二次根式的乘除说课稿15篇

发布者:Sam歌仔 时间:2023-10-23 13:34

二次根式的乘除说课稿汇总15篇

无论您是新手教师还是资深教育工作者,本教案都能帮助您提高教学效果。以下是小编为大家收集的二次根式的乘除说课稿,欢迎阅读,希望大家能够喜欢。

二次根式的乘除说课稿篇1

教学内容

二次根式的加减

教学目标

知识与技能目标:理解和掌握二次根式加减的方法.

过程与方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.

情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.

重难点关键

1.重点:二次根式化简为最简根式.

2.难点关键:会判定是否是最简二次根式.

教法:

1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的.模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;

2、讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:

1、类比的方法通过观察、类比,使学生感悟二次根式加减的模型,形成有效的学习策略。

2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

知识点

自主检测、同伴互查

1、师生共同解决“学法”问题与13页“练习1”;

2、学生演板13页“练习2、3”。

四、知识梳理、师生共议

1、谈收获:

(1)二次根式的加减法则是什么?有哪些运算步骤?

(2)怎样合并被开方数相同的二次根式呢?

(3)二次根式进行加减运算时应注意什么问题?

2、说不足:。

五、作业训练、巩固提高

1、必做题:课本15页的“习题2、3”;

课时练习

1.揭示学法、自主学习

认真阅读课本14页内容,完成下列任务:

1、完成14页“例3、4”,先做再对照:

(1)平方差公式__________,完全平方公式__________.

(2)每步的运算依据是什么?应注意什么问题?

(时间7分钟若有困难,与同伴讨论)

三、自主检测、同伴互查

1、师生共同解决“学法”问题;

2、学生演板14页“练习1、2”。

四、知识梳理、师生共议

1、谈收获:

(1)二次根式进行混合运算时运用了哪些知识?

(2)二次根式进行混合运算时应注意哪些问题?

二次根式的乘除说课稿篇2

一、说教材的地位和作用

1、内容:

二次根式的加减,利用二次根式化简的数学思想解应用题,含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用、

2、本节在教材中的地位与作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础

二、说教学目标、重点、难点:

1、教学目标:

(1)知识与技能:

1、含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用、

2、复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算、

理解和掌握二次根式加减的方法、

3、运用二次根式、化简解应用题、

4、通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题、

(2)数学思考:

先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解、再总结经验,用它来指导根式的计算和化简

(3)解决问题:先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念、再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简、

(3)情感态度与价值观:通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力、

2、教学重点、难点:二次根式化简为最简根式、二次根式的乘除、乘方等运算规律;

三、说如何突出重点、突破难点:

难点关键:会判定是否是最简二次根式,讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点、由整式运算知识迁移到含二次根式的运算

为了突破难点,教学中我注意:

1、潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点、

2、培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的'科学精神、

四、学情分析:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础

五、说教学教学策略和学法

(一)教法分析

根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。教学方法是学生分组讨论,合作探究、问题教学法,尽量做到问题让学生提,答案让学生想,过程让学生写,让学生自己归纳总结。让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:

1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。

2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。

(二)学法分析

使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。

(三)教学手段

采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。

六、说教学过程的设计:

本课共分为五个环节:

(一)复习引入新课;

(二)探索新知;

(三)巩固练习;

(四)总结反思;

(五)布置作业拓展升华。

(一)复习引入新课:利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课、

(二)探索新知:本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。

(三)巩固练习:在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。

(四)总结反思:在此环节中,我让学生谈收获和体会。使学生对本节课有一个全面的回顾与思考,从中抓住本节课的主旨与重点,即充分调动学生的积极性,从而达到培养学生归纳概括能力和语言表达能力。

(五)布置作业拓展升华:在此部分中分为必做题:教科书上的题。选做题:(思考题)来自练习册。必做题面向全体学生,巩固重点,达标训练。选做题使不同的学生有不同的发展。这样做既达到了面向全体学生,又做到了因材施教的目的。

二次根式的乘除说课稿篇3

一、素质教育目标

(一)知识教学点

1.使学生了解最简二次根式的概念和同类二次根式的概念.

2.能判断二次根式中的同类二次根式.

3.会用同类二次根式进行二次根式的加减.

(二)能力训练点

通过本节的学习,培养学生的思维能力并提高学生的运算能力.

(三)德育渗透点

从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.

(四)美育渗透点

通过二次根式的加减,渗透二次根式化简合并后的形式简单美.

二、学法引导

1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.

2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.

三、重点·难点·疑点及解决办法

1.教学重点二次根式的加减法运算.

