【推荐】六年级上册数学教案

发布者:名捕铁手 时间:2023-2-14 00:31

【推荐】六年级上册数学教案

作为一无名无私奉献的教育工作者,时常会需要准备好教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编收集整理的六年级上册数学教案,希望能够帮助到大家。

【推荐】六年级上册数学教案

六年级上册数学教案1

教学目标:

1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2.使学生能在方格纸上用数对确定位置。

教学重点:能用数对表示物体的位置。

教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

一、导入

1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

二、新授

1、教学例1

(1)如果老师用第二列第三行来表示__同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

(3)教学写法:__同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的'方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

2、小结例1:

(1)确定一个同学的位置,用了几个数据?(2个)

(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

3、练习:

(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

4、教学例2

(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

(3)同桌讨论说出其他场馆所在的位置,并指名回答。

(4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)

三、练习

1、练习一第4题

(1)学生独立找出图中的'字母所在的位置,指名回答。

(2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

3、练习一第6题

(1)独立写出图上各顶点的位置。

(2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

(3)照点A的方法平移点B和点C,得出平移后完整的三角形。

(4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

四、总结我们今天学了哪些内容?你觉得自己掌握的情况如何?

五、作业

练习一第1、2、5、7、8题。

六年级上册数学教案2

教学目标

1.利用知识的迁移规律,使学生理解比的基本性质。

2.通过学生的自主探讨,掌握化简比的方法并会化简比。

3.初步渗透事物是普遍联系和互相转化的辩证唯物主义观点

教学重点

理解并掌握比的基本性质

课前准备

课件、实物投影仪

课时安排:

1课时

教学过程

一、复习引入

1.复习比和分数、除法之间的关系

2.提问:比和除法,比和分数之间有那些联系?

引导学生根据商不变的性质和分数的基本性质,猜想:比有什么性质?小组交流

3、出示三个分数:3÷4、6÷8、9÷12.变为比,并比较大小

指名回答小组交流的结果.学生用语言表述比的基本性质。

交流:比的前项和后项同时乘或除以相同的数(0除外),比值不变.这叫比的'基本性质。

教师引导交流:0除外是什么意思?

学生交流,比的后项、除数是0没有意义。

二、学习化简比

1、说明:利用商不变的规律可以进行除法的简算;根据分数的基本性质,可以进行分数的约分、通分。同样,应用比的基本性质,可以把比化成最简单的整数比。

讨论.你怎样理解“最简单的整数比”这个概念?

学生充分讨论后,指名回答,形成共识:最简单的整数比必须是一个比,它的前项和后项必须是整数,而且前后项应该是互质数.

请个别学生举一个最简单的整数比。

2、把下面各比化成最简单的整数比。(强调化成最简单的整数比—互质)

14:2154:18

教师引导交流:怎样把一个比化成最简单的整数比?

总结方法:用比的前后项分别除以它们的最大公因数,使比的前后项是互质数。或用求比值的方法算,最后结果仍然是个比。

1÷10:3÷83/5:5/8

教师引导交流:怎么把分数比化成最简单的整数比?

总结方法:比的前项后项分别乘它们分母的最小公倍数,就化简成最简整数比。

1.25:42.7:18

教师引导交流:怎么把小数比化成最简单的整数比?

总结方法:先将小数化成整数,再化简成最简单的整数比。

3、练习:化简比

60:245/8:7/245/4:0.75

三、练习

自主练习5、7、8

四、小结:

比的基本性质是什么?它是根据什么来的?利用比的基本性质可以干什么?化简比的方法是什么?

六年级上册数学教案3

教材分析:

在学习了比例这个单元的知识后,教材安排了一节整理复习的内容,对本单元的知识进行整理和复习。学生通过学习对比例的意义、正反比例关系、以及用比例知识解决问题的方法都有了一定的认识和理解,经过一段时间的学习,有必要对这些知识进行系统的整理和复习。教师在组织整理复习时,要紧紧围绕着本单元教学的基本要求,结合学生学习的具体情况有针对性地进行复习。对学生平时学习过程中容易出错的、易混淆的概念,要加强对比复习,使学生明确它们的区别,加深对概念的理解。

教学目标:

1.通过复习,进一步理解比例的意义和基本性质,明确比和比例的联系与区别,能正确熟练地解比例。

2.通过复习,进一步理解正比例和反比例的意义,能正确进行判断。

3.通过复习,熟练掌握应用比例知识解决问题的方法。

4.在复习过程中,培养学生的整理复习意识,体会整理复习的好处,逐步掌握用思维导图整理知识的方法。

教学重点:理解并掌握比例的意义和基本性质、正比例和反比例的意义;

掌握应用比例知识解决问题的方法。

教学难点:通过整理和复习,对比例知识有系统的认识,形成系统的知识体系。

教法:教师用思维导图的方法指导学生整理和复习。

学法:学生回忆整理,练习巩固知识。

设计说明:

根据我们的《小学六年级数学复习课教学的有效性研究》课题,结合学生已有的知识经验设计教案。有两个要达成的`目标,一是老师带着学生边复习便边整理知识,在对知识之间的联系有初步认识的基础上,初步形成知识网络。二是通过收集错题,典型题,对本单元的重点,难点、易错点的复习,让学生对知识有一个比较完整的把握。从学法层面来说,向学生展示一种好的复习方法——用思维导图对本单元进行整理和复习,旨在让学生通过该节课的学习,掌握用思维导图进行整理和复习的方法。

教学过程:

一、谈话引入,揭示课题

1.比例这个单元我们主要学习了什么内容?【比例的意义和基本性质、正比例和反比例、比例的应用等】

2.学习的内容那么多,你是如何整理和复习的?有什么好方法与大家分享?

3.今天这节课,我们就一起用思维导图对这个单元的知识进行整理和复习。

揭示课题:比例的整理和复习

二、看书归纳整理

1、看书整理比例的意义

(1)师指导学生看书(第40至42页),边复习边整理。

老师带着学生看书整理和复习比例的意义。

(2)复习比例的意义、各部分名称、比和比例的区别。

说一说:什么是比?什么是比例?比和比例有什么联系和区别?

比:两个数相除又叫做这两个数的比

比例:表示两个比相等的式子叫做比例。

2、看书整理复习正比例和反比例

(1)让学生看书第45至49页,尝试整理本节知识。

3、整理比例的应用让学生看书第53至62页,尝试整理本节知识,老师个别辅导。

4、汇报分享交流整理的成果。

注意事项:

1、将一个图形按一定的比放大和缩小时要注意什么?教师强调:图形的放大和缩小都是把图形的边长按一定比例进行放大和缩小。

2、用比例知识解决问题有哪些步骤?

三、巩固练习

1、下面各表中相对应的两个量的比能否组成比例?如果能,把组成的比例写出来。

2、判断两种相关联的量是否成比例?成什么比例?说明理由。

(1)总路程一定,速度和时间。

(2)总页数一定,看了的页数和剩下的页数。

(3)购买铅笔的单价一定,总价和数量。

六年级上册数学教案4

一、教学内容:

苏教版六年级上册68-77页

二、教材分析:

《认识比》是苏教版六年级上册中第五单元内容,是本册教材的教学重点之一。教材密切联系学生已学有的学习经验和生活经验过,设置了多种情境图。通过对这部分内容的教学,不仅能够发展对除法与分数的认识,进一步沟通知识间的联系,还能够加深学生对比的性质、比的应用理解。

三、学情分析:

学生已经掌握了除法和分数的意义,在此基础上教学一些关于比的基础知识,能够发展学生对除法和分数的认识,进一步沟通知识间的内在联系,完善认知结构,为以后进一步学习比例及其它方面的知识打好基础。

四、教学目标:

1.知识技能:使学生在具体的情境中理解比的意义,掌握比的读法、写法,知道比的.各部分名称,要会求比值。

2.过程与方法:使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3.情感态度与价值观:使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

五、教学重点:

理解比的意义;理解比与分数、除法的关系。

六、教学难点:

理解比与分数、除法的关系,在生活中发现比,感受比。

七、教具准备:

多媒体课件、学生自备三角板一副

八、教学过程:

1.创设情境,引入比

课件出示例1问:图上有什么?(2杯果汁,三杯牛奶)想一想:可以怎样表示这两个数量之间的关系?根据学生回答课件呈现:牛奶比果汁多一杯;果汁比牛奶少一杯果汁的杯数是牛奶的;牛奶的杯数是果汁的板书:2÷3=

3÷2=

小结:两个数量相比较,既可以用减法来比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。其实,在比较两个数量之间的关系时,还可以用比来表示。这就是我们今天一起学习的新内容——认识比(板书)

2.自主探究,认识比

(1)用比表示两个同类量之间的相除关系

(2)用比表示两个不同类量之间的相除关系

(3)揭示比的意义。观察屏幕上的几个比,想一想两个数的比可以表示什么?想好以后和你的同桌讨论一下。(小组交流、全班交流)

小结:分数就是除法,比与除法有关系,两个数的比表示两个数相除,比的前项除以比的后项得到的商就是比值。问:比的后项能为0吗?

