八年级数学上册的教学计划精选15篇

发布者:华山欧阳锋 时间:2023-1-28 00:34

八年级数学上册的教学计划精选15篇

时间流逝得如此之快,我们的工作又进入新的阶段,为了在工作中有更好的成长,写一份计划,为接下来的工作做准备吧!计划到底怎么拟定才合适呢?以下是小编整理的八年级数学上册的教学计划,欢迎阅读与收藏。

八年级数学上册的教学计划精选15篇

八年级数学上册的教学计划1

1、思想状况

绝大部分学生上课能全神贯注,积极的投入到学习中去,少数学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这部分学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致志学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做。

2、知识水平

整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的问题,对几何有畏难情绪,相关知识学得不够透彻。

3、智力非智力因素

我们知道大多数学生认为数学学习跟个人的爱好有关,有了兴趣学起数学就不会那么吃劲,成绩也较为客观、也有相当一部分学生认为数学和老师本身上课方式,其个人是否和蔼可亲,风趣幽默有关。他们认为老师对学生的影响很大。古者有云,师者,所以传道授业解惑也。当数学与生活实际联系起来,同学们的兴趣明显提高,这位我们的提高了一种教学方法。

4、思想教育

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的`能力。

5、知识传授

对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。

6、能力培养

学生的逻辑推理、逻辑思维能力,计算能力需要得到加强。

八年级数学上册的教学计划2

一、指导思想

坚持党的教育方针,以《初中数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,逐步提高学生的数学成绩,完成八年级上册数学教学任务。

二、学情分析

本人担任八年级的数学教学,共63人。从上学期期末统考的成绩来看,学生两级分化比较严重,存在的现象是一部分学生什么都不知道,较差学生占的比例比较重,中等生和优生人数相对较少。总之,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。在这种优生不多,但后进生却较多,还有少数学生不上进,基础较差,问题较严重,不爱学习,学习态度不好,很是担心。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,培优辅潜,充分调动学生的积极性,发挥学生主体地位,教师辅导的作用,注重方法,培养能力,取得好的成绩。

三、教学目标

1)掌握分式和它的基本性质、分式运算、整数指数幂、分式的方程和它的应用。

2)掌握三角形的三边关系,三角形内角和定理,三角形外角的性质,命题与证明,等腰三角形的性质与判定,线段垂直平分线的性质与判定,全等三角形的'性质与判定以及用尺规作三角形等。 3)理解平方根.立方根.无理数.算数平方根.实数的概念.运算.4)掌握不等式和它的基本性质.一元一次不等式及其解法.一元一次不等式组及其解法,用一元一次不等式及其解法,用一元一次不等式(组)解决简单的实际问题。 5)掌握二次根式的性质与运算。

四、教学重点难点

1)第一章:重点是分式的四则混合运算和分式方程的解法,难点是列分式方程解应用题

2)第二章:重点是三角形的三边关系,三角形内角和定理,等腰三角形的性质与判定,全等三角形的性质与判定,线段垂直平分线性质与判定的应用。难点是等腰三角形的性质与判定的应用以及全等三角形判定与性质的应用。

3)第三章:重点是平方根.立方根.算术平方根.实数的概念。难点是理解平方根.立方根.算术平方根.实数及其相关概念。能运用实数的运算解决简单的实际问题。

4)第四章:重点是一元一次不等式和一元一次不等式组的解法,并利用所学知识解决简单的实际问题。难点是不等式的解集.不等式的性质及应用.确定不等式组的公共部分。

5)第五章:重点是二次根式的化简与运算。难点是正确理解与运用公式

五、教学措施

1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,认真备课.抓住关键、分散难点、突出重点,在培养学生能力上下功夫,写好教案。

2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。

3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。

5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。

6、成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。

7、组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。

8.不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。教学中注重自主学习、合作学习、探究学习。

9.开展小组评比活动,或作业得优,课堂答问加日常评比分,“一帮一”优秀学习小组,个人进步星,课堂活跃星,考试奖励等方法激发学生学习数学的兴趣,同时加强对学生的课后辅导,发展优等生应用数学知识的能力,巩固中等学生的基础知识和学习成绩,促进后进生的进步。成立互助学习小组,以优带良,以优促后,实现全面提高学生的数学成绩。

六、课时安排

第1章分式20课时

第2章三角形28课时

第3章实数16课时

第4章一元一次不等式(组)18课时

第5章二次根式14课时

八年级数学上册的教学计划3

一.指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。

我校七年级下学期学生期末考试的成绩平均分不是很好,总体来看,成绩很低。在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的.习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、教材分析

