高一数学上册教学计划(精选15篇)
高一数学上册教学计划(精选15篇)
时间过得真快,总在不经意间流逝,成绩已属于过去,新一轮的工作即将来临,写一份计划,为接下来的学习做准备吧!我们该怎么拟定计划呢?以下是小编为大家整理的高一数学上册教学计划,希望对大家有所帮助。
高一数学上册教学计划 1
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、高一上册数学教学教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有如下特点:
1、亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2、问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3、科学性与思想性:通过不同数学内容的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4、时代性与应用性:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识。
三、高一上册数学教学教法分析:
1、选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2、通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析
高一作为起始年级,作为从义务阶段迈入应试征程的`适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长。面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
五、高一上册数学教学教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力和解决实际问题的能力,提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育.
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力.
5、重视数学应用意识及应用能力的培养。
高一数学上册教学计划 2
本学期担任高一5、6两班的数学教学工作,两班学生共有110人,初中的基础参差不齐,但两个班的学生整体水平还可以;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、教学目标。
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)通过定义、命题的`总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过不等式、函数的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
(三)知识目标
1、集合、简易逻辑
(1)理解集合、子集、补订、交集、交集的概念。了解空集和全集的意义。了解属于、包含、相等关系的意义。掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词"或"、"且"、"非"的含义。理解四种命题及其相互关系。掌握充分条件、必要条件及充要条件的意义。
(3)掌握一元二次不等式、绝对值不等式的解法。
2、函数
(1)了解映射的概念,理解函数的概念。
(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质。掌握指数函数的概念、图像和性质。
(5)理解对数的概念,掌握对数的运算性质。掌握对数函数的概念、图像和性质。
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
3、数列
(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
二、教学重点
1、集合、子集、补集、交集、并集。一元二次不等式的解法四种命题。充分条件和必要条件。
2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。
3、等差数列及其通项公式。等差数列前n项和公式。
等比数列及其通项公式。等比数列前n项和公式。
三、教学难点
1、四种命题。充分条件和必要条件
2、反函数、指数函数、对数函数
3、等差、等比数列的性质
四、工作措施。
抓好课堂教学,提高教学效益。
课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
(2)加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
高一数学上册教学计划 3
一、具体目标:
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学。
二、本学期要达到的教学目标
1、双基要求:
在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
2、能力培养:
能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的.意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
3、思想教育:
培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
高一数学上册教学计划 4
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。数学网为大家推荐了高一数学教学计划,请大家仔细阅读,希望你喜欢。
一、学情分析
秋季起,湖南省高中新课程实验工作全面启动,我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。
二、教材分析
本教材有下列几个特点:
1、更加注重强调数学知识的实际背景和应用,使教材具有很强的亲和力,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生看个究竟的冲动,使学生兴趣盎然地投入学习。
2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到观察思考探索以及用问号性图标呈现的边空等栏目,利用这些栏目,在知识形过过程的关键点上,在运用数学思想方法产生解决问题策略的关节点上,在数学知识之间联系的联结点上,在数学问题变式的发散点上,在学生思维的最近发展区内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。
3、信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。
4、关注学生数学发展的不同需求,为不同学生提供不同的发展空间,促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置观察与猜想、阅读与思考、探究与发现等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。
5、新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。
三、教学任务与目的
1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。通过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。
2、了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax与对数函数y=loga x互为反函数(a 0, a1)。通过实例,了解幂函数的概念;结合函数y=x, y=x2, y=x3, y=1/x, y=x1/2的图象,了解它们的变化情况。
3、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法、利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义、收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。
4、利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的.三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
5、以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题、
6、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
四、教学措施和活动
1、加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。
2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念。
3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。
4、与学生多沟通、多交流,真正成为学生的良师益友。
5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。
五、教学时间大致安排
集合与函数概念13
基本初等函数15
函数的应用8
空间几何体8
点、直线、平面的位置关系10
直线与方程9
圆与方程9
高一数学上册教学计划 5
Ⅰ.教学内容解析
本节课的教学内容,是指数函数的概念、性质及其简单应用、教学重点是指数函数的图像与性质。
这是指数函数在本章的位置。
指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数、它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践、指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础、因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程、指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义。
Ⅱ.教学目标设置
1、学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念。
2、学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小。
3、学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法。
4、在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。
Ⅲ.学生学情分析
授课班级学生为南京师大附中实验班学生。
1、学生已有认知基础
学生已经学习了函数的概念、图象与性质,对函数有了初步的认识、学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力、学生已有研究一次函数、二次函数等初等函数的直接经验、学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯。
2、达成目标所需要的认知基础
学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力。
3、难点及突破策略
难点:
①对研究函数的一般方法的认识。
②自主选择底数不当导致归纳所得结论片面。
突破策略:
①教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段。
②组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思。
③对猜想进行适当地证明或说明,合情推理与演绎推理相结合。
Ⅳ.教学策略设计
根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式、通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段。
学生的自主学习,具体落实在三个环节:
(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念。
(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升。
(3)性质应用阶段,学生自主举例说明指数函数性质的应用。
研究函数的性质,可以从形和数两个方面展开、从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明。
Ⅴ.教学过程设计
1、创设情境建构概念
师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系、你能用函数的观点分析下面的例子吗?