2.教学难点二次根式的化简.

3.疑点及解决办法二次根式的加减法的`关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.

四、课时安排

2课时

五、教具学具准备

投影片

六、师生互动活动设计

1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.

2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.

3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.

4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.

七、教学步骤

(一)明确目标

学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.

(二)整体感知

同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.

二次根式的乘除说课稿篇4

一、复习引入

学生活动:请同学们完成下列各题:

1.计算

(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算:

(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

(1)(+6)(3-)(2)(+)(-)

分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

解:(1)(+6)(3-)

=3-()2+18-6=13-3(2)(+)(-)=()2-()2

=10-7=3

三、巩固练习

课本P20练习1、2.

四、应用拓展

例3.已知=2-,其中a、b是实数,且a+b≠0,

化简+,并求值.

分析:由于(+)(-)=1,因此对代数式的'化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

二次根式的乘除说课稿篇5

活动1、提出问题

一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?

问题:10+20是什么运算?

活动2、探究活动

下列3个小题怎样计算?

问题:1)-还能继续往下合并吗?

2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的`不能合并吗?

二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。

活动3

练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)

创设问题情景,引起学生思考。

学生回答:这个运动场要准备(10+20)平方米的草皮。

教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。

我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。

教师引导验证:

①设=,类比合并同类项或面积法;

②学生思考,得出先化简,再合并的解题思路

③先化简,再合并

学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。

教师巡视、指导,学生完成、交流,师生评价。

提醒学生注意先化简成最简二次根式后再判断。

二次根式的乘除说课稿篇6

我今天的说课内容是:二次根式的乘法。下面,我将从教材分析、教学方法、教学过程、板书设计、教学评估这五个方面来对本节课进行说明。

一、教材分析

教材分析的第一部分是教材的地位及作用。

《二次根式的乘法》是人教版初中数学,九年级上册第一章的内容。《二次根式的乘法》是初中数学的重要内容之一,是《课程标准》“数与代数”的重要内容,是对七年级上册“实数”、“代数式”等内容的延伸和补充。

其次是关于学情分析。本节可的内容是在理解二次根式的定义及相关概念的基础上,进一步研究二次根式的运算,是对二次根式的简便运算。二次根式的乘法这一节的知识构造较为简单,并且,是在学生学习了平方根,立方根等内容的基础上进行的,因此,学生对算术平方根等概念已经有了初步认识,这位学生学习打下了基础,在和学生一起学习的过程中,我们要创造条件和机会,让学生发表自己的见解,发挥学生学习的主动性和积极性。

根据教学大纲和新课标的要求,结合教材和学生特点,我确定了以下三方面的教学目标:

知识技能目标

能力目标

情感态度于价值观目标

具体的说:知识技能目标包括三方面:

一是使学生能够利用积的算术平方根的性质进行二次根式的简便运算

二是让学生能进行简单的二次根式的乘法运算

三是希望学生能联系几何知识解决实际问题

能力目标即将二次根式进一步展开,解决实际问题,情感态度与价值观即培养学生对于事物规律的观察,发现能力,激发学生的学生学习激情。

本节课的教学重点是利用积的算术平方根的性质,进行二次根式的计算和化简,积的算术平方根的性质是本节课的中心内容,也是二次根式化简和混合运算的基础。二次根式与积的算术平方根的关系及应用是本节课的难点。我们要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系,综合应用性质和乘法公式时要注意原题中的要求一定要满足。

二、教学方法

由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此,要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要注意逐步有序的展开,在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

积的算术平方根的性质及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算具体的例子,引导他们做出一般的结论。由于归纳法是通过一些个别的,特殊的例子的研究,从表象到本质,进而猜想出一般的结论。因此,我采用了从特殊到一般总结归纳的方法,类比方法,讲授与练习相结合的方法,这种思维过程,对于初中生认识,研究和发现事物的规律有着重要作用,对于培养思维品质也有重要意义。

三、教学过程设计

教学过程设计师讲好一堂课最重要的环节。新课标指出,数学教学过程是教学引导学生学习的过程,是教师和学生互动的过程,是师生共同发展的过程,为有序地,有效地进行教学,我将教学过程做如下安排:

1、温故知新,探求新知

引入的环节我安排的时间是3分钟。课堂教学首先通过两组简单的式子引入学习内容,并对先前的知识点进行回顾,我主张学生自己动手计算,肯定他们的想法,引入正题。这个环节的设计既能引导学生顺利进入学习情境,也能激发学生对新知识的学习兴趣和求职欲望,这个环节必须要有计划性地为学生铺垫新知建构。