第十一章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十二章轴对称立足于生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十三章实数主要介绍了平方根、算术平方根、立方根实数的概念。理解乘方与开方之间是互为逆运算的关系。了解无理数和实数的概念,知道实数和数轴上的点一一对应。能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算。

第十四章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现————”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十五章整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

四、教学措施

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。

希望各位教师能够认真阅读最新一年八年级上册数学教学计划,努力提高自己的教学水平。

八年级数学上册的教学计划4

一、教学目标

1、类比分数约分,掌握分式约分方法,熟练进行约分

2、经历从分数的约分到分式的约分的类比探索、归纳过程,明确分式约分的概念和依据。渗透数学中的类比数学思想.

3、在对分式约分的过程中,由繁到简,使学生感受数学的简洁美。

二、重点:如何进行分式约分

难点:分子分母为多项式的分式如何约分

三、教材分析

本节课是冀教版八年级上册第十四章第一节的第二课时,它是分式基本性质的运用,也是后面学习分时乘除法运算的基础,起着承上启下的的作用

四、学情分析

学生在小学学过了分数的约分,七年级学习了因式分解,上节课又学习了分式的基本性质,这些都是学好分式约分的基础

五、教法学法

自学点拨 小组合作

六、教学过程

一)导入

上节课,我们利用类比思想,由分数认识了分式,由分式的基本性质通过观察、猜想、验证、归纳等环节得到了分式的基本性质,这节课,我们利用分式的基本性质继续探究新知,板书课题:14.1分式(2)约分

【设计意图:通过简单的开场白,使学生注意力集中到课堂上,头脑中马上回想上节课的内容,而且知道了要利用分式的基本性质来探究新知,明确了学习的方向。】

二)知识储备

设计意图:通过第一个小题,使学生回想分数的约分方法,为类比引入分式的约分服务,第二小题的设置是为了让学生回忆因式分解的方法,如果忘记了,旁边给了小贴士,帮助回忆

三)类比引新

【设计意图:课上的'检测很重要,但有时由于课上的突发事件而不能完成,看情况而定】

结束语:数学的美无处不在,今天,我们学习了分式的约分,这个由繁到简的过程中,充分展示了数学的简洁美,然我们继续努力,去发现,去体会数学的美吧!

八年级数学上册的教学计划5

一、班情分析

本班学生数学基础较差,虽经七年级的数学学习,基本形成数学思维模式,具备一定的应用数学知识解决实际问题的能力,但在知识灵活应用上还是很欠缺,同时作答也比较粗心。从上学期期末数学测试成绩可以看出,与本校及兄弟学校优秀班级相比,还存在的很大的差距。

二、指导思想

以《初中数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上册数学教学任务。

三、教学目标

1、知识与技能目标

学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

2、过程与方法目标

掌握提取实际问题中的.数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式。

3、情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

四、教学措施

1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。

2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。

3、搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。

4、写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。

5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。

6、成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。

7、组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。

五、课时安排

第十二章平面直角坐标系 约6课时

第十三章一次函数 约21课时

第十四章三角形的边角关系 约10课时

第十五章全等三角形 约10课时

第十六章轴对称图形和等腰三角形 约15课

八年级数学上册的教学计划6

一、教学目标

1.了解二次根式的意义;

2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3. 掌握二次根式的性质 和 ,并能灵活应用;

4.通过二次根式的计算培养学生的逻辑思维能力;

5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.

二、教学重点和难点

重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

难点:确定二次根式中字母的取值范围.

三、教学方法

启发式、讲练结合.

四、教学过程

(一)复习提问

1.什么叫平方根、算术平方根?

2.说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义: 式子 叫做二次根式.

对于 请同学们讨论论应注意的问题,引导学生总结:

(1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的'一部分.

(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

例1 当a为实数时,下列各式中哪些是二次根式?

例2 x是怎样的实数时,式子 在实数范围有意义?

解:略.

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.

例3 当字母取何值时,下列各式为二次根式:

(1) (2) (3) (4)

分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式.

(2)-3x≥0,x≤0,即x≤0时, 是二次根式.

(3) ,且x≠0,∴x>0,当x>0时, 是二次根式.

(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是二次根式.

例4 下列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

解:(1)由2a+3≥0,得 .

(2)由 ,得3a-1>0,解得 .

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.