师:大家知道细胞分裂的规律吗?(出示情境问题)
[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的`关系?
[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%、如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?
[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=
师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?
〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?
[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系、引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示、初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构、指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义、为了使指数函数与对数函数能构成反函数,规定a≠1、此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”。
[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax。
[教学预设]学生能举出具体的例子——y=3x,y=…、如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现、进而提出这类函数一般形式y=ax。
方案1:
生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))
师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)
生:函数y=,y= x,y=(-2)x,y=1x…
师:板书学生举例(停顿),好像有不同意见。
生:底数不能取负数。
师:为什么?
生:如果底数取负数或0,x就不能取任意实数了。
师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R。
(若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域、若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)
师:这些函数有什么共同特点?
生:都有指数运算、底数是常数,自变量在指数位置。
(若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征、而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用。)
师:具备上述特征的函数能否写成一般形式?
生:可以写成y=ax(a>0)、
师:当a=1时,函数就是常数函数y=1。对于这个函数,我们已经比较了解了、通常我们还规定a≠1。今天我们就来了解一下这个新函数、(出示指数函数定义)
方案2:
生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))
师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)
生:函数y=,y= x,…
师:这些函数的自变量是什么?它们有什么共同特点?
生:(可用文字语言或符号语言概括)都有指数运算、底数是常数,自变量在指数位置、可以写成y=ax。
师:y=ax中,自变量是x,底数a是常数、以上例子的不同之处,是底数不同、那你觉得底数的取值范围是什么呢?
生:底数不能取负数、
师:为什么?
生:如果底数取负数或0,x就不能取任意实数了、
师:为了研究的方便,我们要求底数a>0、当a=1时,函数就是常数函数y=1、对于这个函数,我们已经比较了解了、通常我们还规定a≠1、今天我们就来了解一下这个新函数、(出示指数函数定义)
[阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数、它的定义域是R。
[意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程、此处不宜纠缠于y=22x是否为指数函数等细枝末节、指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解、指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理。
2、实验探索汇报交流
(1)构建研究方法
师:我们定义了一个新的函数,接下来,我们研究什么呢?
生:研究函数的性质。
〖问题2你打算如何研究指数函数的性质?
[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识、在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法、开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发、教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归、中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑。
[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法。
[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法、部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质、另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证。
师:(稍等片刻)我们一般要研究哪些性质呢?
生:变量取值范围(定义域、值域)、单调性、奇偶性。
师:(板书学生回答)怎样研究这些性质呢?
生:先画出函数图象,观察图象,分析函数性质。
生:先研究几个具体的指数函数,再研究一般情况。
师:板书“画图观察”,“取特殊值”
(若没有学生提出从特殊到一般的思路、师:底数a的取值不同,函数的性质可能也会有不同、一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同、底数a可以取无数多个值,那我们怎么办呢?)
(若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证、师:你的想法也很有道理,不妨试一试、(仍引导学生从具体指数函数图象入手。))
[意图分析]学习的过程就是一个不断地提出问题、解决问题的过程、提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展。
(2)自主探究汇报交流
师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了。
〖问题3选取数据,画出图象,观察特点,归纳性质。
[设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受、学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识、并且学生能在过程中体会数据如何选择,了解研究方法、
由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受、而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识、教师应利用绘图软件作出底数连续变化的图象,验证猜想。
数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验。
[师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质。
[教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质、教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质、在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质、教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法、教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质、其中⑥⑦不强加于学生、对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子、对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究。
生:自主选择数据,在坐标纸上列表作图,列出函数性质。
师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报、)有条理地整理一下结论,讨论交流所得、(同时用实物投影仪展示学生所画图象、若没有投影仪,用几何画板作出图象。)
生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数。
师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?
师:(用彩笔描粗图象,故意出错)错在哪里?为什么?
生:指数函数是单调递增的,过定点(0, 1)。
师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1)。
师:指数函数还有其它性质吗?
师:也就是说值域为(0, +∞)。
生:指数函数是非奇非偶函数。
师:有不同意见吗?
生:当0
(其它预设:
(1)当a>1时,若x>0,则y>1;若x<0,则y<1。
当00,则y<1;若x<0 y="">1。
(2)学生画出y=2x和y=3x图象,得出函数递增速度的差异。
(3)画出y=2x和y=图象,得到底数互为倒数的指数函数图象关于y轴对称。)
师:(板书学生交流结果,整理成表格、注意区分“函数性质”与“函数之间的关系”、若有学生试图说明结论的合理性,可提供机会、)大家认为底数a>1或0
[阶段小结]指数函数y=ax(a>0且a≠1)具有以下性质:
①定义域为R、
②值域为(0, +∞)
③图象过定点(0, 1)
④非奇非偶函数
⑤当a>1时,函数y=ax在(-∞, +∞)上单调递增;
当0
⑥函数y=ax与y=()x (a>0且a≠1)图象关于y轴对称
⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:
x∈(-∞, 0)时,y=ax图象在y=bx图象下方;
x=0时,两图象相交;
x∈(0,+∞)时,y=ax图象在y=bx图象上方
[意图分析]通过探究活动,使学生获得对指数函数图象的直观认识、学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言、对函数的理解,是建立在三种语言相互转化的基础上的在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体、自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点。
3、新知运用巩固深化
(方案一)(分析函数性质的用途)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:函数的定义域是函数的基础,是运用性质的前提、值域是研究函数最值的前提、具备奇偶性的函数,可以利用对称性简化研究、指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?