不能

(4)课件出示

3.自主练习,应用比

学生独立完成课本P70“练一练”1、2、3

4.拓展延伸,感受比

你听说过“黄金比”吗?黄金比的比值约等于0,618。从古希腊以来,一直有人认为把黄金比应用于造塑艺术,可以使作品给人以最美的感觉。因此,黄金比在日常生活中有着广泛的应用。能找找看吗?

5.课堂小结:两个数的比表示两个数相除,比的前项除以比的后项得到的商就是比值。

六年级上册数学教案5

教学内容:一个数乘以分数及其应用题。

教学目的:在学生初步理解一个数乘以分数的意义的基础上,通过类比的推理方法,形成一个数乘以分数就是求这个数的几分之几是多少的概念。并掌握一个数的几分之几是多少,就是用这个数乘以分数的计算方法。

教学过程:

一、只列式不计算

1)两地相距4千米,小明行了4/5千米,还剩多少千米?

2)大豆每千克含油4/25千克,照这样计算,20千克大豆含油多少千克?

二、发展练习

(1)六(5)班有45位学生,其中男生占3/5,男生有多少人?

(2)商店有18辆儿童单车,上午卖出了4/9,上午卖出了多少辆?

(3)重量是足球的49,一个足球重1/4千克,一个排球重几千克?

(4)每小时骑车行11千米,这4小时一共行多少千米?

2、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的`1/4,第二次用去多少吨?

3、食堂运来24吨的煤,第一次用去1/3,第二次用去的这批煤的1/4,第二次用去多少吨?

4、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?

五、作业:练习四第11—15题。

六年级上册数学教案6

本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。

由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。

教材还编排了很多问题情境图来突破教学中的重难点问题。

例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。

这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)

第1课时比的意义

教材48~49页的内容。

1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

重点:

理解比的意义以及比与分数、除法之间的关系。

难点:

理解比与分数、除法之间的关系,明确比与比值的区别。

课件:

学具。

1.课件出示教材第48页情境图。

教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

(1)长比宽多多少厘米?15-10;

(2)宽比长少多少厘米?15-10;

(3)长是宽的多少倍?15÷10;

(4)宽是长的几分之几?10÷15。

2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)

自学比的相关知识。

学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)

(1)比各部分的名称。

课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)

(2)比值的意义。

师:怎样求一个比的比值呢?(比的`前项除以比的后项所得的商就是比值。)

师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

讨论后根据学生交流反馈填写下表:

联系

区别

除法

被除数÷除数=商

一种运算

分子—分母=分数值

前项:后项=比值

两个量的关系

请尝试用字母表示比和除法、分数之间的内在联系。

板书:a∶b=a÷b=(b≠0)。

师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。

师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

1.教材第49页“做一做”第1题。

请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

2.教材第49页“做一做”第2题。

学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。

说说这节课我们学习了什么?你有什么收获?

教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

第2课时比的基本性质

教材第50~51页的内容。

1.理解和掌握比的基本性质,初步掌握化简比的方法。

2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

重点:

理解比的基本性质。

难点:

正确应用比的基本性质化简比。

课件、答题纸、实物投影。

师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?

板书:比的基本性质。

学生纷纷猜想比的基本性质。

根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

1.教学比的基本性质。

师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

(3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)

(4)全班验证。

2.完善归纳,概括出比的基本性质。

10∶15=10÷15==

15∶9=15÷9=

16∶20=(16

□)∶(20

□)

上题中○内可以怎样填?□内可以填任意数吗?为什么?

(1)学生发表自己的见解并说明理由,教师完善并板书。

(2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。

3.深化认识。

利用比的基本性质做出准确判断:

(1)8∶10=(8+10)∶(10+10)=18∶20( )

(2)12∶16=(12÷6)∶(16÷4)=2∶4( )

(3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )

(4)比的前项乘3,要使比值不变,比的后项应除以3。

( )

4.比的基本性质的应用。

(1)引导学生自学最简整数比的相关知识。

预设:前项、后项互质的整数比称为最简整数比。

(2)从下列各比中找出最简整数比,并简述理由。

3∶4 18∶12 19∶10 ∶ 0.75∶2

(3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))

学生独立尝试,化简后交流。

(除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)

(4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))

四人小组讨论研究,找到化简的方法。

预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

(5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

5.方法补充,区分化简比和求比值。

)

还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?