(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

八年级数学上册的教学计划7

一、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。两班比较,83班优生多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。84班学生单纯,有大多数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

二、教材分析

第一章 平 行线是在七年级上第七章提出平行线的概念、画法后的延续,这章将继续学习平行线的有关判定和性质;教学时把握证明难度,避免概念超前,加强形的建模。教学应注意以下几点:1、说理的过程仍以填空为主,注意避免综合性较强的说理出现。2、要避免证明、命题、定理、公理等词的口头出现,课本是以判定方法、性质、结论来描述。3、要注重现实生活中的实物情景抽象为相交线、平行线等数学图形的建模过程。4、还应注意画图、探究性题的教学。另外对教材中(1)P8 例2出现了添辅助线的说明方法,教师需根据实际情况,不要作深入展开,(2)P20 第5题:不是很明确其意图。

第二章 特殊三角形是在七年级下册第一章三角形的基础知识和全等三角形的基础上学习等腰三角形、等边三角形、直角三角形的判定和性质,进一步熟练几何符号语言的表达、书写;教学时要控制证明的综合难度,侧重计算与形状的判定。本节与以往教材相比较,有以下特点:1、加强了对等边三角形的学习要求;2、强化了直角三角形斜边上的中线等于斜边的一半的性质3、淡化了300角所对的直角边等于斜边的一半的性质。4、P28 等腰三角形的判定说明、P36 例3,教师可简单提出辅助线的作法、作用、要求,但不要藉此来提高难度。5、可以在勾股定理的知识上,让学生去研究探讨,增强数学人文性教育。另外教材中的(1)P24—4、5两题的难度较大,综合性较强,教师要作提示、作小结; (2)教师最好还是根据实际情况补充300角的直角三角形性质;(3)勾股定理这节中出现了不少“定理”一词,是否在教学时可改。

第三章 直 棱柱是从七年级上册提出立体图形概念后第一次对立体图形的研究,与原浙江版义务教材相比,是较新的一章(原教材有立体图形直观图的画法),主要是培养学生空间想像能力,也是为高中阶段立体几何中棱柱的学习做准备;教学时要借助实物、课件的展示,逐步构建空间想象基础能力,教材重点落在两处: 1、直棱柱特征及表面展开图2、画三视图,关键要理解“长对正,高平齐,宽相等”法则。因此,在教学中要注意1)充分利用实物、课件、实际动手操作等途径,使学生能慢慢的在实物与空间想象之间找到一些转换的经验,(2)在教学时对解答过程、说理过程不作过高的要求,避免过高的严密的要求挫伤学生学习本章的积极性。

第四章 样本与数据分析是在学习了七年级上册第六章数据收集与图表的基础上,对科学取样、数据分析、合理化决策的研究学习,是实用性较强的一章;教材以生活现象为导入背景,以解决问题为达成目标,教学应注意(1)避免对样本、总体、个体的定性的描述;(2)增加了对某一事件研究抽样与普查的方法选择;(3)加强了对平均数、众数、中位数、方差标准差这些数据处理方法的决策判断,

第五章 一元一次不等式是在掌握了七年级上册第五章一元一次方程及七年级下册第四章二元一次方程组的基础上,学会一元一次不等式(组)的解法,以及利用一元一次不等式解应用题;教学时应注重与方程、等式的迁移类比,发挥数轴工具性,建立数形结合分析问题的习惯。

第六章 图形与坐标是函数知识学习的开始,与老教材比较也是较新的一章,重在突出直角坐标系的建立与运用,其中也有一部分知识与七年级下册第二章图形和变换相关; 教学时应重视场境模拟,降低坐标表达的抽象,侧重变换图形的坐标描述。 当然更应注意多利用实际场景图示,降低点的位置表达的抽象性,增加点与有序数对的对应性。

第七章 一次函数是在第六章建立直角坐标系后通过对实际生活中变量间变化关系的刻画,侧重了函数是刻画现实生活的又一数学模型。注重函数建模,降低函数抽象图形分析,融合方程、不等式、函数的统一,教学中应做到1、突出了函数是生活中变量之间数量关系的刻画。很多问题是以实际生活背景为载体。2、函数解析式,一次函数,正比例函数的教学顺序做了调整。3、要加强函数基础知识的练习,要注重解题时从应用中来到应用中去的理念。要充分利用合作小组讨论,有足够形成建模的时间,切忌分析模式化,练习呈式化。