生:可以求最值,可以比较两个函数值的大小。
师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式、)
生:(举例并判断大小。)
师:你考察了哪个指数函数?怎么想到的?(规范表述)
师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小、(出示例1)
(方案二)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:(口述并板书)你能比较32与33的大小吗?
生:直接计算比较
师:那比较与的大小呢?能不能不计算呢?
生:利用函数y=3x的单调性
师:能具体说明吗?(引导学生规范表达)我们再试一试、
(出示例1)
【例1】比较下列各组数中两个值的大小:
①,;②_,_;③,
[设计意图]引导学生运用指数函数性质、对于32与33的大小比较,学生更可能计算出幂的值直接比较、变式后,学生可能作差或作商比较,转化为比较与1的大小,进而运用指数函数单调性,也可能直接运用单调性、初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解
[师生活动]学生板演,教师组织学生点评
[教学预设] ①②两题,学生能运用指数函数单调性解决。②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质。③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法
师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?
师:(对③的引导)你考虑利用哪个函数?是y=还是y=?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)
生:它们都过点(0, 1)、
师:也就是说,可以将1转化为指数形式,即1==那接下来呢?
生:比较,和1的大小
师:我们找到了一个比大小的中间量、以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小、
【例2】
①已知3x≥,求实数x的取值范围;
②已知<25,求实数x的取值范围
[设计意图]指数函数单调性的逆用,同时考查指数函数的定义域
4、概括知识总结方法
〖问题4本节课我们学习了哪些知识?你还学会了哪些方法?
[设计意图]回顾所学内容,深化认知、开放式小结,不同学生有不同的收获
[师生活动]学生发言总结,交流所得
[教学预设]
通过本节课对指数函数图象和性质的研究,我们获得了以下知识和方法:
①指数函数的定义与性质;
②研究函数的一般方法和步骤
师:本节课我们学习了什么知识?
生:指数函数的定义和性质、
师:回顾我们的研究过程,我们是怎样研究指数函数的?
生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质
生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况
师:这是一种从特殊到一般的研究方法、研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数、
[意图分析]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步
5、分层作业,因材施教
(1)感受理解:课本第54页,习题(2):1,2,3,4;
(2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?
[设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质、“思考运用”提供学生运用函数研究的一般方法自主研究的机会
Ⅵ.教后反思回顾
一、对于指数函数概念的认识
指数函数是一种函数模型,其基本特征是自变量在指数位置、底数取值范围有规定,使得这一模型形式简单又不失本质、不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想。
二、对于培养学生思维习惯的考虑
在学生自主探索的过程中,教师应注意培养学生良好的思维习惯、实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯、对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明、学生不仅学到了数学知识,也初步体验了研究问题的基本方法。
三、关于设计定位的反思
本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略、如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程。
高一数学上册教学计划 6
高一年级学生对学习缺乏热情,学习习惯不好,学生学习动机不明确,这给教学工作带来了一定的难度,课堂上能听讲,但是课后不归纳总结,不做题,学习效率低。另外,高中数学知识难度大,学生基础差,导致学生兴趣下降。学生意志薄弱,耐挫力差。许多学生意志不坚定,因此很多学生坚持性差,意志薄弱,一旦碰到困难便打退堂鼓,害怕去学、去动脑,长期下去,便产生厌学情绪。针对这种情况,特作以下计划:
一、学生状况分析
本学年,我担任高一(9)和(10)班的数学课。两个班整体水平都一般,成绩以中下等为主,中上不多,后进生有很多。其中在中考成绩两个班中都存在20人以上等级分在5分以下。从而看出基础知识不太牢固,当然上课效率也不是很高。
二、教材简析
使用人教版《普通高中课程标准实验教科书·数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。
三、教学任务
本期授课内容为必修1和必修2,必修1在期中考试前完成;必修2在期末考试前完成。
四、教学质量目标
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。
2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的`数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
五、促进目标达成的重点工作及措施
重点工作:
认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。
分层推进措施
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。在教学的过程中注意降低难度。
(2)集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备。
(5)抓好尖子生与后进生的辅导工作。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
(7)重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。
(8)合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
高一数学上册教学计划 7
就内容来说,目前有这么几项工作:数学教学、班主任、新教师培训、继教网工作、个人发展。如果不做高要求,这些活儿已经可以驾轻就熟了。然而在成型的文案和经验里,有些问题是无法视而不见的,于是,解决问题就是当下的行走方向。架几座桥(设计框架)、铺几条路(调整思路)、换几双鞋(探索方法)、迈几道坎(突破难点)就是这学期的目标。这学期的心理目标是实现乐教乐学。
一、数学教学
1、初高中衔接知识的处理。军训期间如果每天能抽出一点时间,尽量把初高中衔接的几个知识点补充完毕,否则加自习课去做,往常捎带脚的讲解效果很差。
2、一贯性做法。
(1)预习方式和学生商量,晚上或课前5-10分钟填写学案,晚上效果不佳且增加心理负担,课前如果不抄袭的话也同时达到了提前准备好课上用品的目的,试验几次看5分钟是否能完成。
(2)作业分两项,作业本把握简单、基础、题量适中、规范书写的原则,练习册批阅完后发答案、习题课上点拨跟踪几个训练题。
(3)单元复习系统归纳,学生脑子里形成知识网。
(4)查漏补缺、知识配题、识记检测等需要设计形式与时间。
3、授课准备。
(1)在学案中删去过时、不精准的部分,添加情景、新感悟(知识、题目等)、学生活动等内容。
(2)通读教材、教参、名家解读,先做练习册。
(3)针对课时不够的问题,不能影响教学进度,若不加自习课,必须整合教材内容,大胆删减,直击重难点。
(4)学习性总结一切可以调动学生热情的手段,最大化实现主被动关系的转换。
二、班主任工作
1、摸索一套集体管理机制取代量化扣分。
(1)诚信教育先保证学生心理安全。
(2)纪律教育转化到班组、小组、自己那里去,尝试班规由学生制定、执行、惩罚、讨论,重点是自我管理的参与热情,主动的勇气和小改变的实现形成的成就感是难点。
2、完善几个系列活动。
(1)集体组织的设立承载着规范秩序和发展班级的职能,逐步探索实施。
(2)教师主讲的班会课按发展阶段制定主题,写出教案。
(3)学生、班级成长记录以不同的形式展开,教师负责的'更不能松懈。
(4)每一个难题背后都埋藏着智慧,这一轮不要再轻易错过。
3、尝试一下李镇西的“五个一”,看是否能实现。
4、尝试一下近期阅读的相关书籍中收获的新观点、新做法,进一步触摸教育本质。
三、新教师培训
1、希望获得的效果。形式向简单、可操作靠近,生成性自然越发散越好,把用理解式的谈心取代说教。
2、希望达到的目标。与不参训教师相比较的话,新教师收获三个“一点儿”就算成功:懂的多了一点儿,做的好了一点儿,想的深了一点儿。如果有一个种子在心里发芽了,那将是最完美的结果。
3、管理与发现。在人的培养过程中,与其说是管理,不如训练管理者去发现,进而让新教师正视弱点,发挥优势。把教育的景象展现给他们,让他们自己暴露出来。提升他们的能力是能力,包容他们的不足是高见,批评却不能给出解决方案是无能,若不能敏感的捕捉到他们的进步愿望反而打消或误导了其工作热情,则是犯下了难以收拾的错误。
四、继教网工作
1、九月、十月初发简报两期,值班的晚上发一篇文章,每天放学前批阅作业一次,日常交流用手机答复一日一次。文字性评价留存,同类答复节省时间。
2、与专家做几次沟通,浏览一些优秀辅导教师的工作室,记录一些学员带给自己的启示。
五、个人发展
1、来年需要的几个硬性指标找机会完成,表格备份。
2、做事是思想的源泉,思想是写作的素材,写作是发展的路径。这是目前所能达成的最佳方案。
3、继续学习与外部世界的和谐相处,心理强大不仅在于我能,理智的认同和感性的解放是自己当下最需要的。
4、站得高一点,粗放一点,学会放手,抓住要害,效率也许会高一点。
高一数学上册教学计划 8
为圆满完成新高一的教学任务,使学生全面系统的掌握必修一到四的学习内容,提高学生的数学素养,我们高一数学组秉承“高一决定高考,细节决定成败”的思想,从初、高中衔接起认真分析学情,积极研讨,制定本学期教学计划如下:
一、学生基本状况:
(1)本年级共12个行政班,学生860人。在中考数学成绩满分120分的基础上,我级100分以上的人很少,相对来说90分以上属于高分,绝大多数90分以下;学生数学底子薄弱,学习环节不完整,学习习惯不科学;另外,班级差异大,层次多。我们要加强集体备课力度,夯实基础,培养学生良好的学习习惯。
(2)由于初高中分别实施课改教学,高中教学内容与初中所学衔接度远远不够,存在较大断层,我们需制定并学习衔接材料,并且在新授的同时适时补充一些内容,势必挤占新课的授课时间,时间紧任务重。我们要珍惜每一堂课,优化每一环节,提高学习效率,探索高效课堂。
(3)高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,学生有的是一份执着,期望值也较大。理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,我们必须转变教学理念,并落实在课堂教学的各个环节,才能不负众望。
(4)刚刚进入高一的学生还停留在初中时的学习习惯和学习方法以及对数学学习的散漫认识上,我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
二、教学内容任务:
本学期完成数学人教A版《必修1》和《必修2》两册内容。
三、教学措施要求:
(1)注意研究学生,做好初、高中学习方法的衔接工作;加强自己学习,特别是两个纲领性文件——《国家普通高中数学课程标准教学要求》和《20xx年山东省高考数学科考试说明》的学习,吃透大纲,准确把握教学要求,提高教学效率,不做无用功。