预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)

2.教材第53页“练习十一”第4题。学生口答完成。

这节课你有什么收获?还有什么疑问?

比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用

教材第54页的内容。

1.能在实例的分析中理解按比分配的实际意义。

2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

课件。

课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)

师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)

1.课件出示教材第54页例2。

师:题目中要配制什么?(配制500

mL的稀释液)

师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

师:“浓缩液和水的体积比是1∶4”是什么意思?

生:就是说在500

mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。

师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?

师:你能求出浓缩液和水的体积各是多少毫升吗?

引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。

思路一:先把比化成分数,用分数乘法来解答。

稀释液平均分成的份数:1+4=5(份)

浓缩液的体积:500×=100(mL)

水的体积:500×=400(mL)

思路二:把比看作分得的份数,先求一份数,再求几份数。

稀释液平均分成的份数:1+4=5(份)

浓缩液的体积:500÷5×1=100(mL)

水的体积:500÷5×4=400(mL)

2.验证所求问题。

方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。

方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。

3.明确按比例分配的意义。

在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)

4.整理解题思路。

(1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)

(2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。

1.教材第55页“练习十二”第1、2题。

第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。

2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。

3.教材第56页“练习十二”第11题。

注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。

今天这节课我们主要研究了什么?说说你的收获和感受。

本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

六年级上册数学教案7

教学目标:

1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。

教学重点:

理解数量关系。

教学难点:

根据多几分之几或少几分之几找出所求量是多少。

教具准备:

多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去。

(2)用去一部分钱后,还剩下。

(3)一条路,已修了。

(4)水结成冰,体积膨胀。

(5)甲数比乙数少。

2、口头列式:

(1)32的.是多少?

(2)120页的是多少?

(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

六年级上册数学教案8

教学目标:

1、进一步理解和掌握圆的周长和面积的计算方法,能熟练地计算圆的周长和面积。

2、能灵活运用本单元研究得出的知识解答问题。

3、 进一步感受数学的应用价值。

教学重点:

圆的周长和面积的计算。

教学难点:

综合应用。

教学过程:

一.引入

1.问:这个单元我们一起学习了哪些知识?师生一起归纳、整理本单元所学内容。

2.揭示课题。

二.展开

1.求圆面积的练习

先用小黑板出示P27练习1——2再指名板演,

然后让板演者说说计算过程。最后再次复习圆面

积在各种条件下的计算公式:S=πr2=π()2

2.综合应用。

投影出示P27练习3~4题,先由4人组成小组

进行讨论,并解答,然后在全班同学面前汇报,

特别要说清思考过程,最后,教师讲解。

三.总结

本节课我们复习了什么?

四.作业

课后反思:

教学内容 练习一(2) 课时

教学目标:1.能灵活运用本单元研究得出的.知识解答问题。

2.通过图形的组合,发展学生的空间想象能力。

3.进一步感受数学的应用价值。

教学重点:加深对圆的周长和面积的理解,灵活运用所学知识的能力。

教学难点:培养学生的空间能力,提高解决实际问题的能力。

一.复习

1、什么叫半径?什么叫直径?怎样求圆的周长?

怎样求圆的面积?

二.展开绿色圃中

1.练习。

先指名板演,其余同学各自做在草稿纸上,

然后全体师生共同讲评,指出存在的错误,

尤其是做在草稿纸上的同学一定要自己找出

错误的原因和正确的解答过程,小组进行练习。

2.小结。

三.巩固练习

六年级上册数学教案9

教学内容:第1~2页,例1及“做一做”,练习一1—7题。

教学目的

(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

(2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

教学重、难点:

(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

(2)引导学生总结分数乘整数的计算法则。

教学过程:

(一)铺垫孕伏

1、出示复习题。(投影片)

(1)整数乘法的意义是什么?

(2)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少?9个11是多少?8个6是多少?

