每份是它的百分之一,也就是0.01。
5、分母是10的分数写成一位小数(0.1),分母是100的分数写成两位小数(0.01)。
6、比较两个小数的大小:先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后位比起。
7、比大小的两种情况:跑步是数越少越好;跳远、跳高是数越大越好。
8、计算小数加、减法时,小数点对齐,也就是相同数位对齐,再相加、减。
9、小数不一定比整数小。(如:5.1 >5 ;1.3 > 1等)
第八单元 数学广角-搭配(二)
简单的排列:有序排列才能做到不重复、不遗漏。
简单的组合:组合问题可以用连线的方法来解决。
组合与排列的区别:排列与事物的顺序有关,而组合与事物的顺序无关。