(2)加强集体备课,发动全组同志,确定阶段主讲人,集思广益,讨论优化教学方案;各班级统一进度,分层要求,分层作业,分层考试;注意运用现代化教学手段辅助数学教学;注意运用多媒体、投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
(3)着眼于基础知识与重点内容,集中精力打好基础,分项突破难点。充分重视基础知识、基本技能、基本方法的`教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
(4)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解、训练数学能力和培养数学素养。
(5)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备。
(6)精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养;抓好尖子生与后进生的辅导工作,提前展开数学分层培养和数学基础辅导。
高一数学上册教学计划 9
一、指导思想:
在学校教学工作意见指导下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。
二、教材简析:
本学期仍然使用人教版《普通高中课程标准实验教科书·数学(A版)》教材,在坚持我校数学教育优良传统的前提下,在学生九年义务教育数学课程的基础上,进一步提高学生所必要的数学素养,以满足学生的发展与社会进步的需要,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。
三、教学任务:
本学期授课内容:必修一、必修二。
四、学生基本情况及教学目标:
学生基本情况:本届学生普遍基础较差,学习自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。其次,学生的计算能力太差,学生不喜欢去算题,嫌麻烦,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,因为学生底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
教学目标:认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。高一学生共有20个班,分两个教学层次,每层个10个班。实验班的学生可根据实际情况提高教学目标。平行班学生的主要任务有两点:
第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目。
第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。
五、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的课堂素材,用生动活泼的语言,创设能够体现数学的`概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中引导学生通过类比,推广,特殊化,化归等方法,尽可能培养学生逻辑思维的习惯。
六、教学措施:
1、认真落实,搞好集体备课。每周进行一次集体备课。各位老师根据自己承担的任务,提前一周进行单元式的备课,并出好本周的练习活页。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
附:教学进度计划
第一周集合
第二周函数及其表示
第三周函数的基本性质
第四周指数函数
第五周对数函数
第六周幂函数
第七周函数与方程
第八周函数的应用
第九周期中考试
第十至十一周空间几何体
第十二周点,直线,面之间的位置关系
第十三至十四周直线与平面平行与垂直的判定与性质
第十五至十六周直线与方程
第十七至十八周周圆与方程
第十九至二十周期末考试
高一数学上册教学计划 10
一、指导思想
本学期高一备课组以学校工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,团结合作,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,抓好基础知识教学,着重学生能力的培养,打好基础,全面提高,为来年高考作好充分的准备,争取优异的成绩。
二、教学目标、
(一)情意目标
(1)经过分析问题的方法的教学,培养学生的学习的兴趣。
(2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数的.性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)经过揭示三角函数有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)经过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)经过算法初步,1算法步骤2程序框图(起始框,确定框,附值框,)3silab语言(顺序,条件语句,循环语句)。第二部分,统计,第三步分,概率,古典概型,几何概型。的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、具体措施
1、期中考前上好第一册(必修3),期中考后完成好必修4
2、抓好数学补差,培优活动各班在星期1或星期4的午时
3、立足于教材。
4、要求学生完成课后练习及每一章课后习题
5、我们组还继续学习了《课堂教学论》,《现代教育技术》,努力学习多媒体课件的制作。
6、继续认真开展师徒结对活动,以老带新。师徒间经常听课交流,认真评课。集中备课,共同商讨教材等。
7、抓好竞赛辅导,时间定于周三、周四的提前时间,周六的午时1点到3点;任教教师:高一全体数学教师。
8、段统一考试在周日或者周三的晚自修时间,每隔2周考一次;
9、上学期必修4的学分认定考试补考及落实工作;
10、响应学校教务处的备课计划安排,督促组员落实工作;
11、抓好团体备课
高一数学上册教学计划 11
一、教材资料分析
函数是高中数学的重要资料,函数的表示法是“函数及其表示”这一节的主要资料之一。学习函数的表示法,不仅仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。同时,基于高中阶段所接触的许多函数均可用几种不一样的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。