2、讨论归纳,导入新课

这部分我那排的时间是2分钟。这里我必须要从引入时的描述性语言过渡到严谨的数学语言。通过严格的证明和推导,得出本节课的重点及难点。这一环节体现了以学生为主题,师生互相合作的教学新理念。

3、强化训练,巩固提高

针对本节课的重点难点,我给学生先后呈现了两个例题。我们在讲解例题时,不仅在于怎样解答,更在于为什么这样解答。及时对解题方法和规律进行概括,有利于发展学生的思维能力。重视课本例题,适当地堆立体进行引申,引发学生自主探寻与思考,突出例题在巩固强化中的作用,有利于学生对知识的串联,积累,加工,从而起到举一反三的效果。

4、归纳小结,作业布置

小结的重要性不容忽视,知识性的小结,能使学生尽快吸收课堂中传授的知识,这不仅仅是知识的简单罗列,也是优化知识结构,完善知识体系的有效手段。

作业的布置我主要从巩固性和发展性考虑。总的设计意图是反馈教学,巩固提高,针对学生的素质差异进行不同的任务分配。既能使学生掌握知识,又能使学有余力的同学得到提高。

四、板书设计

我的板书设计师如下,我将板书设计分成四块,有助于学生更直观,清晰地了解知识点。

五、教学评价

教学评价本身也是一种教学活动,在这个活动中,学生的知识,技能等都有很大进展,评价发出的信息可以使师生了解教与学的情况,教师和学生可以根据反馈信息修订计划,调整教学行为,从而使有效的工作达到所规定的目标,这就是评价所发挥的调节作用。本节课的教学评价,主要是重视学生的亲身体验重视以及课堂问题设计。

二次根式的乘除说课稿篇7

作用与地位

作为二次根式乘、除法与加减法的过渡桥梁的“最简二次根式”这一节课在本章中起着承上启下的作用,必须先复习与巩固已学过的乘、除法知识。另一方面,本小节的内容,显然是下一小节“二次根式的加减法”的基础,因为加减法就是在识别“同类的”最简二次根式的前提下进行的。

目的与要求

本课的内容比较单纯,就是要求学生掌握化简一个二次根式成最简二次根式的方法。当然,这首先需要知道什么是最简二次根式(即本节课的重点),让学生了解最简二次根式的概念,不在于能否背出定义,关键还是遇到实际式子能够加以判断(也就是本节课的难点),所以应在练习中让学生熟悉这个概念。我采用启发式教学并借助实物投影以扩充教学容量。

背景

在实际问题中,遇到二次根式,一般应把它先化简,这会给解决问题带来方便,把二次根式化简,至少有以下三种用途:

(1)、把一个二次根式化简后,可避免因误差积累而造成的结果不准确。

(2)、把两个二次根式化简后,它们的乘除法运算可能变得简单,例如:

15 ÷2===。

(3)、把一组二次根式化简成最简二次根式后,可以对同类二次根式进行加法、减法运算(这将在下一小节中学习).

学生们在前面已经看到了这些用途,实际上,看到这些用途是第二位的,最重要的是从这些用途中领会把复杂化为简单,把未知化为已知,从而使问题得以解决的思想方法。

教学过程分成以下几个步骤

一、提出问题:(投影显示)

两个问题首先是对二次根式乘、除法的复习;其次通过两种解法对

比得出将繁杂的二次根式化为简单的二次根式后,使解决问题更加容易。

二、问题解决:

依照学生的认知规律引导学生从从简单的问题中发现规律,突出本

节课的重点。并由此引出新课“最简二次根式”,达到本课的第一个教学目的(理解最简二次根式的定义)。对于最简二次根式的定义以开门见山的方式直接给出。

三、解决问题:

接着通过训练将最简二次根式的定义加以熟练并总结出化简最简二

次根式的步骤,从而达到本课的第二个教学目的(会将不是最简二次根式的根式化成最简二次根式)。

在训练内容的选择上考虑到学生接受新知识的能力一是以常用运算

为主,采用由浅入深,层层递进的方式,二是以基本技能为主,而不追求繁难式子化简的特殊技巧。在进行最简二次根式的化简时,始终围绕二次根式的概念和性质,抓住学生问题的症结培养学生独立学习,思考解决问题的能力。

四、总结问题:

采用学生小结教师补充的方式来概括本节课的知识。

二次根式的乘除说课稿篇8

一、说教材的地位和作用

1、内容:

二次根式的加减,利用二次根式化简的数学思想解应用题,含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.