另外,本书的设计题(P95, P181)切合学生实际,容易操作,要好好利用,既培养学生的动手能力又增强学生学习数学的兴趣。在课题学习P181-182《怎样选择较优方案》时,根据班级的.实际情况建议作为一堂较重要的方程、不等式、函数综合应用课来讲。

三、提高学科教育质量的主要措施:

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

八年级数学上册的教学计划8

一、指导思想

以《初中数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上册数学教学任务。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。上学年学生期末考试的成绩平均分七(3)班61。06分、七(4)班58。69分,总体来看,成绩只能算一般。在学生所学知识的掌握程度上,整个班级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、教学目标

1、知识与技能目标

学生通过探究实际问题,认识三角形、全等三角形、轴对称、整式乘除和因式分解、分式,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过全等三角形、轴对称的学习逐步提高学生的思维能力与推理能力。

2、过程与方法目标

掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的'判定、轴对称性质进一步培养学生的识图能力;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

3、情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

四、教材分析

第十一章 三角形:本章主要学习与三角形有关的线段、角及多边形的内角和等内容。本章重点:三角形有关线段、角及多边形的内角和的性质与应用。本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。

第十二章 全等三角形:主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十三章 轴对称:立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十四章 整式的乘法与因式分解:在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

第十五章 分式的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

五、教学措施

1、认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。

4、不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。

5、教学中注重自主学习、合作学习、探究学习。

6.经常听取学生良好的合理化建议。

7.以“两头”带“中间”战略思想不变。深化两极生的训导。

六、教学进度

周次

时间

教学内容

第一周

9月8日————9月14日

11.1与三角形有关的线段11.2与三角形有关的角

第二周

9月15日————9月21日

11.2与三角形有关的角11.3多边形及其内角和

第三周

9月22日————9月28日

11.3多边形及其内角和第十一章复习

第四周

9月29日————10月5日

12.1全等三角形12.2三角形全等的判定

第五周

10月6日————10月12日

12.2三角形全等的判定

第六周

10月13日————10月19日

12.3角平分线的性质第六章复习

第七周

10月20日————10月26日

13.1轴对称13.2画轴对称图形

第八周

10月27日————11月2日

13.3等腰三角形13.4课题学习:最短路径问题

第九周

11月3日————11月9日

第十三章复习期中复习

第十周

11月10日————11月16日

期中复习期中考试

第十一周

11月17日————11月23日

14.1整式的乘法

第十二周

11月24日————11月30日

14.1整式的乘法14.2乘法公式

第十三周

12月1日————12月7日

14.2乘法公式14.3因式分解

第十四周

12月8日————12月14日

第十四章复习

第十五周

12月15日————12月21日

15.1分式15.2分式的运算

第十六周

12月22日————12月28日

15.2分式的运算

第十七周

20xx年——————20xx年

12月29日————1月4日

15.3分式方程

第十八周

1月5日————1月11日

第十五章复习

第十九周

1月12日————1月18日

期末复习预计期末考试

八年级数学上册的教学计划9

多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!

一、内容和内容解析

本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:20xx年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。

勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。

学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。

本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证

二、教学目标及目标解析

1、教学目标

①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。

②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。

④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。

2、目标解析

①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。

②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2 数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。

③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。

④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。

三、教学问题诊断分析

学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。

对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。

四、教学支持条件分析

根据本节课的.教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.

五、教学过程设计

(一)创设情境,导入新课。

问题1:请同学们欣赏20xx年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)

教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。

【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.

方案1:如果学生能够说出勾股定理的相关知识,则直接

进入下一环节的学习。

方案2:如果学生有困难,则安排学生自学教材,再发表意见。

学生发言,教师倾听。视学生回答的重点 板书 :勾三股四弦五 等

【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。

(二)观察演算,合作探究,初具概念

问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系? (故事附后)

教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。

【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。

问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。

教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)

【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。

问题5:你是怎样演算的?

教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。

视学生的学习情况确定下步的教学:

方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。

方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。

【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。

问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。

学生描述,教师板书。

【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察---探究---整理----归纳的数学方法,体验学习的成功。

(三)引导实验,探究论证,形成体系。

问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。

教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。

【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。

问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。

学生或小组间进行合作实验,共同协作探究;教师巡视指导。

【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。

问题9:教师选取代表性的拼接方法,全班展示。

【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。

(四)归纳提高,巩固运用,形成能力。

问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?

学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。

【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。

问题11:完成以下练习题

教材69页第1题、

学生独立完成;教师巡视指导,板书得数,介绍勾股数。

【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。

(五)归纳小结,反思提高

问题12:通过本节课的学习,你有哪些收获?