学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。在本节中,从引进函数概念开始,就比较注重函数的不一样表示方法:解析法、图象法、列表法。函数的不一样表示法能丰富对函数的认识,帮忙理解抽象的函数概念。特别是在信息技术环境下,能够使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。所以,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。
二、教学目标分析
根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识、能力和情感三个方面制订教学目标。
1、明确函数的三种表示方法(图象法、列表法、解析法),经过具体的实例,了解简单的'分段函数及其应用。
2、经过解决实际问题的过程,在实际情境中能根据不一样的需要选择恰当的方法表示函数,发展学生思维能力。
3、经过一些实际生活应用,让学生感受到学习函数表示的必要性;经过函数的解析式与图象的结合渗透数形结合思想。
三、教学问题诊断分析
(1)初中已经接触过函数的三种表示法:解析法、列表法和图象法、高中阶段重点是让学生在了解三种表示法各自优点的基础上,使学生会根据实际情境的需要选择恰当的表示方法。所以,教学中应当多给出一些具体问题,让学生在比较、选择函数模型表示方式的过程中,加深对函数概念的整体理解,而不再误以为函数都是能够写出解析式的。
(2)分段函数很多存在,但比较繁琐。一方面,要加强用分段函数模型刻画实际问题的实践,另一方面,还能够经过动画模拟,让学生体验到,分段函数的问题应当分段解决,然后再综合。这也为下一步研究分段函数的单调性等性质打下伏笔。
四、本节课的教法特点以及预期效果分析
(一)、本节课的教法特点
根据教学资料,结合学生的具体情景,我采用了学生自主探究和教师启发引导相结合的教学方式。在整个的教学过程中让学生尽可能地动手、动脑,调动学生积极性,充分地参与学习的全过程。倡导学生主动参与、乐于探究、勤于动手,逐步培养学生能够利用函数来处理信息的能力。
(二)、本节课预期效果
1、经过具体的实例,让学生体会函数三种表示法的优、缺点。
创造问题情景这种情景的创设以具体事例出发,印象深刻。所以在引入时先从函数的三要素入手,强调要素之一对应关系,然后给出三个具体实例:
(1)炮弹发射时,距离地面的高度随时间变化的情景;
(2)用图表的形式给出臭氧层空洞的面积与时间的关系;
(3)恩格尔系数的变化情景。
指出每种对应分别以怎样的形式展现。引出函数的表示方法这一课题。因为我们这节课的重点是让学生在实际情景中,会根据不一样的需要选择恰当的表示方法。会选择的前提是理解,这些完全靠学生的现实经验,让学生自己去发现各自的优劣。这为第一道例题打下基础。
例1经过具体例子,让学生用三种不一样的表示方法来表示的同一个函数,进一步理解函数概念。把问题交给学生,学生独立完成,并自我检查发现问题,加深学生对三种表示法的深刻理解。学生思考函数表示法的规定。注意本例的设问,此处有三种含义,它能够是解析表达式,能够是图象,也能够是对应值表。
由于这个函数的图象由一些离散的点组成,与以前学习过的一次函数、二次函数的图象是连续的曲线不一样。经过本例,进一步让学生感受到,函数概念中的对应关系、定义域、值域是一个整体、函数y=5x不一样于函数y=5x(x∈{1,2,3,4,5}),前者的图象是(连续的)直线,而后者是5个离散的点。由此认识到:“函数图象既能够是连续的曲线,也能够是直线、折线、离散的点等等。”并明确:如何确定一个图形是否是函数图象方法
2、让学生会根据不一样的实例选择恰当的方法表示函数
例2用表格法表示了函数。要“对这三位运动员的成绩做一个分析”不太方便,所以需要改变函数表示的方法,选择图象法比较恰当。教学中,先不必直接把图象法告诉学生,能够让学生说说自己是如何分析的,选择了什么样的方法来表示这三个函数、经过比较各种不一样的表示方法,达成共识:用图象法比较好。培养学生根据实际需要选择恰当的函数表示法的能力。
学生经过观察、思考获得结论、比如总体水平(朱启南成绩好)、变化趋势(刘天佑的成绩在逐步提高)、与运动员的平均分的比较,等等。培养学生的观察能力、获取有用信息的能力。同时要求学生注意图中的虚线不是函数图象的组成部分,之所以用虚线连接散点,主要是为了区分这三个函数,直观感受三个函数的图象具有整体性,也便于分析成绩情景,加以比较。
3、经过具体的实例,了解分段函数及其表示
生活中有很多能够用分段函数描述的实际问题,如出租车的计费、个人所得税纳税税额等等。经过例3的教学,让学生了解分段函数及其表示。为了便于学生理解,给出了实际情景的模拟。能够使函数在数与形两方面的结合得到更充分的表现,使学生经过函数的学习更好地体会数形结合的数学思想方法。
高一数学上册教学计划 12
一、指导思想:
遵循“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可理解性等,具有如下特点:
1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。
2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4、“时代性”与“应用性”:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1、选取与资料密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的`思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的目的。
2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。
3、在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,梦想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长。应对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮忙学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。