2.本节在教材中的地位与作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础

二、说教学目标、重点、难点:

1、教学目标:

(1) 知识与技能:

1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.

2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.

理解和掌握二次根式加减的方法.

3.运用二次根式、化简解应用题.

4.通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.

(2) 数学思考:

先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简

(3)解决问题:先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(3) 情感态度与价值观:通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

2、教学重点、难点:二次根式化简为最简根式.二次根式的乘除、乘方等运算规律;

三、说如何突出重点、突破难点:

难点关键:会判定是否是最简二次根式,讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.由整式运算知识迁移到含二次根式的运算

为了突破难点,教学中我注意:

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

四、学情分析:二 次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础

五、说教学教学策略和学法

(一) 教法分析

根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。教学方法是学生分组讨论,合作探究、问题教学法,尽量做到问题让学生提,答案让学生想,过程让学生写,让学生自己归纳总结。让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:

1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。

2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。

(二) 学法分析

使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。

(三) 教学手段

采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。

六、说教学过程的设计:

本课共分为五个环节:

(一)、复习引入新课:利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课.

(二)、探索新知:本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。

(三)、巩固练习:在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。

(四)、总结反思:在此环节中,我让学生谈收获和体会。使学生对本节课有一个全面的回顾与思考,从中抓住本节课的主旨与重点,即充分调动学生的积极性,从而达到培养学生归纳概括能力和语言表达能力。

(五)、布置作业 拓展升华:在此部分中分为必做题:教科书上的题。选做题:(思考题)来自练习册。必做题面向全体学生,巩固重点,达标训练。选做题使不同的学生有不同的发展。这样做既达到了面向全体学生,又做到了因材施教的目的。

二次根式的乘除说课稿篇9

一、说教材

首先谈一谈我对教材的理解。本节课选自人教版八年级下册,主要探究二次根式加减法的计算方法。此前学生在学习二次根式的性质和乘除法时都有过化简二次根式的经历,为本节课的学习做了良好的铺垫;本节课的学习为后续学习二次根式的混合运算打下基础。

二、说学情

再来谈谈学生的情况。这一阶段的学生已经具备了一定的发现问题、解决问题的能力,逻辑思维和计算能力也有了很大的提升。因此教师在教学过程中,要针对学生的特点进行有针对的教学,以便于课程内容的有效展开。

三、说教学目标

基于以上分析,我制定了如下三维教学目标:

(一)知识与技能

掌握二次根式加减法的计算方法,并能用以解决简单问题。

(二)过程与方法

通过探究二次根式加减法的计算方法的过程,进一步感受由特殊到一般的思想,提升运算能力。

(三)情感、态度与价值观

感受数学和生活息息相关,提升学习数学的兴趣。

四、说教学重难点

在教学目标的实现过程中,教学重点是二次根式加减法的计算方法,教学难点是二次根式加减法的计算方法的探究。

五、说教法学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者、合作者。根据这一教学理念,本节课我将采用讲授法、练习法、小组合作探究等教学方法。

六、说教学过程

下面重点谈谈我对教学过程的设计。

(一)导入新课

此时我会请学生尝试总结二次根式加减法的计算方法。以学生的现有能力,能够说出其中的关键内容。我会在此基础上予以规范:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

以上活动使得学生亲身经历了知识的形成过程,更容易理解和接受,同时能够提升分析问题、解决问题与类比迁移等诸多方面的能力。

(三)课堂练习

对于本节课而言,探究计算方法是其中一项目标,巩固练习也同样重要。我会选用教材上的例1和例2作为课堂练习题。

例1的第(1)小题是两个具体的二次根式相减,相对简单,直接考查二次根式加减法的计算方法;第(2)小题二次根式的被开方数中含有字母,更加具有一般性,在一定程度上考验抽象思维。

例2第(1)小题难度有所提升,不仅二次根式相对复杂,而且是加减混合运算;第(2)小题更是在加减混合运算的基础上出现了小括号,并且各括号内部无法合并,因此多了一个去括号的步骤。

这样的练习题不仅进一步完善了二次根式加减法的计算方法,而且能让学生体会到二次根式的加减与整式的加减在流程上的一致性,从而建立新旧知识间的联系,完善知识体系。

(四)小结作业

最后,我会请学生自主总结本节课的收获,在锻炼学生的总结与表达能力的同时获得教学反馈。

课后作业一方面是完成课后练习,再次巩固二次根式的加减法;另一方面是总结二次根式的概念、性质及运算法则,以便形成系统的认知。

二次根式的乘除说课稿篇10

一、说教材

本节课选自人教版九年级数学上册第二十一章二次根式第一节的内容。“二次根式”是《课程标准》“数与代数”的重要内容。本章是在第13章实数(13.1平方根;13.2立方根;13.3实数)的基础上,进一步研究二次根式的概念、性质、和运算。本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也为以后将要学习的“锐角三角函数”、“一元二次方程”和“二次函数”等内容打下重要基础。