(3)计算:

计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

2、引出课题。

分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

(二)探究新知。

1、教学分数乘整数的意义。

出示例1,指名读题。

(1)分析演示:

师:每人吃块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:+ + = = =(块),(教师将3个双层扇形图片拼成一个一块蛋糕的'图片)

(2)观察引导:

这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。

(3)比较和12×5两种算式异同:

提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

通过讨论使学生得出:

相同点:两个算式表示的意义相同。

不同点:是分数乘整数,12×5是整数乘整数。

(4)概括总结:

教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

2、教学分数乘以整数的计算法则。

(1)推导算理:

由分数乘整数的意义导入。

问:表示什么意义?引导学生说出表示求3个的和。板书:+ +学生计算,教师板书:提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)

观察结果:的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。

(3)概括总结:

请根据观察结果总结的计算方法。(互相讨论)

汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。

根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。

(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

3、反馈练习:

(1)看图写算式:做一做、练习一第1题。

订正时让学生说出乘法中被乘数、乘数各表示什么?

(2)口答列算式:

=()×()

3个是多少?5个是多少?

订正时让学生说一说为什么这样列式。

(3)计算:

先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的要先约分,若乘得的结果是假分数的要化成带分数。

(三)全课小结。

这节课我们学习了什么?引导学生回顾总结。

(四)作业。

练习一5、6题。

六年级上册数学教案10

【教学内容】

《义务教育课程标准实验教材 数学》六年级上册第2~3页。

【教学目标】

1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。会在方格纸上用“数对”确定位置。

2.通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。

3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。

【教学重点】

使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

【教学难点】

在方格纸上用“数对”确定位置。

【教学过程】

一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置

1.谈话引入。

今天有这么多老师和我们一起上课,同学们欢迎吗?

老师们都很想认识你们。咱们先来给他们介绍一下我们班的班长,可以吗?

2.合作交流,在已有经验的基础上探究新知。

(1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的.位置,把你的方法写或画在纸上。

汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排…

哪个小组也用语言描述出了班长的位置?

请班长起立,他们的描述准确吗?

刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排……)

看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。

板书:列 行

老师左手起第一组就是第一列…,横排就是第一行…

班长的位置在第4列、第3行。

还有其他的表示方法吗?

六年级上册数学教案11

复习内容:课本第22页练习六。

复习目的:

1、使学生进一你好理解分数乘法的意义,掌握分数乘法的计算法则,并能正确、熟练地进行计算。

2、使学生进一你好理解整数运算定律同样适用于分数,并能应用这些运算定律进行简便计算。

3、使学生进一你好理解倒数的意义并掌握求倒数的方法。

复习过程:

(一)导入:板书:整理和复习

(二)整理。

1、启发学生回忆整数乘法的意义:5个12是多少?怎样列式。

使学生明确:5×12或12×5

求几个相同加数的和的简便运算。

2、启发学生回忆本单元学过的分数乘法的意义:

使学生明确:8/15×5,5个8/15的和,

8/15+8/15+8/15+8/15+8/15=8/15×5

分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

3、一个数乘以分数的意义,就是求这个数的几分之几是多少?

使学生明确:24×3/8就是求24个3/8是多少,7/18×9/14就是求7/18的9/14是多少,是对整数乘法的的'扩展。

练习:练习七的第3题。

板书:

分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变,为了计算简便,能约分的要先约分,然后再乘。

一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母,为了计算的简便,也可以先约分再乘。

使学生明确:分子相乘的积作分子,分母相乘的积作分母。

板书:

应用乘法交换律应用乘法结合律应用乘法分配律

练习:练习七的第4、5题。

5、口算

练习七1、10题。

6、分数应用题。

(1)把谁看作单位“1”

六年级参加数学小组的有36人,语文小组的人数是数学小组的,体育小组的人数是语文小组的倍。体育小组有多少人?

(2)练习。

①打字员打一部书稿,每天完成,5天完成这部书稿的几分之几?

×5

②立新小学六年级有学生155人,其中的参加科技活动小组,参加科技活动小组的有多少人?

155×

④党校食堂九月份用煤560千克。十月份计划用煤是九月份的,而十月份实际用煤比原计划节约,十月份比原计划节约用煤多少千克?

560× ×

7、倒数:整理和复习第7题。

堂上练习:

1、练习七第2题,抢答,小组练习。

2、练习七的第3、11题。

3、练习七的第16、17题。

作业:

练习七的第12—15题。

六年级上册数学教案12

本册教学目标

板书设计:

教后反思:

(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?(列式: ×3 = )

六年级上册数学教案

Copyright © 2022-2023 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

返回顶部