四年级奥数典型练习题

发布者:华夏之泪 时间:2024-4-26 01:49

四年级奥数典型练习题

从小学、初中、高中到大学乃至工作,我们或多或少都会接触到练习题,做习题在我们的学习中占有非常重要的位置,对掌握知识、培养能力和检验学习的效果都是非常必要的,那么你知道什么样的习题才能有效帮助到我们吗?以下是小编帮大家整理的四年级奥数典型练习题,欢迎大家借鉴与参考,希望对大家有所帮助。

四年级奥数典型练习题 1

一次数学考试后,李明问于昆数学考试得多少分?于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56。”小朋友,你知道于昆得多少分吗?

方法一:

分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题。

如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?

把一个数用□来表示,根据题目已知条件可得到这样的等式:

{[(□-8)+10]÷7}×4=56。

如何求出□中的数呢?我们可以从结果56出发倒推回去,因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的.,除以7之前是14×7=98。98是加10后得到的,加10以前是98-10=88。88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解。

方法二:

{[(□-8)+10]÷7}×4=56

[(□-8)+10〕÷7=56÷4

答:于昆这次数学考试成绩是96分。

通过以上例题说明,用倒推法解题时要注意:

①从结果出发,逐步向前一步一步推理;

②在向前推理的过程中,每一步运算都是原来运算的逆运算;

③列式时注意运算顺序,正确使用括号。

四年级奥数典型练习题 2

甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?

答案与解析:

船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求.

顺水速度:560÷20=28(千米/小时)

逆水速度:24-(28-24)=20(千米/小时)

返回甲码头时间:560÷20=28(小时)

四年级奥数典型练习题 3

电车维修问题:

电车维修问题的奥数练习题:电车公司维修站有7辆电车需要维修,如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟。每辆电车每停开1分钟的经济损失是11元。现在由3名工作效率相同的维修工人各自单独工作,要是经济损失减到最小程度,那么最小的损失是多少元?

电车维修答案:

因为3个工人各自单独工作,工效又相同,因此,每人维修的时间应尽量相等,设需维修的.车辆分别为:A、B、C、D、E、F、G,修复的时间依次是12、17、8、18、23、30、14分钟,则第一个工人应修复的车是:C、G、D;第二个工人应修复的车是:B、E;第三个工人应修复的车是:A、F。有因为要求把损失减少到最低程度,所以,每个人应尽量先修复需短时间修好的车辆,这样,可以按以下的顺序开修:第一个人:8,14,18。

四年级奥数典型练习题 4

一群蚂蚁搬家,原存一堆食物.第一天运出总数的一半少12克.第二天运出剩下的一半少12克,结果窝里还剩下43克.问蚂蚁家原有食物多少克?

答案与解析:

采用倒推法,教师可画线段图帮助学生理解.如果第二天再多运出12克,就是剩下的一半,所以第一天运出后,剩下的'一半重量是43-12=31(克);这样,第一天运出后剩下的重31×2=62(克).那么同理,一半的重量是62-12=50(克),原有食物50×2=100(克).即[(43-12)×2-12]×2=100(克).

四年级奥数典型练习题 5

1.从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?

【解答】6×4=24种

6×2=12种

4×2=8种

24+12+8=44种

小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。当从国画、油画各选一幅有多少种选法时,利用的乘法原理。由此可知这是一道利用两个原理的综合题。关键是正确把握原理。

符合要求的选法可分三类:

设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。由乘法原理有 6×4=24种选法。

第二类为:国画、水彩画各一幅,由乘法原理有 6×2=12种选法。

第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。

这三类是各自独立发生互不相干进行的。

因此,依加法原理,选取两幅不同类型的画布置教室的选法有 24+12+8=44种。

2.从1到100的`所有自然数中,不含有数字4的自然数有多少个?

【解答】从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.

一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;

两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72 个数不含4.

三位数只有100.

所以一共有8+8×9+1=81 个不含4的自然数.

四年级奥数典型练习题 6

一、数阵图

1、△、□、〇分别代表三个不同的数,并且:△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60

求:△=___ 〇=___ □=___

2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.

_____________________________________

3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等。

_____________________________________

4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的.数。

_____________________________________

二、和差倍问题

1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

_____________________________________

2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

_____________________________________

3.甲、乙两个数,如果甲数加上320就等于乙数了。如果乙数加上460就等于甲数的3倍,两个数各是多少?

_____________________________________

4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?

_____________________________________

5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?

_____________________________________

6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?

_____________________________________

三、年龄问题

1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?

_____________________________________

2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?

_____________________________________

3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?

_____________________________________

4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?

_____________________________________

四、假设问题

1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵。男、女生各多少人?

_____________________________________

2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?

_____________________________________

3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?

_____________________________________

4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?

_____________________________________

5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣5分,张小灵最终得分为41分,她做对了多少道题?

_____________________________________

四年级奥数典型练习题 7

有黑、白棋子一堆,黑子个数是白子个数的2倍,现从这堆棋子中每次取出黑子4个,白子3个,待到若干次后,白子已经取尽,而黑子还有16个。求黑、白棋子各有多少个?

答案与解析:

假设每次取出的黑子不是4个,而是6个,也就是说每次取出的黑子个数也是白子的2倍。由于这堆棋子中黑子个数是白子的2倍,所以,待取到若干次后,黑子、白子应该都取尽。但是实际上当白子取尽时,剩下黑子还有16个,这是因为实际每次取黑子是4个,和假定每次取黑子6个相比,相差2个。由此可知,一共取的`次数是(16÷2=)8(次)。故白棋子的个数为:(3×8=)24个),黑棋子个数为(24×2=)48(个)。

四年级奥数典型练习题 8

树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?

答案与解析:

解析:倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的`6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.

解:①现在三棵树上各有鸟多少只?48÷3=16(只)

②第一棵树上原有鸟只数. 16+8=24(只)

③第二棵树上原有鸟只数.16+6—8=14(只)

④第三棵树上原有鸟只数.16—6=10(只)

答:第一、二、三棵树上原来各落鸟24只、14只和10只.

四年级奥数典型练习题 9

有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑得太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?

【答案解析】

解:{26-[26-(12+5)]×2}×2

={26-[26-17]×2}×2

=(26-9×2)×2

=8×2=16(块)

【小结】最初弟弟准备挑16块。

先利用"和差"问题的解法求弟弟最后挑多少块:

(26-2)÷2=24÷2=12(块)

再利用倒推法求最初弟弟准备挑多少块。

四年级奥数典型练习题 10

1.乘法原理

王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?

解答:三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的报名方法.满足乘法原理的.条件,可由乘法原理解决.

解:由乘法原理,报名的结果共有4×4×4=64种不同的情形.

2.乘法原理

由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?

解答:

分析 要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.

解:由1、2、3、4、5、6共可组成

3×4×5×3=180

个没有重复数字的四位奇数.

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。