二、说学情

学生已经学习了平方根(算术平方根)等有关知识,有了一定的知识基础和认识能力。本课时及后面的知识的学习,对学生思维的严谨性、分类讨论及类比的数学思想等都有了更高的要求,如果学生在此不能很好地理解和正确地认知,将对后续的学习产生很大的影响,所以要求学生积极探究与思考,及时加以训练巩固,克服学习困难,真正“学会”。

三、说教学目标

根据大纲的要求和教材结构内容分析,结合九年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:

1.知识与技能:掌握二次根式的概念,二次根式的取值范围和被开方数的取值范围

2.过程与方法:根据条件处理问题的能力及分类讨论问题的能力

3.情感态度价值观:严谨的科学精神

四、说教学重点和难点

教学重点:二次根式中被开方数的取值范围

教学难点:二次根式的取值范围

五、说教法

教学活动的本质是一种合作,一种交流。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯。

六、说学法

新课程标准指出:学生是学习的主体。要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位。本节课主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学。先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念;再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简的学习。通过对本节课的学习,使学生们的发散性思维得以启发,学生们的观察、分析、发现问题的能力得以锻炼,学生辩证唯物主义观点得以培养。

二次根式的乘除说课稿篇11

一、说教学内容与学情分析

1.本课在教材、新课标中的地位与作用

本课内容是二次根式章节的复习课,是学生在学完新人教版八年级教材下册第十六章后的一个总结复习。二次根式是初中数学知识体系与结构中一个不可或缺的部分,是中考直接考查的一个重点内容。本课复习内容的教学将让学习更为系统地认识二次根式,并在学习新知的基础上得到一个升华。同时也是为了学生能够在下一张勾股定理以及九年级的解直角三角形学习中打下一些有效的基础。

关于二次根式在《数学课程标准》中提出要求:

1.了解二次根式的概念及其加、减、乘、除运算法则;

2.会用它们进行有关实数的简单四则运算(不要求分母有理化);

在本章内容新授过程中,教师更多的关注了学生对概念及运算法则的讲解,对方法、技巧、能力等各方面并没有对学生作出更高的要求,同时学生本身在学习新课知识时,也是一种模糊的感觉。对课程标准提出的第2点:会用它们进行有关实数的简单四则运算并不能很有效的完成。而本节复习课的教学将给学生一个巩固提高的机会,让大多数学生能加深对二次根式的运算的理解,同时更是为学生掌握更多的学习方法、学习技巧,提高学生的能力提供机会。彻底地贯彻课程标准所提出的要求,完成九年级学生应完成的任务。

3.本课知识点与前后知识点的联系

本课内容是综合性复习,所讲知识点学生基本都熟悉,只不过是没有真正的理解透彻,甚至有些学生可能都已经有部分渐渐淡忘。本节内容的教学其实从本质上讲就是为学生理清知识点,建立一个完整的知识体系与结构。把已学知识系统、全面地呈现在学生的面前,同时也是为了让学生能够对二次根式的理解与运算真正落实到位作出努力。

其实,本课内容的教学不单单是为了复习巩固,更重要的是让学生对本章的知识在初中数学教材中明确地位与作用,让学生感受本章知识的重要性,为即将学习后面的知识做好铺垫工作。

4.学生已有的知识基础

由于新课内容结束离综合性复习时间较长,可以说大多数学生对本章的知识并不是非常熟悉,但学生已具备的知识基础从理论上讲应该是完全具备的,只不过需要一个回顾的过程。同时,随着知识面的拓广以及一些章节中对二次根式的应用,逐步让学生对二次根式这一章的内容也有了更多的认识。在复习时,学生应该说还是很易于接受的。

5.学生学习新知的障碍

在学生已有的知识基础上,本节课的教学其实更主要的是经历回顾、理解、巩固的过程。本节教学内容的新知并不是真正的“新的知识点、新的知识技能、新的知识能力”,而是一种对已学知识的一种重新加工处理的能力,从已学的 知识上提炼出更精粹的东西来。这也正是学生在这方面的缺憾,需要教师的有效引导与分析。这更是学生的主要障碍。