学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。

【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。

小编为大家提供的八年级上册数学勾股定理教学计划大家仔细阅读了吗?最后祝同学们学习进步。

八年级数学上册的教学计划10

一、指导思想

贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

二、教材分析

义务教育课程标准实验教科书,人教版八年级数学上册共五章,16大节。

我们并不陌生,但是三角形的内角和等于180度如何证明和怎样运用这个结论求出多边形的内角和,这些问题可以在本章中得到解决,而且能学到研究几何图形的重要思想和方法。

会带领同学们认识形状、大小相同的图形,探索两个三角形形状、大小相同的条件,了解角平分线的性质。

在我们周围的世界,会看到许多对称的现象,怎样认识轴对称与轴对称图形?十三章会告诉答案。

在中,我们可以用含有字母的式子表示实际问题中的数量关系,解决更多与数量关系有关的问题,加深对这个由具体到抽象的过程的`认识。

我们知道数有整数和分式之分,式也有整式和分式之别。在这章中你将看到分数的影子。学习了分式,你会认识到它是我们研究数量关系并用来解决问题的重要工具。

三、教学措施

1、认真学习钻研新课标,掌握教材,编写好。

2、认真备课,争取充分掌握学生动态。

认真钻研大纲和教材,做好各章节的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以提高自己的教学理论水平和教学实践能力。

3、认真上好每一堂课。

创设教学情境,激发学习兴趣,爱因斯曾经说过:激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。想尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。

4、落实每一堂课后辅助,查漏补缺。

全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能,获得进一步提高;使差生也能及时扫除学习障碍,增强学习信心,尽可能。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。

5、积极与其它老师沟通,加强教研教改,提高教学水平。

6、经常听取学生的合理化建议。

7、深化两极生的训导。

八年级是承上启下的非常关键的一年,学习习惯、学习方法的养成在此一举。因此,在教学中要密切注意学生的思想动态,及时引导,使好的更好,差的迎头赶上。尽可能多的抓学生,面广,量大,同时也要注意保质保量的完成教学任务。

希望各位教师能够认真阅读第一学期八年级数学上册教学计划,努力提高自己的教学水平。

八年级数学上册的教学计划11

教学目标:

1.知识目标:

(1)掌握解分式方程的步骤。

(2)理解解分式方程时验根的必要性。

2.能力目标:

会按照解分式方程的步骤解分式方程。

3.情感与价值观:

(1) 培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

(2) 运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。

老师引导学生自主探索分式方程的解法,将分式方程转化为整式方程,在解题中亲身体验“转化”思想。弄清了“转化”的方向,也就明白了解分式方程的步骤,解题思路自然清晰,能力随之形成。

重点:

1.探索解分式方程的步骤,熟练掌握分式方程的解法。

2.体会解分式方程验根的必要性。

难点:如何将分式方程转化为整式方程;体会分式方程验根的必要性。

学情与教材分析:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。但基础不够扎实,如计算容易出错、考虑问题不够严谨等。另外在学习本节课之前,已经学习过《解一元一次方程》。对于《解一元一次方程》大部分同学已经掌握,但由于是在七年级学习,有一定的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。但估计绝大部分同学稍加回忆,应能接近以前的水平。本节课的内容处在《分式》这章的后半部。《分式》这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。紧跟其后的是本节课内容——解分式方程,最后一节是根据实际问题列出分式方程并求解。由此可见《解分式方程》涵盖了本章前面的内容,是本章知识的综合与提高。学习好这部分内容,不但掌握了初二阶段有关分式方程的.内容,也为初三学习可化为一元二次的分式方程打下了良好的基础。通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想——转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。

教学准备:投影仪、各例题的标准解答过程。

教学过程:

一、课堂导入

由课本第87页(即前一节课的内容:根据实际问题列出分式方程,但未求解)产生的方程入手,引入解分式方程的必要性。

二、新课:

例1 解分式方程:

(1) 由学生自主探索或互相讨论完成,老师巡视学生完成情况,对于学生可能出现的几种典型的解法用投影仪展示,让同学讨论,得出较好的解法。

[设计意图:课文的第一个例子是:_______,这个例子我估计绝大部分学生会采用交叉相乘(以往教学中学生常常提及)。虽也去掉分母,但学生还没意识到是在两边乘了最简公分母_____,若我自己去解释,又有灌输之嫌。于是我干脆暂时避开此例,自己设计一个例子_____,这样避免了学生采用交叉相乘的方法求解]