2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力和解决实际问题的能力,提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、重视数学应用意识及应用能力的培养。
高一数学上册教学计划 13
一、基本情况分析
任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。
二、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
三、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的`逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的`出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。
6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。
四、教研课题
高中数学新课程新教法
五、教学进度
第一周 集 合
第二周 函数及其表示
第三周 函数的基本性质
第四周 指数函数
第五周 对数函数
第六周 幂函数
第七周 函数与方程
第八周 函数的应用
第九周 期中考试
第十十一周 空间几何体
第十二周 点,直线,面之间的位置关系
第十三十四周 直线与平面平行与垂直的判定与性质
第十五十六周 直线与方程
第十八十九周 圆与方程
第二十周 期末考试
高一数学上册教学计划 14
一、 指导思想:
在新课程改革的教学理念下,以发展教育的观念为指引,以学校和教导处的工作计划为指南,改变教学观念,改进教学方法,更新教学手段,提高教学效率,提高学生的阅读能力、解题能力,促进学生学习态度、学习方式的转变,培养学生自主学习、积极探究、乐于合作的精神,注重学生数学素养的提高, 关注学生的思想情感和交流,培养学生的创新思维和创造能力,为学生的可持续发展奠定基础。新课标理念下的政治教学活动应该不同于传统的课堂教学,改变教师的教法和学生的学法是在教学活动中体现最新教学理念的关键。“导学案”应课堂教学改革与传统教学模式的矛盾而生,它既可以将学生自主学习引入正轨,又将学生可以自主探究理解完成的知识点与题目在课下解决,这样,课堂上教师就有足够的时间与学生共同研究解决本节课的重点与难点,从而提高了课堂效率。我们应该认识到改革是教学的生命,课程改革与课堂教学改革是一个不断发展、不断探索的过程。在这个过程中,要求教师能够正确、深刻地理解新课程理念,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》必修1、必修2,根据必修1、2设计的导学案。它在坚持我国数学教育优良传统的'前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。
三、学情分析:
本学期任教高一(35、36)班的数学,(35、36)班是平衡班,部分学生学习数学的热情较高涨,比较自觉,能认真完成作业,但数学层次并不相同,部分同学基础薄弱,缺乏学习数学的方法。
四、教学策略、教研活动:
1、落实提高课堂效率,导学案的设计目的是为了将学生的导学案与教师的集体备课设计为一体,第一、课前预习。教师设计此部分内容之前必须针对本课题的三维目标与考纲认真备课,列出本节课的知识要点,对于重难点做特殊标记,并针对预习提纲给出的内容设计预习检测题,预习检测题难度不易过高,与本课题的重难点相关的知识点有选择性的录入此处,让学生在做此部分时不能感觉太简单了也不能感觉无从下手,要有一部分题目让他能够通过讨论探究完成。第二,探究活动。第三、课堂检测。此处设置的题目难度深度一定比预习检测部分要更难更深。此部分不要求所有的学生都在课前做。从此处开始分“才”完成,有能力的同学可以提前尝试着做,做题慢的同学可以先不必看,学生按照自己的情况自行决定。第四,拓展延伸。这里出现的题目属于拔高题,一般很少有学生在课前能够做对,所以此处也不要求学生课前做,当然不排除有的同学想要挑战一下,这是提倡并且大力表扬的。第五,反思总结。学生利用这部分一方面可以小结本节课的内容,另一方面可以对自己本课题从预习探究到课堂探究各个环节进行反思,便于日后改进。上课时要明确重点、难点,重点要突出,难点要分散,并且难点要解决好。课堂讲新课的时间一定要控制在20分钟之内,最好能在10分钟之内解决问题,多给时间学生练习或进行与学习有关的活动。
2、做到课后教学反思
上完课之后需要思考三个问题:我这节课上得如何有没有要纠正与改进的?有谁的课比我还优秀?怎样上这节课更好、最好?并在学案、备课笔记上做好记录,为以后的教育教学提供参考。
3、落实好备课电子化,为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,备课组成员要积极借助网络信息收集和筛选资料存库,发挥集体智慧,在备课组会议上整理,及时应用到具体教学中。注重学案导学,编好用好导学案。
4、积极听有经验的教师的课,认真改进课堂教学上的薄弱环节。注重研究教师如何讲、注重研究学生如何学,积极推进新课改,提高课堂效率。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生交流等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯。
3、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
4、扎实基础的同时重视数学应用意识及应用能力的培养。
5、落实抓好平时的一周一限时训练,一周一综合,注重知识的渗透
6、落实竞赛辅导:主要利用下午第三节时间,一个星期进行一至两次辅导。
高一数学上册教学计划 15
一、所教班级学生现状分析:
高一(3)全班共52人,男生28人,女生24人。高一(4)全班53人,男生27人,女生26人。从两个班级总体上看,重文轻理的同学比较多,数学基础普遍不好,这主要体现在他们的学习方法,学习习惯不是很合理。女同学学的都比较死,做过的题目没什么 大的问题,但数学题目的变化是最灵活的,这时候女同学就会体现出灵活应变的能力不强。这样的话,数学题目是做不完的,若是纯粹是为了做题目而做题目的话, 即使是做的量再大,也不会有质的飞跃。关键在于通过解题,把同一类型的题目归归类,总结出解这类题型的一般常规方法或一般路径,也就是说在自己脑海里形成 一套通识、通则、通法来。相对于女同学,男同学存在的问题较大,这主要还是在上课的纪律上面,行为习惯养不好,学习成绩怎么能提高上去呢?这里所说的行为 习惯是指:上课注意力不集中,不专心听讲,做其他与上课无关的事;上课部分同学时常趴在桌子上睡觉,并且屡教不改;上课讲废话等等。这些都是学生自身的态 度问题,特别像骆启聪,陈铭生,洪润,上课不听,作业不交是经常发生的事。他们并不是脑子笨,不聪明,没这个能力学好,而确实是学习态度不端正,已经有一 点老油条的感觉了。我对这些人用的方法除了人盯人外,没有更好的办法了。
二、 本学期力争达到的目标
1、知识和技能
(1)在学生于九年制义务教育阶段已经学过的平面图形有关性质的基础上,比较系统地研究空间的直线和平面的基本性质。
(2)在具有一定的空间想象能力的基础上让学生进一步掌握几种常见的多面体:棱拄、棱锥、棱台的定义、有关性质、直观图的画法和体积以及有关元素的计算。
(3)学习向量的初步知识如向量的各种计算及其简单应用
2、 提高课堂听课的效率和平时作业的质量,进一步规范学生的学习规范和态度,从每一堂课,每一次小练习做起。要细心捕捉差生的闪光点,以此为起点,耐心指导, 不断激励。让其感受到成功的喜悦,增强自信心。如我班学生杨晓鲁,洪鸣,成绩较差,但他们很喜欢乱发言,讲话,我就抓住这一点,上课经常提问他们,回答错 了,也不批评,帮他们及时纠正,要他们说完整话。经过这一学期的学习,争取成绩有所提高,至少先及格吧。
三、实施措施
1、 教师要钻研大纲和教材,明确教学的内容和目标,抓住重点、难点,对教材进行合理的编排和重新组织。作为年轻教师,应多听其他同年级老师的数学课,了解这些 有经验老师的授课特点、授课方法,将它融入到自己的教学中去。开学初,要了解学生掌握知识的程度和学生的学习习惯。在摸清知识体系,学生状况的前提下,根 据高一教材和大纲,制订出相当的教学计划,确定应采取的教学方法,做到有的放矢。
2、 新高一,新知识,入门时要放慢进度,降低难度,注意教学内容和方法的衔接。要加强基本概念、基础知识的教学。教学时注意形象、直观。如讲空间直线与平面时 可多举一些生活中的直观例子,并时常将一些亲手做的正方体,长方体,四面体,棱锥等实物模型展示在大家面前。此外,立体几何又是一个可以很好的利用多媒体 进行教学的内容,要多制作一些形象,直观,有动画效果的课件,能有效的帮助学生去理解,加快培养他们的空间想象能力。
3、要增加学生回答问题和到黑板上演练的次数,从而及时发现问题,解决问题,章节考试难度不能大,以考查双基为主,提高学生的可接受性,增强学生学习信心,让学生逐步适应高中数学的正常教学。
4、 严格要求,打好基础。开学第一节课,教师就应对学习的五大环节提出具体、可行要求。如:作业的规范化,独立完成,订正错题等等。对学生在学习上存在的`弊 病,应限期改正。严格要求贵在持之以恒,贯穿在学生学习的全过程,成为学生的习惯。考试的'密度要增加,如第一章可分为三块进行教学,每讲完一块都要复习、 测验及格率不到70%应重新复习、测验。实践表明,教好课与严要求,是提高教学质量的主要环节。
5、 指导学生改进学习方法和习惯。良好的学习方法和习惯,不但是高中阶段学习上的需要,还会使学生受益终生。但好的学习方法和习惯,一方面需教师的指导,另一 方面也靠老师的强求。教师应向学生介绍立体几何的特点,进行学习方法的专题讲座,帮助学生制订学习计划。这里,重点是会听课和合理安排时间。听课时要动 脑、动笔、动口,做到笔不离手。教师应有针对性地向学生推荐课外辅导书,以扩大知识面。提倡学生进行章节总结,把知识串成线,归成类,做到书由厚读薄,又 由薄变厚。
6、 教辅书,一本足矣,不必多多益善,最重要的是用好每一本书,真正让它起到辅助学习的作用。对于学有余力的同学,老师可适当补充一些题目,而基础比较薄弱 的,可以选择一些加强巩固的练习题。反正对于作业,老师要及时的进行讲评和分析,对于错误多的学生要进行个别辅导。然后,整个年级再利用周日的文博业余学 校进行分层培优补差工作。
四、保障措施和可行性
1、有扎实的业务知识,加上去年一年的工作经历,掌握了一些教学的方法,摸到了一点教学的门路。当然我还是一个新手,特别是高二数学也是第一次教,没什么经验,仍然要边教边学,不断吸收新的信息,学人之长,补己之短。
2、课堂教学只占我工作的很小部分时间,除上课和批改作业外,可以进行一些教研组,备课组的讨论,进行集体备课、说课。余下时间可以看看数学杂志,做课件,做题目,给学生答疑等等。
3、单元练习卷有备课组内老师共同命题的练习卷。
4、除了单元练习(45分钟)在课内解决外,每章的测验由年级组统一安排。
5、利用早自修,午休课,下午的自习课和双休日补课进行补缺补差,分析作业和题目,不让问题积压起来。
6、年级组的支持和各任课老师的顶力配合,使得教学工作可以顺利的开展下去。
五、总目标达成度与现阶段教学目标达成度的相关分析:
由于本人是第一次任教高一数学,对教材的驾驭和处理还相当不熟悉,上课时有时还不能很连贯,在工作中还需请教请教老教师,尽快的掌握上课的技能技巧,抓住重 点、难点,合理地完成教学设计和出色地完成教学任务。相信在自己不断的努力下,认真负责,从每一个小的环节做起,关心好每一位学生的学习,抓两头,促中 间,肯定每一位都有进步。
六、课堂教学改革与创新、信息技术的应用与整合:
课改要求我们在课堂教学中要充分发挥学生的主体作用,让学生主动地去进行自主式学习,发现式学习,研究式学习,在不断地产生问题,解决问题的过程中提高自己的分析能力,自学能力。学生不在是以前课堂上的听众了,只是被动地接受知识,而是转变成了与老 师进行交互式的学习。并且,随着信息技术的飞速发展,电脑、投影仪和实物幻灯机已经进入了我们的教室,它们已经与我们的教学密不可分了。信息技术的应用已 成为课堂教学改革的推进剂,应用的好可以为你的教学增色不少。但是,信息技术始终是课堂教学的辅助工具,它的产生并不是说黑板,粉笔就不要了,只有两者合 理地整合,才能发挥最大的效果。
高一数学中的立体几何有很多地方可以借助于信息技术,将空间中的图形,变化利用电脑动画完美、形象、直观地展示出来,对学生学习立体几何有很大的帮助。因此,我本人打算自学一些软件,几何画板","FLASH动画制作","3DMAX",将它们应用到课件制作中去,助课堂教学一臂之力。