二、说目标的设定及重难点

1.目标的准确与完整

知识目标:

(1)能够有效回顾本章的重要基础知识;

(2)二次根式的计算与化简;

情感目标:

(1)对章节内容的总体把握,全面分析;

(2)体会对问题的解决办法的.优化处理;

能力目标:

(1)提高学生善于处理问题的能力;

(2)培养学生构建知识体系,形成知识系统的能力;

2.重点、难点确立及依据

二次根式的计算与化简是新授时的重点,更也是复习课上的重点。前面的公式、运算法则等都是为了这些计算与化简服务的,学生真正体现所学的基础知识应就是在解决这些问题上。故此,本课教学内容的重点设定为:

二次根式的计算与化简;

伴随着重点内容的出现,学生的问题也得以体现。要熟练地解决二次根式的计算与化简问题,需要学生真正理解所要求的基础知识,并灵活的运用基础知识解决问题。继而重新回归到重点内容上。然而这些都是学生的困难之处。也就是说本课的重点内容就是难点内容。

3.重、难点突破方法

本课内容的重点也就是难点,突破的方法都在于如何有效地理解二次根式的模型,以及如何运用基础的知识去解决较为复杂的问题。而这些都在基础的回顾上让学生得以重新的认识,所以,突破的方法之一就来源于学生对已学知识的掌握程度,另外,通过对比以前所学的知识可以让学生进行方法的探索以及能力的培养,这正是重难点突破的方法之二。

三、说教法设计

自主复习基础知识(整理知识点)、复习测评→→合作探究→→达标训练→堂清检测

四.说学法设计

1.学生学习本课知识应采取的方法

由于本课是复习课,更多的情况之下学生参与课堂的比例很大。所以,在课堂上,学生学生应积极参与课堂,通过对比新授与复习之间的不同,在课堂上形成新的认识,教师更是注重对学生系统分析问题的能力的培养。

2.培养学生能力采用的方法

复习课是对学生所学知识的一个升华的阶段,在本节课上应着重关注前后学习方法,问题的思考方式的对比,让学生主动的讲,主动的暴露更多的问题才能让学生获得真正的技能,真正的提高学生的能力。

3.学生主题作用体现的方法与手段

合作交流(师生交流、生生交流)是解决本课内容所采取的一个必要环节,敢于质疑更是解决本课内容的关键所在。在整个教学中学生的主体地位得到进一步的确立,教师只是通过问题的形式以及组织课堂活动的形式将学生的思维联系在一起,而学生在课堂上无疑是一个真正的主宰者。

五、说教学过程

①基础回顾与测评:将本章的基础知识都以一些常见的基础问题的形式展现,便于学生理解更便于学生对二次根式的模型的真正理解;

②整理知识点:一个问题整理一个知识点,让学生能对号入座,便于掌握与分析;

③合作探究:对本章中典型的计算与化简进行专门的探究讲解,突出重点,突破难点;

④达标训练:对所复习的知识点进行巩固训练,已达到进一步掌握;

⑤堂清检测:针对不同的学生,不同的问题进行不同的检测,以确定其对本章所学知识的掌握情况,达到实现面向全体教学的目标;

五、说作业设计

1.作业设计目标

根据不同学生掌握新知的程度不同,对作业的完成也有不同的要求。为此,对于A类学生应能运用新知解决相关程度的问题(巩固提高第1、2、3、4、5题);而B类学生要求解决相关的基础性问题(巩固提高第1、2题),对与新知相关程度的问题应积极尝试;

2.难易梯度和针对性

学生学习新知掌握的程度不同,对新知进行训练的要求就不同。但是,作业的目的都应针对本课内容的教学,故本课作业应完成课后第1~5题。第1、2题是一个基础性的问题,学生大体上应能解决。而第3~5题是与本课教学相对应的相关程度的问题,A类的学生应能较好的解决,B类学生则要求积极的尝试。

二次根式的乘除说课稿篇12

“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的'作用。可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。

二次根式是在数的开方、实数的基础上进一步学习式的概念,是后继学习无理式以及解决物理方程的一个基础。但是二次根式与无理式是有区别的,前者主要在形式上是否是单一的带有二次根号,而后者则更注重对字母的运算。本章学习的核心概念是最贱二次根式及其化简,本章可以联系学生所学习的不等式、因式分解、解方程、代数式有意义的条件等知识点。学生学习的易错点还是由数到式的过度上,特别是二次根式的被开方式必须是非负数这一点,对于复杂的式子,学生很难把握,尤其是对符号的把握和理解,需要强化联系,讲解时注意和具体数的练习,把握其内在的道理,让学生明白是如何由易到难的转化。同时,本章也是规范学生正确书写书写符号以及提高学生运算能力的一章。