[学情预设:由于本节课的内容是紧接在分式的运算之后,多数学生会对方程进行通分,发现分母相同,得出分子应相等,解出x的值。这种情况与直接去分母效果相同,但解法较繁琐。第二种情况是与解含有分母的整式方程(如: )相联系,模仿整式方程的解法去分母,化为整式方程,求解整式方程得解。估计采用第二种方法的学生是少数的。另外,若没有学生采用第二种方法,我会展示自己依第二种方法的解答过程,以供学生进行讨论、比对,在讨论中感悟到第二种方法更简便。突破本节课的难点]

(2)引导学生检验刚才求得的解是否是原方程的解。

[设计意图:让学生明白将值代入原方程检验是分式方程验根的一种方法,另一种方法是直接检验分母是否为0,这种方法将在后面涉及]

[学情预设:学生可将求得的值代入原方程,但书写格式不规范,如有的同学将解直接代入方程两边,却仍用等号将左右两边相连,然后两边同时计算。我计划用投影仪,选择几位同学的做法显示给大家。让大家评选出最好的格式——将解得的根分别代入方程的左右两边计算,看左、右两边的结果是否一致]

[知识链接:对于验证一个值是否是方程的解,在求解一元一次方程时,有进行过相应的训练。绝大多数学生明白可将值代入原方程,但他们往往将值同时代入原方程。

显然,这种书写不够规范。应分别代入两边验证为好]

例2 解方程:

让学生自已求解,解得_____,引入增根的概念。并说明验根除了代入原方程,还可检验各分母是否为0,从而判别是否是增根。

[设计意图:学生不明白为何代入原方程的分母或最简公分母也可验根,我设计此例的目的是让学生明白解分式方程可能会产生让分母为0的根,即增根,自然以后解分式方程要检验了]

[学情预设:在前面学习分式有关内容时,学生对于像_____是相反的关系掌握得很好,可以轻松得出 _____,这样在方程两边同时乘以_____即可。若学生没注意到这个细节,老师可稍加提示]

[知识链接:有了第一个例子,学生已经明白解分式方程的步骤,可以自行解此方程]

例3 解方程:

[设计意图:此题需要学生对分母分解因式,为解最一般的分式方程起示范作用]

[学情预设:有学生直接在方程两边乘以_____。这种方法可以,但繁琐。在学生解完之后,引导他们对在方程两边乘以最简公分母 还是乘以 进行对比。得出较简便的方法]

[知识链接:学生已经学习过分解因式 ___

三、阶段小结:

引导学生总结解分式方程的步骤:

1.在方程的两边同时乘以最简公分母,约去分母,化成整式方程。

2.解这个整式方程。

3.验根_______,引导学生对两种验根方法的优、缺点进行讨论。

[设计意图:梳理一遍解题步骤,解题思路会更清晰]

四、强化练习:

1.完成课本第90页的随堂练习。完成后学生相互交换改卷,查找错误并打分。评分标准由学生在课堂上集体商定。

[设计意图:将小结的知识点内化到学生的知识结构中。简单机械做题,有一定的效果,但效率不高。学生自测,接下去同学互改,能调动学生的积极性。在商量评分标准的过程中,学生自然体会到各个步骤的重要性。这样既完成了强化练习,又提高了学习效率]

八年级数学上册的教学计划12

一、指导思想

通过数学教学,学生可以学到现代化和进一步学习现代科学技术所必需的数学基础知识和技能;应努力培养学生的计算能力、逻辑思维能力以及分析和解决问题的能力。

二、学术状况分析

八年级是初中学习过程中的关键时期,学生的基础直接影响到以后能否上学。这个班刚接手,不认识班里的同学。我从以前的老师那里了解到,有天赋的学生不多,但是后进生很多,少数学生不上进,基础差,问题严重。为了在这一时期取得理想的效果,教师和学生都应该努力检查和弥补差距,充分发挥学生作为学习的主体和教师作为教学的主体,注重方法和能力的培养。

三.教材分析

第二章

全等三角形主要介绍了三角形同余的性质、判断方法以及直角三角形同余的特殊条件。更加注重学生推理意识的`建立和对推理过程的理解。学生在直观理解和简单说明原因的基础上,严格证明全等三角形的一些性质,从几个基本事实出发,探索三角形全等的条件。