本节课开始时,首先由一个求修建两块运动场的草坪面积的实际问题出发,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。然后指导学生根据问题导读单,去自学课本。通过自学课本再完成问题导读单,从而自己独立学习结合小组合作学习掌握二次根式的加减运算。通过我深入小组搜集信息、指导学习,发现学生具备自学能力,独立自学时很肃静,同学们都能够通过翻阅课本自己独立完成问题导读单上的一些问题。合作学习时也很热闹,同学们都能够交流自己的见解,并且能够针对一些见解提出自己的看法让大家评议。

总之,本节课我感觉同学们学习的效果非常好,学习气氛浓厚,能够自主合作探究学习。

二次根式的乘除说课稿篇13

本节课是二次根式第一节课,从小榄有线电视台发射塔电视节目信号的传播半径引入,符合学生实际,能引起学生学习兴趣,能说明学习二次根式在实际生活中有用,恰当合理的引入手到效果很好。

从实际问题列式,分析它们共同属性:正数(或0)的算术平方根,给二次根式下一个定义,从定义出发确定二次根式有意义的条件,进一步深刻理解二次根式,符合概念课教学的要求,学生掌握情况比较好,概念课教学的五个基本步骤:

(1)先给出实例

(2)分析共同属性

(3)下定义

(4)概念应用

(5)概念之间关系,在这节课很好体现。

在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。在本章中,其实有许多内容可以进行这方面的尝试。如判断二次根式中字母的取值范围、选取有理化因式、选择不同的运算途径等都可以让学生进行探究和归纳。在二次根式的运算中我就直接告诉学生:加减运算时利用公式,乘除时利用公式和,结果大部分学生并不接受。若能让学生在探究的基础上归纳出方法,学习的.效果会提高很多,学习的能力也会不断提高。

另外,要经常引导学生进行反思。如果每次都是简单做一做,学生很快就会有厌烦情绪。所以在引导学生这样做时,要给予其恰当的鼓励和启示、评价。让学生体会到自己这样做的好处,使他们在这样做的过程中得到激励和启示,并在后面的学习中有成功感。所以要大力表扬那些认真思考的同学,如对于一道难题,不管是自己解决还是和别人共同解决出来的,我都会让学生理清一下思路,思考这类题的解法,如果学生不会解,听老师讲解后明白了,我会让学生反思一下原因,为什么当时不会解,是什么原因造成的?学生只有对自己进行反思总结,就会收到意想不到的学习效果,使学生领悟生活和学习思想、方法,优化自己的知识结构,发展思维能力,培养创新意识。

二次根式的乘除说课稿篇14

《二次根式》这一章内容并不多,但二次根式的运算在数学中占有很重要的地位,承上启下,是数与式的连接,是低级运算和高级运算连接的重要的一环,是从一般到特殊的数学思想的重要体现,是数学运算的基础。

本节课是二次根式的运算的第一节。乘法计算,为以后的除法和加减法打基础的。首先,情景引入:通过求长方形的面积的问题引入二次根式的乘法及乘法法则;学生在完成引例后,提出:两个计算结果相同;把等式写下来后,发现两个等式的左边、右边形式一样。在探讨a≥0,b≥0时,同学也说出了自己的观点:因为算术平方根规定被开数是非负数,所以a≥0,b≥0。接着,通过例题1是利用总结出二次根式的乘除法则进行简单的计算。然后,逆用公式进入二次根式的化简;先从一些简单的一个二次根式开始化简,过渡到对乘法结果的化简,并明确结果必须化简为不再含开得尽方的因数或因式。

在引导学生计算、观察的基础上,让学生发现问题,探索问题,解决问题。做例1、例2时,有几个同学就问:化简二次根式前,是不是应该先把被开方数分解因式再开方;最简根式化到什么程度为止;做练习时,让学生做,对改,讨论并改正错误。

同学们主动地去发现问题,并积极发言,让学生充分体会数学知识之间的内在联系,以此激发学生的学习兴趣,通过教师的点拨引导,学生积极交流探索新知,并且在不断探索中学会创造性学习,发现问题,探究问题,培养学生的问题意识。同学们的表现说明大部分同学的思想已经发生改变,但还有一小部分同学不敢发言,有待提高。

在设计课堂内容教学时,以问题的方式提出本节课要解决的问题,让学生自主探究,在探究过程中注意观察知识产生发展的全过程,从而让学生的学习情感和学习品质得到升华,学生的创新精神得到发展。本课时设计充分反映了课堂教学的灵活性与探究性,基本达到了通过再创造培养学生创新精神和创造能力的教学目标。

对本节课的几点思考:

1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系

2、积的算术平方根的性质等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。

3、注意了二次根式乘法的计算公式的逆用。总结了乘法公式的逆用就是用来使“被开方数中不含能开的尽方的因数或因式”,注重方法的传授。

4、教学中不仅要抓整体,更要注意一些重要细节。在学生做题过程中让学生用心总结一些简单值和特殊值的乘法和化简的方法。教材中淡化计算过程,这里也透露出教材的一个特点:很重视学生思维上的'培养,却忽视了基本计算能力的训练,似乎认为每个学生都能达到一学就会的理想境界。基础好和反应快的学生没有问题,但并不是都是这样,教师就要让学生了解计算过程每一步的由来

5、本节课在学生学习过程中对二次根式的乘法法则理解上问题不大,但常常忘记运算结果需要化简,结果不能化成最简二次根式,此外被开方数是多项式的乘法运算上容易出错,尽管课堂上反复练习但还是有人出错。因此,这部分内容只能多做多发现问题,让学生多比较,从而认识到自己的错误所在。

6、遇到了一个问题,最简二次根式这个内容是安排在二次根式乘除之前还是之后讲。问了问同组的老师,也是有不同的看法,有的认为可以先给学生介绍以便在乘除法时对最终的结果进行化简,有的认为先讲乘除当结果需要进行化简时再利用法则化简,最后给出最简二次根式的概念再做巩固。

翻看人教版九年级的教材二次根式这一章,它是先安排了二次根式乘除法,但是这些计算都比较简单最终结果不涉及需要化简的,然后在乘除混合之后涉及了简单的化简。思考之后,我觉得还是先讲乘除法,这样可以分解难点,使学生更加顺利的掌握化简二次根式的方法。上课看来效果还是不错的。

7、对于二次根式乘法的法则,用于计算,给出学生应用法则的目标。并且强调如何选择被开方数先乘还是先开方,让学生体会二次根式乘法的目的或者说二次根式运算的最终目的是把式子化到最简,比如并不用把被开方数乘出结果,被开方数化为乘积的形式进行开方就可以。这叫做乘除法法则的逆向应用或者积的算术平方根,用于化简。

本节课的不足:

1.留给学生独立练习的时间不够,动笔至少得15分钟。老师讲得太多,应以学生的理解为主,讲练结合起来,提高学生的练习实效性。对学习较好的学生多准备一组思考题,因材施教。

2.留给学生思考的时间不够,总怕学生说错,耽误时间,应多让学生想,说,有意识培养学生思考的意识,要关注学生的思维过程,多给学生展示的机会。

3.从教学语言上渗透数学思想方法的意识没有,应潜移默化地交给学生学习方法。

4.对学生能力的培养关注不够,特别对较好的学生。

5.关注有效的落实环节,应在新课结束后进行反馈检测更有效。

6.在教学内容方面,在化简二次根式时,没有给学生明确出化简一般式,而只把它当作一道字母化简题讲解。以后再渗透。

以后在教学中应该多在不足的方面下功夫,多听课,评课,找到有效的教学手段,提高学生的学习实效性。注重钻研教材,不忽视任何一个细节,发挥每个细节的最大作用。

二次根式的乘除说课稿篇15

这是八年级第十六章第三节,学生是在已掌握最简二次根式、合并同类二次根式以及二次根式的加减法的基础上进一步学习二次根式的乘除法,同时为以后学习二次根式的混合运算作铺垫。首先,情景引入:通过将大正方形中已知两小正方形的'面积,求剩下的长方形面积的问题引入二次根式的乘法及乘法法则;其次,通过例题1利用总结出二次根式的乘除法则进行计算同时注意结果要化简;再次,利用乘除法关系引入二次根式的除法法则并用之计算;最后,通过二次根式的乘除法来解决实际问题。

总而言之:在二次根式的乘除法运算法则的学习和应用的过程中,渗透分析、概括、类比等数学思想方法,提高学生的思维品质和学习兴趣。

此节教学过程中要注意:在学生学习过程中对二次根式的乘除法法则理解上问题不大,但常常忘记运算结果需要化简,此外被开方数是多项式的乘除法运算上容易出错。练习册第3题的(3)小题尽管课堂上练过一题,但还是有人错。

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

返回顶部