第十二章

轴对称性是基于已有的生活经验和初步的数学活动经验,从观察生活中的轴对称现象出发,从整体的角度直观地认识和总结轴对称的特征;通过对角、线段、等腰三角形等简单轴对称图形的逐步分析,引入了等腰三角形的性质和判定的概念。

第十三章实数。从平方根和立方根开始,学习一些关于实数的知识,利用这些知识解决一些实际问题。

第十四章

一阶函数通过对变量的考察,可以了解函数的概念,进一步研究一个最简单的函数,即一阶函数33543354。了解函数的相关性质和研究方法,初步形成从函数的角度认识现实世界的意识和能力。在教材中,通过反映“问题情境————建立数学模型——3354概念、规律、应用、拓展”的模式,让学生从实际问题情境中抽象出函数、初等函数的概念,探究初等函数及其图像的性质,最终利用初等函数及其图像解决相关实际问题。同时,在教学顺序上,将比例函数纳入线性函数的学习。教材注重新旧知识的对比和联系。比如教科书中,加强了线性函数、线性方程、线性不等式之间的联系。

第十五章

代数表达式力求在形式上突出:代数表达式和代数表达式运算的实践背景,使学生体验到“符号化”实际问题的过程,培养出符号感;在探索算法的过程中,为探索算法设置了归纳、类比等活动。理解数学,掌握基本操作技能

四、教学措施

1、课堂教学与实践相结合,根据及时反馈的信息,排除学习障碍。

2.认真备课,认真授课,把握课堂45分钟,努力提高教学效果。

3.抓住重点,分散难点,突出重点,努力培养学生能力。

4.不断改进教学方法,提高专业素质。

5.在教学中注重自主学习、合作学习和探究学习。

五.教学进度

八年级数学上册的教学计划13

一、内容和内容解析

(一)内容

直角三角形全等的判定:“斜边、直角边”.

(二)内容解析

本课是在学习了全等三角形的四个判定方法(“边边边”、“边角边”、“角边角”、“角角边”)的基础上,进一步探索两个直角三角形全等的判定方法.直角三角形是三角形中的一类,判定两个直角三角形全等,可以用已学过的所有全等三角形的判定方法,但两个直角三角形中已有一对直角是相等的,因此在判定两个直角三角形全等时,只需另外找到两个条件即可,由于直角三角形的这种特殊性,判定两个直角三角形全等的方法又有别于其它的三角形.

教科书首先给出一个“思考”,让学生认识到判定两个直角三角形全等与判定两个普通三角形全等的不同之处.然后通过探究5的作图实验操作,让学生经历探究满足斜边和一条直角边分别相等的两个直角三角形是否全等的过程,然后在学生总结探究出的规律的基础上,直接以定理的方式给出“斜边、直角边”判定方法.最后,教科书给出一个例题,让学生在具体问题中运用“斜边、直角边”证明两个直三角形全等,并得到对应边相等.

基于以上分析,本节课的重点是:“斜边、直角边”判定方法的运用.

二、目标及目标解析

(一)目标

1.理解“斜边、直角边”能判定两个直角三角形全等.

2.能运用“斜边、直角边”证明两个直角三角形全等,并得到对应边、对应角相等.

(二)目标解析

1.学生经历探索两个直角三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.

2.学生能从具体的问题中找出符合“斜边、直角边”条件的两个直角三角形,并能证明这两个直角三角形全等.

三、教学问题诊断分析

由于直角三角形是特殊的三角形,它具备一般三角形所没有的特殊性质.例如,对一般三角形来说,已知两边和其中一边的对角分别相等,不能判定两个三角形全等,而对于直角三角形来说,已知斜边和一直角边分别相等,能够得到两个直角三角形全等.

直角三角形的.斜边和一直角边确定了,根据勾股定理,得到第三边也是确定的,从而可以利用“边边边”或“边角边”证明满足斜边和一条直角边分别相等的两个直角三角形全等.但是勾股定理是后面学习的内容,在这里不能运用勾股定理来证明这个结论,只能通过实验操作、观察得出定理.

基于以上分析本节课的难点是:“斜边、直角边”判定方法的理解.

四、教学过程设计

(一)引言

前面我们学习了全等三角形的四个判定方法(“边边边”“边角边”“角边角”“角角边”),本节课我们继续研究两个直角三角形全等的判定方法.

问题1:对于两个直角三角形,除了直角相等的条件外,还要满足哪几个条件,这两个直角三角形就全等了?

两个直角三角形满足的条件

全等依据

方法1

两条直角边分别相等

“SAS”

方法2

一个锐角和一条直角边分别相等

“ASA”或“AAS”

方法3

一个锐角和斜边分别相等

“AAS”

追问:如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗?

师生活动:师生共同得出上面的三个判定方法,学生思考猜想:满足斜边和一条直角边分别相等的两个直角三角形是否全等.

【设计意图】直接进入本节课学习的内容,培养学生分类讨论的思想.让学生大胆提出猜想.

(二)探索新知

问题2:探究5

任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?

画法:

(1)画∠MC′N=90°;

(2)在射线C′M上截取B′C′=BC;

(3)以点B′为圆心,AB为半径画弧,交C′N于点A′;

(4)连接A′B′.

追问:作图的结果反映了什么规律?

你能用文字语言和符号语言概括吗?

文字语言: 斜边和一条直角边分别相等的两个直角三角形全等.(简写成“斜边、直角边”或“HL”)

五、小结反思

教师和学生一起回顾本节课所学的内容,并请学生回答以下问题:

1.这节课我们学习了哪个判定直角三角形全等的方法?

2.判定两个直角三角形全等总共有哪些方法?

师生活动:教师引导,学生小结.

【设计意图】回顾两个直角三角形全等的几种判定方法,形成知识体系.

六、布置作业:

教科书习题12.2第7、8题.

八年级数学上册的教学计划14

一、指导思想

以全面提高学生的数学成绩为核心,以“学案导学”、“小组学习”为基本教学模式和学习方法,针对本届八年级学生的学情,本着“注重基础、突出能力、面向全体”的原则,采用“分层教学和自主学习相结合”的教学方法,扎实有效地使学生走进高效课堂,全面提高学生成绩的三率总分。

二、学情分析

从上学期期末考试成绩来看,成绩不很理想,两级分化严重,部分同学学习的主动性不强,一部分同学没有形成一定的学习能力,大多数同学基础较差,学习没有兴趣,多数同学缺乏自学能力,不能有效的将相关知识链接、迁移,分析问题的能力欠缺;在平时存在抄袭作业现象。

三、教学内容

本学期的教学内容共有五章即二次根式、勾股定理、平行四边形、一次函数、数据的分析。

四、教学重、难点分析

一次函数是初中代数的重点知识内容,也是初中中考的主要知识内容;平行四边形是初中几何的重点知识内容也是命题与证明的重点。

五、教学目标

1、了解二次根式的'概念,会确定二次根式有意义的条件,理解二次根式的加减乘除运算法则。

2、勾股定理:会用勾股定理和逆定理解决实际问题。

3、四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。

4、体会一次函数的意义,会画一次函数的图像,理解一次函数的性质,能运用一次函数解决有关的实例问题,进一步发展数学应用意识。

5、数据的分析本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

六、措施

1、改变学生的学习方式和教学模式,尝试使用“导学案”进行小组合作学习。全面培养学习小组长,使其成为老师的得力小助手。

2、努力成为学生学习的组织者、合作者、参与者。在教学过程中以教师为主导,以学生为主体,以学生活动为主线,倡导自主、合作、探究的学习方式。

3、做好“备、讲、批、辅、考”常规教学活动,在努力钻研教材、教法的基础上,分析学情,学法,注重对学困生的学习方法的指导,通过和学生谈话等方式及时掌握学生的思想动态,对症下药。

4、加强对学生的课上管理,严格要求,严慈相济,建立激励制度。

5、做好集体备课,加强课前预习和当堂检测的力度,进行应试能力的培养,对学生既要统一要求,又要注重个性差异,因材施教。

八年级数学上册的教学计划15

一、指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。本班是刚刚接手,对班上学生不了解,从原科任老师处得知:优生不多,但后进生却较多,有少数学生不上进,基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教材分析

第十一章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十二章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十三章 实数。从平方根于立方根说起,学习有关实数的有关知识,并以这些知识解决一些实际问题。

第十四章 一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的'意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十五章 整式在形式上力求突出:整式及整式运算产生的实际背景,使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程,为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握

四、教学措施

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。

五、教学进度

周教学内容及课时安排

2 2三角形全等的条件(2) 3角平分线的性质(1)

3 4 第十一章小结(3)

8 平方根3 立方根3

9 实数3 第十三章小结(2)

10 段考 变量与函数3

11 一次函数3 方程与不等式5 课题学习3

15.2.4整式的乘法(2)

18 第十五章小结(3) 总复习

19 总复习

20 考试

本计划只供本人使用,在实施中应根据实际进行适当调整

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。